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Abstract. With the integration of everyday objects and sensors into
the Internet, users gain new possibilities to directly interact with their
environment. This integration is facilitated by the development of tiny IP
stacks that enable a direct Internet connection for resource constrained
devices. To provide users with the same level of usability that is predom-
inant in the current Internet infrastructure, a self-configured discovery
service for sensors and objects is needed. We thus present a use case of
a discovery service based on Multicast DNS and DNS Service Discovery,
which we adopt for resource constrained devices and operating systems.
Applications using this service can realize direct connections between
resource constrained devices following the end-to-end principle of the
IP-based Internet, allowing for a seamless integration of potentially mil-
lions of objects and sensors into the current Internet and facilitating the
pervasive infrastructure that is envisioned by the Internet of Things.
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1 Introduction

The Internet is rapidly reaching over into the physical world with the integration
of sensor networks and the embedding of communication technology in everyday
objects. This technological progress was named “Internet of Things” by Kevin
Ashton [1]. The realization of the IoT vision goes hand in hand with the de-
velopment of Internet Protocol (IP) solutions for embedded devices. With the
development of small IP stacks like uIP(v6) [2], embedded and resource con-
strained devices can be connected directly to the Internet, while at the same
time omitting approaches that break with the Internet’s end-to-end principle.

With an integration of everyday objects and sensors into the Internet, a
new kind of pervasive and ubiquitous infrastructure will be available, leading
to new types of applications and services for the interaction of users with their
environment. To facilitate a seamless integration, appropriate solutions must be
compliant with the current Internet infrastructure. There are two prerequisites
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to achieve this: a standardized discovery scheme complying with the IP standard
of the conventional Internet domain and the self-configuration ability to handle
the possibly large number of objects emphasized by the IoT vision [3]. Discovery,
in our work, covers the topics of finding and addressing objects as well as issues
of interoperability between different device classes. Self-configuration, as an un-
derlying paradigm of device management, covers the problems of scalability and
bootstrapping. Both aspects are vital to provide the same level of service qual-
ity that users and developers are accustomed to from the conventional Internet.
We therefore want to facilitate solutions that provide autonomous bootstrapping
and service discovery instead of complex manual setups.

A main problem for a seamless integration lies in the restrained nature of
embedded devices. Typical limitations are: communication over short ranges
and failure prone wireless links, limited power supply, and limited memory sizes.
Another problem is the multitude of device types, whereas each type has different
characteristics, limitations, and physical communication abilities, leading to the
need for bridging solutions to enable a device-overlapping interconnection. Next
to different communication technologies, embedded devices often use specialized
and proprietary protocols on the higher layers of their communication stack.
Examples are the Constrained Application Protocol (CoAP) [4] and the Message
Queue Telemetry Transport (MQTT) [5] protocol, both rely on gateways and
protocol translators to connect embedded devices to Internet-based systems.
This leads to a loss of flexibility and end-to-end functionality because messages
need to be translated [3], which is typically a time-consuming, failure-prone, and
complex task. So instead of trying to introduce new protocols for the discovery
of applications and services offered by everyday objects, we propose to adapt
established protocols that work in compliance with the current architecture for
the integration of Things into the Internet of Things.

In this work, we introduce a lightweight discovery service implemented for
the Contiki [6] operating system for embedded devices. Our approach is based
on the combination of Multicast DNS (mDNS) [7] and DNS Service Discovery
(DNS-SD) [8] in a lightweight implementation with adjustments for embedded
devices (e.g., small code footprint, minimized overhead), while enabling interop-
erability and service discovery at the application layer through DNS messages.
mDNS and DNS-SD are combined with Zeroconf [9] under the term Bonjour
[10], an established and widely used standard in current IP-based networks.
While Bonjour enables computers to communicate ad hoc without a complex
setup or manual bootstrapping, our approach will be a first step in this direc-
tion by integrating everyday objects and sensor devices in the current IP-based
Internet architecture in order to enable the discovery of devices and services of
resource constrained devices in compliance with the current infrastructure as a
basic discovery service for the Internet of Things vision.

The remainder of this work is structured as follows: Section 2 introduces our
case study together with a discussion of related problems. Section 3 presents a
service-oriented solution to discover and address sensor devices. A verification
through a prototypical implementation is presented in Section 4. Related work
is discussed in Section 5 and concluding remarks are presented in Section 6.
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2 Case Study for Locating Sensors over IP

An autonomous discovery of devices and services inside a network domain is
a central usability criterion. Applications and users need mechanisms to iden-
tify new devices and gather relevant information to access offered services. For
Internet of Things scenarios, this means that devices need to be discovered in
wired and wireless networks, with support through pre-configured infrastructure
as well as possibly without (ad hoc) any infrastructure support. Next to these
requirements, a discovery solution should also work in compliance with current
systems. We thus favor using IP-based solutions to facilitate an easy integration
into current networks and systems.

We choose our own working environment as a testbed for a typical IoT sce-
nario. In our “smarter workplace” scenario, different devices (sensors as well as
actuators) are distributed to support workers in their daily routines, as Figure 1
illustrates. This leads to a case comparable to common “smart home” scenarios.
Smart homes are widely covered in research, although typically used technologies
are proprietary and not IP-enabled [11], thus requiring gateways and protocol
adapters. As we omit protocol gateways in favor of an end-to-end connection
with common Internet protocols, we focus on setting up a testbed of different
devices connected over IP links. We connect various stationary computers and
workstations, mobile devices (e.g., smartphones, netbooks), as well as embedded
devices, sensors, and actuators over their respective communication technolo-
gies. Figure 1 depicts the architecture of the system. It is important to note
that we cannot omit bridges to interconnect different technologies physically.
We assume that one of the following bridging methods is provided to intercon-
nect diverse communication technologies: interconnection via USB/serial port,
support for multiple radio technologies within a single device, or embedding the
sensor/device in power outlets for a connection over power line communication.
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Fig. 1. System Architecture and Use Case
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The discovery of non-constrained devices (e.g., workstations, smartphones,
netbooks) and their respective services over IP links is provided through today’s
standards like Bonjour, which we adopt for the depicted resource constrained
sensors and actuators. For the bridging of different communication technologies,
we currently work with USB adapters to link IEEE 802.15.4 and Ethernet over
intermediate devices like notebooks. A next step will be the practical deployment
of a IEEE 802.15.4 bridging device in form of a small power outlet connected
access point for IEEE 802.15.4, comparable to the Sheevaplug [12].

Autonomous discovery of new devices and services increases usability and
user autonomy. We eventually want to reach a point where sensor devices are
just plugged in (in power outlets) or started (if battery operated) and users can
“search” the network for new services and then “subscribe” to them, gaining
access to information and new ways of interacting with their environment. This
operational scheme is directly connected to the concept of Service-oriented Ar-
chitectures (SOA) [13]. SOA enables a seamless integration and interaction of
different device types while specific devices are abstracted as services according
to their offered functions. This abstraction of functionality into services is what
we ultimately aim for with the discovery service for constrained devices.

Several problems arise due to the resource constrained nature of typical em-
bedded sensor and actuator hardware as well as due to the non-permanent at-
tachment of such devices to the network infrastructure. The following list is a
selection of problems that we explicitly address in this work:

– Resource constrained devices operate on tiny 8-bit microcontrollers with
limited memory (typically 8-16 KB of RAM and 64 - 128 KB of ROM);

– Network connection is often ad hoc and non-permanent in contrast to non-
constrained devices due to a sensor’s limited battery-driven power supply;

– Embedded communication standards (e.g., IEEE 802.15.4) support only
small Maximum Transmission Units (MTUs) when compared to normal IP-
based infrastructure (cp. 802.15.4 with 127 Bytes to IPv6 with 1280 Bytes),

We cover these problems in our solution design with several adaptations and
optimizations. The following section presents the standards that we use and
our adaptations while Section 4 presents a practical verification that specifically
addresses the problems of embedded microcontrollers and limited memory.

3 mDNS / DNS-SD-based IoT Discovery Service

The presented IoT discovery service is based on mDNS and DNS-SD. Both proto-
cols were implemented for Contiki, an operating system for resource constrained
hardware with a small code footprint and integrated IPv6 support. Our combi-
nation of Contiki, mDNS, and DNS-SD is named uBonjour. uBonjour enables a
high interoperability between non-constrained and resource constrained sensor
devices at the application layer through the use of standardized DNS messages.
Our implementation is based on the Ethernet Bonjour [14] project. We extended
and reimplemented it in an optimized way for Contiki with IPv6 support and
tested it with Avahi as described in Section 4.
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3.1 Background Information

This subsection presents an overview of Contiki, mDNS, DNS-SD, and the SOA
concept to substantiate the subsequent descriptions of the discovery service for
IP-based embedded sensor devices.

Contiki [6] is an open source operating system, running on embedded hardware
with constrained memory and computing resources. IP connectivity is provided
by the integrated uIP stack, which features ARP, IPv4/v6, SLIP (Serial Line IP),
ICMP echo, UDP, and TCP protocol support. Contiki’s core system is based on
an event-driven kernel with on-demand preemptive multithreading to effectively
share marginal memory resources between all processes. To provide concurrency,
processes are implemented as event handlers that run till completion and return
back to the kernel when finished. A process is implemented either as an ap-
plication program or as a service. Services provide functions that can be used
by application programs. Inter-process communication is provided through the
kernel by posting events.

Multicast DNS (mDNS) [7] is one part of a group of standards that is used
to enable computers to view or find other devices and to share their services
with each other in network environments. mDNS’s functionality is to resolve
domain names without the help of any server by delivering messages to reserved
multicast addresses 224.0.0.251 (IPv4) and ff02::fb (IPv6) and the UDP
port 5353. Devices inquire network addresses with requests to a multicast group,
while the corresponding device responds with its list of DNS resource records
(refer to DNS-SD). mDNS is often implemented together with DNS-SD. Both
are available for various platforms, for example for Mac OS, iOS and Windows
with Bonjour [10], and for Linux, BSD, OpenWRT and Android with Avahi [9].

DNS Service Discovery (DNS-SD) [8] is another part of the standards
used to discover devices and share their services. It is combined with mDNS and
also provided by Bonjour [10] and Avahi [9]. DNS Service Discovery enables the
location and announcement of services of entities in a network domain. DNS
resource records are again used to provide information about services. A device
usually offers its service by propagating the following DNS records: a service
name of the service offering device via the SRV record, a hostname/domain name
mapped to an IPv4 address via the A record and optionally for IPv6 with the
AAAA record, a user-defined text with the TXT record, and an assignment of service
instances to a service with the PTR record.

Network configuration and management is simplified with mDNS and DNS-
SD because entities can detect each other inside a network without previously
distributed configuration or prior mutual acknowledgment [15]. Extending a net-
work with additional devices is simplified due to the fact that all devices are able
to explore their network vicinity for available services and running applications.
An extension of this discovery functionality beyond local network boundaries
is enabled by Wide-Area DNS-SD [16] using the same DNS-SD APIs. This can
ultimately boost the integration of resource constrained devices into the current
Internet infrastructure [17], thus supporting the IoT vision.
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Service-oriented Architecture (SOA) is an approach to provide trans-
parency through service abstraction for specific device functions as well as seam-
less interaction with different device types through self-organization and au-
tonomous connection establishment and management. Transparency through
SOA enables devices to browse their network domain for neighbor devices and
newly published services [18]. SOA also enables an easier and failure-resistant
network bootstrapping [19] because hard-coded start-up addresses and broken
pre-configurations can be avoided. Devices perform look-ups for specific services
after booting and request necessary information to perform their context-based
actions [20]. SOA eventually enables a service-oriented network where devices
can act and collaborate spontaneously and autonomously.

3.2 Standard Discovery Service

uBonjour is a lightweight service to discover and address devices and available
services in network environments. Application protocols can register their avail-
ability as services in the network as well as discover other devices that use the
same application protocol. uBonjour helps to fulfill two main goals of the IoT
vision: standardized discovery and self-configuration. Figure 2 depicts the archi-
tecture of a Contiki-based sensor device including uBonjour as a general service
for announcing available application protocols.

Application Layer

Transport Layer

Internet Layer

Link Layer

UDP

uIPv6 & 6LoWPANuIPv4 & RIME

IEEE 802.15.4

TCP

Application

Protocol 1

Application

Protocol 2

Application

Protocol 3

Contiki

uBonjour

Service

Fig. 2. uBonjour running as a Discovery Service on Embedded Devices

Standardized Discovery defines an application- and device-independent an-
nouncement for service offering entities in the network environment. It imple-
ments the standardized behavior of mDNS according to [7] and DNS-SD [8] to
ensure a compliant message exchange with different kinds of computer systems
using either Bonjour or Avahi. This enables computer systems to discover and
address sensor devices in an easy-to-use and transparent way without application
protocol gateways.

Author manuscript, published in “ADHOC-NOW (2012)”

6



Bonjour Contiki: Case Study of a Discovery Service for the IoT 7

Self-Configuration is an essential aspect of the Internet of Things, as a large
number of devices are going to be connected to the Internet. An automatic
setup during the bootstrapping phase is necessary to support the diversity of
sensor technology as well as configuration possibilities and to facilitate an easy
start-up for the subsequent interaction between devices [21]. uBonjour therefore
supports self-configuration instead of hard-coded addresses so that devices can
scan their network environment and share results without the need to know the
exact network topology. Adding a new sensor is performed as easy as starting
and requesting information from surrounding devices, while a coordinated exit
of a device is enabled with “service unavailable” messages.

3.3 Resolving Hostnames

To discover the address of another device in the network, a device needs to send
a DNS query for the domain name to the multicast group. The device with
the corresponding domain name replies with an A record including its network
address. If a hostname could be resolved, uBonjour will broadcast an event to all
listening processes with the IP address as data, or else a timeout for the query
will be triggered. Only one name can be resolved at the same time. Sending a
new query at the same time will stop the ongoing search for a hostname and will
start a new search with the currently submitted hostname.

3.4 Discovering Services

A device initiates the service discovery by sending a PTR record to the multicast
group containing the name of the searched service. If a service query is resolved,
uBonjour posts an event to all processes with PROCESS_BROADCAST, containing
the resolved IP address and port as data. If the query cannot be resolved, a
timeout for the searched service is triggered. Only one service query is supported
simultaneously. Sending a new query at the same time stops any ongoing service
search and starts a new search with the currently submitted service name.

3.5 Registering, Removing, and Updating Services

To publish an available service, a sensor device has to send four DNS records as
described in Section 3.1. Each application running on a device has to register a
service with its service name, IP address (provided by Contiki), and port, if it
wants to be found in the network by other devices. If a PTR query arrives, the
corresponding device replies with one SRV, TXT, A or AAAA, and PTR record. To
remove a service from a network, the device needs to send a PTR record with the
Time-To-Live (TTL) set to zero. Our uBonjour API also supports updating an
already published service by resending the four DNS records with changed data.
uBonjour can handle up to eight service registrations per device by default. This
value can be adjusted to the memory size of the specific device.
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3.6 Memory Management Optimization

As constrained devices only support limited memory resources, reducing the
code size and the number of used variables and buffers becomes very important.
A large quantity (about 60%) of uBonjour’s source code size is consumed by
the handling of received DNS records and by the generation of DNS responses.
We thus optimized the memory management for this code part to minimize the
memory consumption. The buffer size of the parser is reduced as the handling
is now done directly inside the uIP buffer. The generation of DNS responses
requires only a small buffer of the size of a DNS header while the rest of the
message generator directly uses the uIP buffer. This in-place processing strategy
facilitates a memory-efficient discovery service for Contiki.

3.7 Message Size and Flow Optimizations

Contiki’s uIP stack uses lower layers (e.g., Rime for IPv4, 6LoWPAN for IPv6)
and their provided features (e.g., fragmentation) to efficiently route IP packets
in a network. An IP packet relies on the lower layer fragmentation skills, which
again depend on the sensor device and its built-in radio transceiver. This limits
the supported IP packet size of Contiki, as the following Table 1 shows.

Table 1. Supported IP Payload Sizes of Contiki 2.5 in Byte.

Sensor Device & Radio Module IPv4 IPv6

AVR Raven / Redbee Econotag 1300 1300

Tmote Sky / AVR ZigBit 108 / 240 240

MEMSIC IRIS / MICAz 128 240

STM32 140 140

MSB430 116 116

ESB 110 110

Zolertia Z1 108 140

Table 1 summarizes the maximum available payload sizes of an IP packet
for each supported sensor device and radio module. If these values are exceeded,
DNS records will not fit into a single IP packet and IP packet reassembly must
be enabled, which will cost an additional amount of RAM and 700 Bytes of code
size. Experiments for performing lower layer fragmentation have shown that this
mechanism is energy-efficient for request/response cycles as there is no need to
optimize the number of fragments [22, Sec. VI]. Devices like the AVR Raven or
the Redbee Econotag can handle the lower layer fragmentation very well and thus
support a higher IP payload size when compared to other devices (e.g., Tmote
Sky, Zolertia Z1). We therefore decided that each DNS record of uBonjour must
fit into a single IP packet to avoid the use of IP packet reassembly. The TTL flag
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in the DNS header needs to be set for each DNS record with a time in seconds
to specify how long a published service will be available. A normal value in this
case is 120 seconds, which should be increased for further optimization. Larger
TTL values minimize the number of sent messages between devices and they do
not interfere with the joining of new devices, because those can explicitly ask for
available services in the network. Evaluations of the impact of increased TTL
values on the data traffic in larger networks are future work.

Further optimizations for uBonjour are possible by implementing compres-
sion methods to keep the data traffic to a minimum, especially in multi-hop
networks. Two different methods are currently available: the Known-Answer
Suppression [7, Sec. 7.1] and the Duplicate Question Suppression [7, Sec. 7.3]
method. The known-answer suppression method reduces the total number of
answers while a device sends a response for a group of devices (including him-
self), thus reducing the number of necessary responses to gather information
about the whole network. For this each device needs to cache published service
offerings in the network and wait a randomly chosen time before it answers a
request. If a device detects a cached answer to a request, then this answer will
be added to its own. If other devices recognize this they will refrain from send-
ing their own answers. The duplicate question suppression method, in contrast,
reduces the total number of requests. A device will assume a request as its own
when it sees a request that matches its own. This prevents the sending of re-
dundant DNS responses because less PTR query messages are sent. Again, each
device has to wait a random period before it can send its request.

At the moment we decided to refrain from choosing either one of these two
methods for uBonjour because both optimizations need to store a bundle of mes-
sage related data for proper functionality. This results in an increase of needed
buffers and code size, therefore increasing the use of RAM and ROM for the
discovery service. To avoid this, we developed our own optimization approach
for uBonjour, which is introduced in the following section.

3.8 One-Way Traffic Optimization Approach

uBonjour should assist devices in finding available services and being discovered
by other classes of computational devices inside a network. The implementation
therefore must be as slim as possible to allow other applications to reside in
the device’s limited memory as well. Since the Known-Answer Suppression and
the Duplicate Question Suppression method would consume too much memory
(as described in the previous section), we developed an economical optimization
of mDNS and DNS-SD for resource constrained devices called One-Way Traf-
fic (OWT). The OWT optimization is built-in and can be activated during the
compilation of uBonjour. This optimization puts a sensor device into a passive
mode in which the device only publishes its services periodically (via TTL) and
responds only to incoming name and service requests. Passive mode disables the
active resolving of hostnames and the ability to parse service query responses
from other devices in the network. This also avoids ping-pong effects of DNS
responses, while service query responses are targeted only on non-constrained
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devices. The activation of OWT and the subsequent disabling of hostname re-
solving and service query response parsing reduces the used code size significantly
and also saves energy because message parsing and network traffic are minimized
overall. The OWT optimization leads to a reduction of lines of code too, since
the parser handling for incoming service query responses can be skipped, which
frees around 400 lines of code. We do not lose much of the core functionality
of uBonjour because sensor devices are still able to actively register services
and to react to requested services from desktop and mobile systems inside the
network environment. Overall, this behavior facilitates the lightweight aspect
of the discovery service by coupling non-constrained devices with resource con-
strained hardware. Desktop and mobile systems can scan their environment for
sensor devices with a pre-installed mDNS and DNS-SD service, while nearby
sensor devices can directly answer to them with DNS records, without the need
of installing additional protocols or using application protocol gateways either.
This establishes an easy-to-use discovery mechanism for consumers and offers a
simple integration strategy for system administrators.

4 Evaluation

This section presents a verification and prototypical evaluation of the perfor-
mance of our uBonjour solution in relation to our use case for both IPv4 and
IPv6 in terms of memory footprint, message size and response time.

4.1 Experimental Setup

All experiments were performed with Contiki version 2.5 on Zolertia Z1 sensor
hardware, which is based on a low-power MSP430F2617 microcontroller with 92
kB of ROM and 8 kB of RAM. The Z1 also provides an IEEE 802.15.4-compliant
Chipcon 2420 RF transceiver. The IPv4 test setup consists of devices running
uBonjour that are directly connected via the Serial Line Internet Protocol (SLIP)
to a computer running Linux. The test setup for IPv6 uses a one-hop network
with static routes. One Zolertia Z1 runs the 6LoWPAN border router (shipped
with Contiki) connected again to a computer running Linux. The border router
converts 802.15.4 / 6LoWPAN frames to Ethernet / IPv6 frames. Two additional
Z1 complete the IPv6 setup by running uBonjour. The forwarding of mDNS mes-
sages to the Ethernet interface of the Linux PC is done by Avahi (pre-configured
parameters were enable-reflector=yes and allow-point-to-point=yes). We
monitor incoming mDNS packets with Wireshark3 for both cases in order to ver-
ify the correctness of generated DNS records from the devices, to measure the
DNS record sizes, and to monitor the interaction between the computer and
the service offering devices. The response time was measured by sending a PTR

record to the multicast group and stopping the time between this request and
all four received DNS responses sent from the corresponding node.

3 Wireshark Network Protocol Analyzer [Online] http://www.wireshark.org/
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4.2 Message Size

Avoiding the use of any kind of additional buffer was mandatory for a slim and
memory-efficient implementation of uBonjour. The Zolertia Z1 device has one
of the lowest IP payload sizes as depicted in Table 1. It is therefore a good
reference platform to test if typical DNS messages (refer to [23, Sec. V-C]) fit
into a single IP packet of the uIP stack. The DNS record length combined for
all four kinds depends on the sum of the length of the submitted service name,
the length of the text information in the TXT record, and the length of the used
domain name. The total sum of these freely selectable parameters is 36 for IPv4
and 68 for IPv6 on the Zolertia Z1. The rest is reserved for the DNS header
and the DNS message structure. If these measured values are exceeded for the
Z1, DNS records will subsequently not fit into a single IP packet and IP packet
reassembly must be enabled, which we want to omit as explained in Section 3.7.

4.3 Memory Footprint

uBonjour is realized in only 1450 lines of code. Table 2 shows the detailed memory
footprint of uBonjour. The code is compiled with msp430-gcc (GCC) 4.4.5 for
the Zolertia Z1. uBonjour with one service that may be registered requires 3.82
kB of ROM / 0.3 kB of RAM for IPv4 and 3.89 kB of ROM / 0.3 kB of RAM for
IPv6. As mentioned in Section 3.8, the OWT optimization reduces the amount
of used memory significantly, in our case it will be cut into half while the lines
of code are reduced to around 1050. Each additional service registration for
uBonjour will cost around 0.14 kB (IPv4) and 0.23 kB (IPv6) of RAM. These
two values are both calculated from the total sum of freely selectable parameters
for the DNS records as described in Section 4.2.

Table 2. Memory Footprint of uBonjour with / without uIP stack and OWT.

uBonjour ROM in kB RAM in kB

IPv4 / IPv6 7.12 / 7.69 0.4

IPv4 / IPv6 OWT enabled 3.82 / 3.89 0.3

IPv4 / IPv6 with uIP stack 16.9 / 27.24 1.62 / 3.38

IPv4 / IPv6 OWT with uIP stack 13.6 / 23.44 1.46 / 3.22

The difference in memory consumption of uBounjour between IPv4 and IPv6
is only small because both variations just differ in the used IP address length
(16 Byte for IPv6 versus 4 Byte for IPv4 addresses). Minimal larger buffers for
sending and storing registered services are therefore needed with IPv6. Unfortu-
nately, this behavior is not adopted by the uIP stack in general: the uIPv6 stack
is three times larger in RAM and twice as large in ROM consumption when com-
pared to its IPv4 counterpart. This means that for the Zolertia Z1 nearly half of
the memory is allocated by the uIPv6 stack alone. A slim and memory-efficient
implementation is therefore even more important for IPv6 then for IPv4.
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4.4 Response Time

Discovering services with uBonjour takes 71 ms for directly connected sensor
devices over SLIP (IPv4). In IPv6 scenarios a 6LoWPAN border router is needed
for our use case, hence packets will always be delayed via one-hop. The measured
response times for multi-hop are: 1233 ms for one-hop, 1954 ms for two-hop and
2324 ms for three-hop scenarios. No optimizations nor an active forwarding of
DNS responses was implemented in uBonjour. Multi-hop routing is handled by
Contiki’s IP stack and depends on the performance of its used lower layers [24].

5 Related Work

Existing research related to our work can be divided into generic work in the
area of Internet of Things architectures and IoT integration strategies as well
as existing approaches that use either mDNS or DNS-SD for embedded devices.
An approach to use web services over IP links to integrate sensor networks into
the current IT infrastructure is presented in [25]. We share their idea of using
IP links and Contiki but refrain from using web services. Bardin et al. [20]
proposed a service-oriented component framework for the integration of devices
and subsequent discovery of services inside heterogeneous networks with the help
of a residential gateway. Our approach distributes discovery tasks directly to the
devices, making residential and centralized gateways obsolete. The authors of
[21] provide a general discussion and an overview of the idea of facilitating a
service-based Internet of Things. They resort to a service-oriented yet complex
middleware to enable the discovery of services.

Examples for practical mDNS and DNS-SD implementations are Bonjour [10]
and Avahi [9], both widely used on desktop and mobile systems. Both are open
source and written in C/C++, but too big to fit into the memory of constrained
devices. A smaller implementation is Liaison [26], which is around 100 kB in size
and written in C++. Porting one of these three implementations for resource
constrained devices would be an extensive and time consuming task, because a
complex refactoring with subsequent design restructuring is necessary to adapt
the implementations for the requirements of constrained devices. [27] stated that
they implemented and tested mDNS for Contiki with a memory footprint of only
1.0 kB of ROM and 0.5 kB of RAM, but there is no code proof available. A direct
integration of mDNS for Contiki can be found online.4 It offers an advanced
version of the uIP hostname resolver functions and supports IPv4 and IPv6, but
there is no plan to extend it with DNS-SD. The most promising mDNS and DNS-
SD implementation with only 14 kB is Ethernet Bonjour [14] for the Arduino
platform. It was written in C++ for the WIZnet chipset on the Ethernet shield
by Georg Kaindl and supports only IPv4 for Ethernet frames. We reused the
parser /message generator and its functions stub for uBonjour. C++ parts were
ported to C and the WIZnet chipset related code was rewritten to use the uIP
stack of Contiki. These measures ensure that uBonjour runs properly on Contiki
with a minimized memory consumption.

4 darkdeep Contiki Branch [Online] http://svn.deepdarc.com/code/contiki/trunk
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6 Final Remarks

This work promotes a discovery service for the Internet of Things vision based
on mDNS and DNS-SD. We showed that an existing standard can be used eco-
nomically on resource constrained devices. Furthermore, uBonjour enables self-
configured and autonomously acting sensors in a network environment while it
avoids the need of hard-coded bootstrap parameters. Sensor devices can react
more precisely on topology changes and on joining or leaving devices. uBonjour
will help to integrate sensor devices seamlessly into the Internet infrastructure
and also enable an easy access from commodity computer systems.

Through the implementation and evaluation of mDNS and DNS-SD for Con-
tiki, we gathered new insights on implementing available and established proto-
cols, which were originally designed for desktop systems, with a low memory and
small code footprint for constrained devices. As a result of the implementation
process, we showed that uBonjour can be used for self-configuration and stan-
dardized discovery of sensor devices. With uBonjour, we enable a transparent
service discovery over the Internet or local networks and offer a standardized
integration into current infrastructure for the Internet of Things vision.

In future work, we want to perform simulations of uBonjour to identify bot-
tlenecks, the bootstrapping scaling factor, and further implementation optimiza-
tions. We also plan to deploy more devices and extend the current state of our
small testbed to facilitate larger practical tests.
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