
Ninth International Conference on Principles and
Practice of Constraint Programming – CP’03

WORKSHOP PROCEEDINGS

MultiCPL’03: Second International

Workshop on Multiparadigm Constraint

Programming Languages

and

RCoRP’03: Fifth International

Workshop on Rule-Based Constraint

Reasoning and Programming

Editors:

Michael Hanus
Petra Hofstedt
Armin Wolf

Slim Abdennadher
Thom Frühwirth
Arnaud Lallouet

September 29, 2003
Kinsale, County Cork, Ireland

Contents

Preface 3

MultiCPL’03 5

1 Declarative Laziness in a Concurrent Constraint Language
Alfred Spiessens, Raphaël Collet, and Peter Van Roy 7

2 Implementing a Distributed Shortest Path Propagator with Mes-
sage Passing
Luis Quesada, Stefano Gualandi, and Peter Van Roy 19

3 Game-based CSP
James Little, Eugene Freuder, and Paidi Creed 31

4 Implementing Constraint Imperative Languages with Higher-
order Functions
Martin Grabmüller 43

5 Constraint Imperative Programming with C++

Olaf Krzikalla 55

6 firstcs – A Pure Java Constraint Programming Engine
Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf 67

RCoRP’03 81

7 Delaying “big” operators in order to construct some new con-
sistencies
Andrëı Legtchenko 83

8 Pure Prolog Execution in 21 Rules
Marija Kulaš 93

1

2

Preface

The Workshops on Multiparadigm Constraint Programming Languages (Multi-
CPL’03) and on Rule-Based Constraint Reasoning and Programming (RCoRP’03)
are held at the Ninth International Conference on Principles and Practice of Con-
straint Programming (CP’03) on September 29, 2003 in Kinsale, County Cork,
Ireland.

The aim of these workshops is to bring together people interested in multi-
paradigm constraint programming, language design and implementation and in
using rule-based formalisms in constraint reasoning and programming to com-
municate and discuss recent developments, work in progress, and new research
directions.

We would like to thank all the people who took part in the workshop as
well as those who contributed to its organization. In particular we thank the
additional referees Carsten Gips, Armin Kühnemann, Martin Leucker, André
Metzner, and Thomas Nitsche as well as Stephan Frank for his extensive LATEX
support.

August 2003 The Workshop Organizers

3

4

MultiCPL’03: Second International Workshop on
Multiparadigm Constraint Programming Languages

September 29, 2003
Kinsale, County Cork, Ireland
at the Ninth International Conference on Principles and Practice of Constraint
Programming (CP’03)

Multiparadigm programming languages combine different programming para-
digms, such as functional, logic, imperative, constraint or concurrent ones.

The idea of a multiparadigm language is to increase expressiveness and
problem-solving power such that the programmer can use a wide range of styles
and language features from different paradigms. While the integration of con-
straints into general-purpose programming languages has been widely investi-
gated for the case of logic programming, interesting solutions have been ob-
tained as well by merging constraints and languages not based on a purely logic
paradigm. The integration of constraints with other programming paradigms,
even if it is not that exhaustively examined, is as well promising and a topic of
current research.

This workshop addresses all aspects of multiparadigm constraint program-
ming including:

• Combining constraints with imperative, object-oriented, concurrent, func-
tional or functional logic languages,

• Language concepts,
• Implementation,
• Theory and semantics, and
• Applications.

Organization

Workshop organizers:

Petra Hofstedt (University of Technology Berlin)
Michael Hanus (University of Kiel)
Armin Wolf (Fraunhofer FIRST Berlin)

Program Committee:

Slim Abdennadher (University of Munich)
Thom Frühwirth (University of Ulm)
Martin Grabmüller (University of Technology Berlin)
Michael Hanus (University of Kiel)
Petra Hofstedt (University of Technology Berlin)
Georg Ringwelski (Cork Constraint Computation Center)
Peter Stuckey (University of Melbourne)
Armin Wolf (Fraunhofer FIRST Berlin)

5

6

Declarative Laziness in a

Concurrent Constraint Language

Alfred Spiessens, Raphaël Collet, and Peter Van Roy

Université Catholique de Louvain,
Place Sainte-Barbe, 2, B-1348 Louvain-la-Neuve, Belgium

{fsp,raph,pvr}@info.ucl.ac.be

Abstract. This paper explains how to design and implement an ex-
tension for by-need synchronization for a confluent (subset of a) multi-
paradigm concurrent constraint language, while keeping the extended
language confluent. It reveals the subtleties and pitfalls that can easily
lead to the loss of confluence, especially in languages with a powerful
unification operator. The authors report on their own experiences, and
provide guidelines for similar projects, based on considerations regard-
ing the monotonicity of the constraint store. This paper also explores the
boundaries of confluent extensibility for such languages.

1 Introduction

Confluence, or deterministic concurrency, has many advantages for application
design and analysis, for security, but also for pedagogical purposes. As Oz is
a multi-paradigm language, used for concept-based teaching of programming
skills [8], and at the same time as an instrument for research, it was conceived
to be very important to have a well-defined deterministic concurrent subset of
the language that can guarantee the confluence of all programs written in it. As
an initial construct for by-need synchronization turned out to be not confluent,
an investigation was done to find the reasons for the loss of confluence and,
if possible, also find the cure. We succeeded in both goals, and we report on
our most important experiences and conclusions from this investigation in this
paper.

The paper is organized as follows. Section 2 defines a concurrent constraint
language that is confluent. Sections 3 and 4 give two different language exten-
sions for by-need synchronization. The first is shown non-confluent, while the
second respects confluence. Section 5 compares our results with another lan-
guage, namely Curry. Section 6 then proposes a way to implement our ideas.

2 A Concurrent Language with Unification

This section defines a small concurrent language L, with logic variables and
unification on rational trees. A program in L consists of a set of threads that
modify a shared constraint store. The computation model of L is very close to
Saraswat’s concurrent constraints [6]. The language L is a declarative subset of
the multiparadigm programming language Oz [4, 7].

7

store σ ::= φ1 ∧ · · · ∧ φn

constraint φ ::= x=y | x=v | ξ : proc{$X1 · · ·Xn}S end
partial value v ::= l(x1 · · ·xn) | ξ

Fig. 1. Abstract syntax of constraint stores

2.1 The Constraint Store

The syntax of constraint stores and partial values is given in Fig. 1. A constraint
store σ consists of a conjunction of elementary constraints φi over store entities.
The empty store, i.e., without constraint, is written >. The main constraint in
our system is equality between logic variables x, y, z, or between a variable and a
partial value v. A value is either a name ξ (see below), or a record l(x1 · · ·xn) with
n ≥ 0, where l denotes a literal. A record is also called a partial value because
its contained variables xi may be not constrained. The third kind of constraint
is an association between a name ξ and a closure proc {$X1 · · ·Xn}S end. Such
associations are always unique. A name is an internal store value without a
representation in a program, while a closure represents an abstraction of a state-
ment S.

A store σ entails a given constraint φ if φ is logically implied by the store
constraints. We write this as σ |= φ. Two stores σ and σ′ that entail each other
are said to be equivalent, which is written σ ≡ σ′. A variable x bound by equality
to a value v is said to be determined. We write this as σ |= det(x).

A store is consistent if there exists a valuation of the variables that satisfies
all its constraints, otherwise it is inconsistent. The constraints φ are chosen so
that the consistency of a store is a decidable property. An inconsistent store is
written ⊥.

Two operations exist on constraint stores: ask and tell. Asking a constraint φ
is waiting until the store entails or disentails φ, i.e., σ |= φ or σ |= ¬φ. Telling a
constraint φ to a store σ is updating the store to σ ∧φ. A program fails when it
tells a constraint that makes the store inconsistent. In that situation, the whole
program stops and the store becomes ⊥. A practical language such as Oz actually
does not tell constraints that makes the store inconsistent, but rather uses an
exception mechanism. We did not include such a mechanism in our language,
because in the presence of concurrency it leads to nondeterminism.

2.2 The Language L

The syntax of statements S is given in Fig. 2. The letters X,Y, P denote iden-
tifiers, and t denotes a term. The lexical scope of an identifier X is restricted
by

– a variable declaration (local X in. . . end),
– a case statement (case . . . of l(. . . X . . .) then . . . end),
– a procedure definition (proc {P . . .X . . .} . . . end).

8

statement S ::= skip (empty statement)
| S1 S2 (sequence)
| thread S end (thread creation)
| local X in S end (variable declaration)
| X=t (unification)
| case X of l(Y1 · · ·Yn) (pattern matching)

then S1 else S2 end
| proc {P X1 · · ·Xn} S end (procedure creation)
| {P X1 · · ·Xn} (procedure application)

term t ::= Y | l(Y1 · · ·Yn)

Fig. 2. Syntax of the language L

A small-step operational semantics of L is given in Fig. 3. It defines transition
rules between configurations, which are applicable when a certain condition is
satisfied. A configuration T /σ consists of a multiset T of threads (Ti)1≤i≤n

1,
together with a constraint store σ. A thread is a stack of semantic statements. A
semantic statement is a statement S where every free identifier has been replaced
by a store variable. An abstract syntax for threads is

T ::= 〈〉 | 〈S T 〉 ,

where S denotes a semantic statement. The statement in front of a thread is the
next statement to execute. A transition between configurations T /σ and T ′/σ′

is written
T T ′

σ σ′
condition .

Rules (1) state that threads execute with an interleaving semantics. A thread
with no statement is terminated, it eventually disappears. When the store be-
comes inconsistent, all threads may disappear. Rules (2) define the semantics
for the empty statement, the sequence, and thread creation. In (3), a new vari-
able x is introduced by replacing all the occurrences of the declared identifier X
in its lexical scope by x. The substitution function is noted {X 7→x}. With (4), a
unification simply tells a constraint in the constraint store; u is either a variable
or a partial value. The store might become inconsistent. Rules (5) and (6) make
the case statement block until the variable x becomes determined. The state-
ment then reduces to the first statement if the value of x matches the pattern
l(Y1 · · ·Yn), or the second statement otherwise. In (7), the statement proc cre-
ates a closure in the store, with a fresh name ξ, then reduces to an unification.
In (8), applying a procedure consists in taking the closure associated to p in the
store, and substituting the arguments in the statement S.

1 For the sake of simplicity, we denote T as a sequence T1 . . . Tn, the order being
irrelevant in this context.

9

T U T ′ U

σ σ′
if

T T ′

σ σ′

〈〉

σ σ

T

⊥ ⊥
(1)

〈skip T 〉 T

σ σ

〈S1 S2 T 〉 〈S1 〈S2 T 〉〉

σ σ

〈thread S end T 〉 T 〈S 〈〉〉

σ σ
(2)

〈local X in S end T 〉 〈S{X 7→x} T 〉

σ σ
x fresh variable (3)

〈x=u T 〉 T

σ σ ∧ x=u
if σ ∧ x=u is consistent

〈x=u T 〉

σ ⊥
otherwise (4)

〈

case x of l(Y1 · · ·Yn)
then S1 else S2 end T

〉

〈S1{Y1 7→y1, . . . , Yn 7→yn} T 〉

σ σ

if σ |= x=l(y1 · · · yn)

(5)
〈

case x of l(Y1 · · ·Yn)
then S1 else S2 end T

〉

〈S2 T 〉

σ σ

otherwise (6)

〈proc {p X1 · · ·Xn} S end T 〉 〈p=ξ T 〉

σ σ ∧ ξ : proc{$X1 · · ·Xn}S end
ξ fresh name (7)

〈{p x1 · · · xn} T 〉 〈S{X1 7→x1, . . . , Xn 7→xn} T 〉

σ σ

if σ |= p=ξ∧
ξ : proc{$X1 · · ·Xn}S end

(8)

Fig. 3. Small-step semantics of the language L

We assume that the execution is fair, i.e., a thread cannot be kept runnable
without being executed. The reader can easily check from the rules that a
runnable thread stays runnable until execution.

2.3 The Confluence of L

The concurrent nature of L is such that the language is confluent, which means
that the “result” of a program (i.e., its final configuration) is always the same,
whatever the order of thread reduction. In other words, every program is deter-
ministic.

Some transition rules introduce fresh symbols, namely variables in (3) and
names in (7). The confluence should not depend on the choice of those symbols.
We thus define an equivalence between configurations as follows. Let T /σ and
T ′/σ′ be configurations, and V be a set of variables. The configurations are said
to be equivalent modulo V, which we write T /σ ≡ T ′/σ′ (V), if there exists a
bijection r such that

10

– r maps variables to variables, and names to names;
– r is the identity function on V;
– r(T) = T ′ and r(σ) ≡ σ′, where r is used as a replacement on statements

and stores.

We define a transition relation that relates configurations up to equivalence.
We write T /σ −→ T ′/σ′ (V) if there exists a finite execution with the transition
rules of L, with T /σ as initial configuration, and whose final configuration is
equivalent to T ′/σ′ modulo V. The confluence property is then defined as follows.

Theorem 1 (Confluence). Let T /σ, T1/σ1 and T2/σ2 de-

note configurations, and V be a set of variables.

If T1/σ1 ←− T /σ −→ T2/σ2(V), then there exists a configu-

ration T ′/σ′ such that T1/σ1 −→ T
′/σ′ ←− T2/σ2(V).

The diagram on the right depicts this property.

T /σ
↙ ↘

T1/σ1 T2/σ2

↘ ↙
T ′/σ′

From this property, we can easily characterize the executions of a program.
For instance, if a program fails in one execution, it always fails. In that case,
every execution will reach the final configuration {}/⊥. Note that this configu-
ration is clearly not equivalent to a program that terminates with some threads
still blocked (not runnable). Such a program can be qualified as partially ter-

minated. This means that if an “external agent” tells some constraints in the
program’s store, the program might execute further, and possibly reach a new
partial termination, which is unique by confluence.

2.4 Functional Programming in L

Our language is expressive enough to reproduce the behavior of functional pro-
grams. The idea is simply to translate a functional program into L, functions
becoming procedures, and expressions being expressed in elementary operations.
The following simple example gives an idea of this translation. The “bar” oper-
ator X|Xr is a simple notation for a record like cons(X Xr).

fun {Append Xs Ys}
case Xs of X|Xr then

X|{Append Xr Ys}
else Ys end

end

proc {Append Xs Ys Zs}
case Xs of X|Xr then

local Zr in
Zs=X|Zr
{Append Xr Ys Zr}

end
else Zs=Ys end

end

3 A Flawed Definition of By-need Synchronization

In this section we present the definition of by-need synchronization described
in [3]. It is implemented in Mozart [4] at least until the current version (1.2.5). We
will show that it does not respect the confluence of the language, and investigate
why.

11

statement S ::= . . . (syntax rules defined in Fig. 2)
| {ByNeed P X} (execution of P when X is needed)

Fig. 4. Syntax extension of the language L with ByNeed

3.1 Naive Definition and Semantics

The ByNeed construct allows a computation to be associated to a logic variable,
which represents the result of the computation. The computation will be per-
formed as soon as its result becomes needed. Figure 4 shows the added statement.

The operational semantics are set up in a way as to assure the following rules
in the computation. We use x and p as the variable and its associated calculation,
respectively.

– {p x} will be calculated as soon as a statement needs the variable x for its
reduction.

– A statement needs x if it cannot reduce without x being determined.
– The unification of x with a determined variable needs x. This will protect x

from being unified with a value before p itself has ended. Only the proper
invocation of {p x} will be allowed to bind x.

– The unification of x with another by-need variable needs x. This rule en-
sures that, if {p} would itself return a by-need variable, the latter would
immediately be calculated before being assigned to x.

– {p x} will be calculated at most once for every application of {ByNeed p x}.

The reader will notice that this definition of ByNeed is indeed inspired by
functional programming. It is modeled after a typical “let” construct [1, 2, 5]
allowing for the declaration of a value with a predefined expression, and in the
mean time protecting the variable from being overwritten by another value. This
was translated into our programming language, which provides functions as syn-
tactic sugar for procedures with at least one parameter (see Sect. 2.4). However,
most constructs in our language stem from concurrent constraint programming.
It is one of these differences with other multi-paradigm languages [1, 2] that
would turn out to be important in unexpected ways.

3.2 Counterexample for Confluence

We found a counterexample that proved ByNeed to introduce non-confluence in
the language, when we examined the following procedure and its applications.

proc {ReadOnly X Y} % make Y a read-only version of X
Y={ByNeed proc {$ Z} {Wait X} Z=X end}

end

Since every attempt to unify Y to a value (or another read-only variable) will start
the computation, and synchronize on X becoming bound, this was an obvious
application for the ByNeed function. The following application defies confluence.

12

local X Y Z in
thread X=Y end
thread Y=2 end
thread X=1 end
thread X={ReadOnly Z} end

end

Depending on the order of execution, this example will fail or succeed. Let us
look at it in detail:

1. Suppose these concurrent statements are executed in the order of their defi-
nition. First both free variables X and Y are unified. This statement just adds
the equality constraint to the store. Then Y=2 unifies Y with the constant 2,
resulting in both X and Y having the value 2. The next statement X=1 will
then fail because it would introduce inconsistency into the store. The last
statement will not be executed due to the failure.

2. When the concurrent statements are executed in the reverse order, something
different happens. First X becomes a by-need variable, to be bound to the
eventual value of Z. Next X=1 triggers the computation of the value of X,
causing an indefinite waiting for Z to become determined. The statement
Y=2 binds Y to 2. At last, X=Y waits indefinitely for X to become determined
via Z. Since Z is local within local ... end, no constraint can be added
to the store afterwards, that would bind Z to a value. This means that both
executions are not confluent.

The fact that ByNeed can be used to make unification block was quickly
generalized to the following observation: Any language construct that can make

our unification operator block, will introduce non-confluence in the language.

This is shown in the following generalized example in pseudo-code.

local X Y Z in
thread setup X and Z to make X=Z block end
thread X=Y tell C1 end
thread Y=Z tell C2 end

end

The execution of the first thread prevents the unification of X and Z to reduce.
Therefore the second thread can still tell its constraint C1, but the third thread
blocks. Changing the order of execution of the threads results in either C1, or
C2, or both to be told to the store. If C1 and C2 are chosen to be incompatible,
the computation can also fail due to inconsistency. In Sect. 5 we explain why
this observation cannot be done in the subset of Curry, described in [2].

Our unification operator is constraint-oriented. That means that the unifi-
cation of free variables x and y adds the constraint x=y to the constraint store,
and does not have to wait for x or y to become determined. It is also a very rich
and powerful monotonic unification operator, that unifies partial values into the
union of the information they carry. It causes a failure if the partial values x
and y are incompatible.

13

3.3 The Reason for the Loss of Confluence

The deep reason for the loss of confluence is the loss of monotonicity. This is
best understood in the context of the ask and tell operators of CCP (see [6]
and Sect. 2.1). Before the introduction of ByNeed, unification was a simple tell

operation, adding the equality constraint to the store and never blocking. ByNeed
seems to have somehow turned unification into an ask operation, since it now
can block. The unification of a by-need variable x with a needed variable y (or a
partial value) transfers the need to x and triggers the evaluation of the expression
associated with x. But in a monotonic setting, an operation should not block
with a constraint store with more information available than in another store it
does not block with.

To ensure confluence, monotonicity is to be kept in all the state transitions
from a free to a determined variable. Since unification (now an ask operation)
blocks for by-need variables, it should also block for free variables.

4 A Good Definition of By-need Synchronization

In this section we give the revised definition and semantics of by-need syn-
chronization, and give its interpretation in terms of constraints, to show that
confluence is indeed respected this time.

4.1 Revised Definition and Semantics

We use a new constraint, need(x), to express that the determinacy of x is needed
by the program, together with a primitive statement {WaitNeed x} to ask that
constraint. Figure 5 gives the syntax extension for this new primitive, and its op-
erational semantics. The relation needσ(S, x) defines when a statement S needs
a variable x in the store σ. We assume that this relation is stable as defined in
Def. 1 below. With this primitive we build a confluent by-need construct, that
we call OnDemand to avoid confusion with the previous one.

proc {OnDemand P X}
thread {WaitNeed X} {P X} end

end

A by-need computation is now simply a thread that waits for a variable to be
needed. In order to ensure monotonicity, determined variables are always needed,
i.e., det(x)⇒ need(x). The need constraint allows to define three possible states
for a variable, namely free, needed and determined. Those three states are pre-
sented in Fig. 6.

4.2 The Revised Definition Respects the Confluence of the
Language

Let us analyze the new rules for by-need synchronization, in terms of constraints.

14

statement S ::= . . . (syntax rules defined in Fig. 2)
| {WaitNeed X} (wait for X to be needed)

constraint φ ::= . . . (syntax rule defined in Fig. 1)
| need(x) (variable x is needed)

〈{WaitNeed x} T 〉 T

σ σ
if σ |= need(x) (9)

S S

σ σ ∧ need(x)
if needσ(S, x) and σ 6|= need(x) (10)

Fig. 5. Syntax and operational semantics of WaitNeed and need()

1. {WaitNeed x} is a simple ask operation, just waiting for the constraint
need(x) to be entailed by the store.

2. A statement S needing x to become determined for its reduction, will simply
tell need(x). (Remember that once x is needed, it stays needed forever.)

Here the rules of the operational semantics no longer imply that a statement
should block in order to trigger the on-demand computation associated with
a variable. This is indeed the crucial difference with the previous version, and
it is enabled by the introduction of a monotonic “needed” state for variables,
visualized in Fig. 6. The unification of a needed variable with a free variable can
now make the free variable needed, (performing its “monotonic” duty) without
having to block for this transfer of need to be assured. The ReadOnly function
from the example in Sect. 3.2 can no longer make unification block.

Statement causing determination of the variable

Statement causing the value
to become needed

DeterminedFree Needed

Fig. 6. State transitions of a variable, with the need constraint

The confluence of the language is ensured if the relation needσ(S, x) is stable.

Definition 1 (Stable need). We say that the need relation needσ(S, x) is sta-
ble if, for every two stores σ, σ′ such that σ′ |= σ,

needσ(S, x) and σ 6|= need(x) implies ¬reduceσ(S) (11)

needσ(S, x) implies needσ′(S, x) or σ |= need(x) (12)

15

This property of the relation guarantee that a statement that needs a variable x
cannot reduce before need(x) is in store (11), even when the store is evolving
monotonically (12). A simple case-analysis of all semantic rules, by checking
the conditions for reduction, now reveals that every statement in the language
respects confluence.

The following need relation, defined as in [8], is an example of a stable need
relation, but others are possible.

needσ(S, x) iff ¬reduceσ(S)

and ∃σ′ : σ′ |= σ and reduceσ′(S)

and ∀σ′ : σ′ |= σ and reduceσ′(S) implies σ |= det x

4.3 A Few More Remarks

Need-Triggered Execution. In contrast with “function-oriented” multi-pa-
radigm languages, by-need synchronization unifies the variable to its eventual
value inside the procedure it was associated with by the application of OnDemand.
But of course the decision to unify its parameter to a value is up to the pro-
cedure. This provides a more general mechanism for any kind of computation
synchronizing on the need of a variable.

Efficient Implementation. The fact that OnDemand itself does not tell any
information to the store before asking for the need(x) condition, indicates that
there is no need for an “on-demand” state in this new definition. No difference
is detectable in the store before and after the application of OnDemand. This
observation drastically simplifies the implementation of OnDemand, as described
in Sect. 6.

The Definitive Loss of a Confluent Read-Only. The operation OnDemand

can no longer be used to build read-only variables that cause unification to block.
A “read-only” variable build as in Sect. 3.2 will be forced to become determined
upon unification with a value. In fact it becomes clear that our language will
never be able to protect variables by causing their unification to block, while
respecting confluence.

5 Related work

The language Curry [1, 2] is a good example to compare to. Curry is an integrated
functional logic language. It combines features from functional programming
(nested expressions, higher-order functions, lazy evaluation), logic programming
(logical variables, partial data structures, built-in search), and concurrent pro-
gramming (concurrent evaluation of expressions with synchronization on logical
variables). Curry is confluent.

16

The definitions of laziness and unification in Curry are a bit different from
our language. In order to show those differences, we can compare the Curry
constraint on the left with the Oz constraint on the right:

let x = <expr1>

y = <expr2>

in x =:= y

local X Y in
X={OnDemand proc {$ Z} Z=<expr1> end}
Y={OnDemand proc {$ Z} Z=<expr2> end}
X=Y

end

Though they look similar, they behave differently. The Curry constraint x =:= y

forces both expressions to be evaluated, then it checks for the satisfiability of the
equality. The Oz constraint X=Y does not force the by-need computations, since
both X and Y are simply free. Both will be forced only when X (or Y) becomes
needed.

What makes Curry confluent is the way logic variables relate to “normal”
variables. A variable declared in a let construct is associated to an expression
that is evaluated lazily. So a variable is always declared together with an expres-
sion. A logic variable is a special case, where the associated expression does not
give a value, but rather a black hole. Logic variables are typically declared as in

let x = x in x =:= 42

In Curry a logic variable is a variable whose complete evaluation does not lead
to a value. By the way the language is defined, it is not possible to associate
a lazy computation to a logic variable. This is why unification forces its both
arguments to be evaluated.

6 Implementation

We now describe how to extend an existing implementation of Oz, which our
language L was a subset of. The constraint store of Oz is implemented as a
graph, where nodes are variables and partial values. Each equivalence class of
variables has a union-find structure, i.e., each variable node (except one) has an
outgoing edge to another variable node in the same equivalence class, and those
nodes form a tree where the edges are directed to the root node. The latter is
the class representative. It may have an outgoing edge to a value node, meaning
that the variable is bound to the given value.

When a thread blocks on a variable (asking for a constraint on that variable),
a reference to the thread is put in a suspension list associated to the class
representative of the variable. When a constraint is put on the variable, all the
threads in the suspension list are woken up, and given to the thread scheduler.
The suspension list allows to synchronize threads on constraints.

We simply extend this suspension list so that it also handles the constraint
need(x). Each class representative now has a needed state that tells whether
the variable is needed or not. When a thread blocks on need, and the variable
is not needed yet, the thread is simply put it the suspension list. As soon as
the variable becomes needed, the threads in the suspension list are woken up.

17

If a thread blocks on determinacy, we set the variable in the needed state and
schedule the threads in the suspension list. When a variable x is bound to a
value, we simply schedule its suspension list.

The implementation is in progress and will be part of a future release of
Mozart [4].

7 Conclusion

We have tried and succeeded in extending a deterministic (subset of a) multi-
paradigm CCP language with by-need synchronization, while respecting con-
fluence. For constraint-oriented multi-paradigm languages, such an extension
is not straightforward, and should not be based naively on its counterpart in
function-oriented multi-paradigm languages. We showed that the semantics of
the unification operator makes a subtle difference that can have an important
influence on the confluence of the extended language. Finally, we gave an exam-
ple of how reasoning from constraints and monotonicity should guide the design
for confluence-preserving extensions of multi-paradigm CCP languages.

Acknowledgements

This research was partly funded by the MILOS project of the Walloon Region
of Belgium (convention 114856).

References

1. M. Hanus. A unified computation model for functional and logic programming. In
Proc. 24st ACM Symposium on Principles of Programming Languages (POPL’97),
pages 80–93, 1997.

2. M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional logic lan-
guage. In Proc. ILPS’95 Workshop on Visions for the Future of Logic Programming,
pages 95–107, 1995.

3. Michael Mehl, Christian Schulte, and Gert Smolka. Futures and by-need synchro-
nization. Technical report, Programming Systems Lab, DFKI and Universität des
Saarlandes, May 1998. DRAFT.

4. Mozart Consortium (DFKI, SICS, UCL, UdS). The Mozart programming system
(Oz 3), January 1999. Available at http://www.mozart-oz.org.

5. Simon Peyton Jones, editor. Haskell 98 language and libraries: The revised report.
Cambridge University Press, 2003. Also published as the January 2003 Special Issue
of the Journal of Functional Programming.

6. Vijay A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
7. Gert Smolka. The Oz programming model. In Computer Science Today, Lecture

Notes in Computer Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin, 1995.
8. Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer

Programming. 2002. Work in progress. Expected publishing date 2003.

18

Implementing a Distributed Shortest Path

Propagator with Message Passing

Luis Quesada, Stefano Gualandi, and Peter Van Roy

Université Catholique de Louvain
Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium

{luque, stegua, pvr}@info.ucl.ac.be

Abstract. In this article, we present an implementation of a distributed
shortest path propagator. Given a graph and a goal node, this propagator
maintains a finite domain variable for every node. The variable’s lower
bound is the minimal cost of reaching the goal from that node. The
graph on which the propagator is based can be modified by removing
edges, increasing the cost of edges, or by replacing edges by graphs. The
propagator has been implemented using a message passing approach on
top of the multi-paradigm programming language Oz [2]. One of the
advantages of using a message passing approach is that distributing the
propagator comes for free. Different shortest path propagators running
on different machines may be working together on the same graph.

1 Introduction

In this article, we present the implementation of a distributed shortest path
propagator. Given a graph and a goal node, this propagator offers the following
services:

– It maintains, for every node, a Finite Domain (FD) variable. The lower
bound of the variable is the minimal cost of reaching the goal from that
node. The propagator maintains these lower bounds while the graph is dy-
namically modified.

– It allows the incremental definition of the graph on which the propagator
is based. The user may start by providing an abstract graph (i.e., a graph
whose edges are virtual) and then proceed by replacing each edge by its
corresponding graph. The user can execute the propagator in a distributed
way, since he can choose to launch the propagator associated with a virtual
edge on a different machine.

The graph on which the propagator is based can be modified either by increasing
the cost of an edge or by deleting an edge1. It is important to emphasize that we
only consider monotonic changes in the graph (i.e., changes that lead to further

1 The reader may also think of deleting an edge as increasing its cost to ∞. However,
mostly for optimization reasons, we prefer to keep the two operations separate.

19

constrain the FD variables involved).
In order to maintain the minimal costs (and thus the FD variables) we follow
the asynchronous dynamic algorithm described by [9], which is based on the
principle of optimality.
Let us represent the shortest distance from node i to the goal node as h∗(i). The
shortest distance via a neighboring node j is given by f ∗

i (j) = k(i, j) + h∗(j),
where k(i, j) is the cost of the link between i and j. If node i is not the goal node,
the path to the goal node must visit one of the neighboring nodes. Therefore,
h∗(i) = minjf

∗

i (j) holds.
If h∗ is given for each node, the optimal path can be obtained by repeating the
following procedure. For each neighboring node j of the current node i, compute
f∗

i (j) = k(i, j) + h∗(j). Then move to the j that gives minjf
∗

i (j).
Asynchronous dynamic programming computes h∗ by repeating the local com-
putations at each node. Let us assume the following situation:

1. For each node i, there exists a process corresponding to i.
2. Each process records h(i), which is the estimated value of h∗(i). We initialize

h(i) to ∞.
3. For the goal node g, h(g) is 0.
4. Each process can refer to the h values of neighboring nodes.

Each process updates h(i) by the following procedure. For each neighboring node
j, compute fi(j) = k(i, j) + h(j), where h(j) is the current estimated distance
from j to the goal node, and k(i, j) is the cost of the link from i to j. Then,
update h(i) as follows: h(i) ← minjfi(j). The execution order of the processes
is arbitrary.
There are several ways of implementing the algorithm sketched above. We im-
plement it by considering the set of processes as a multi-agent system where
agents interchange synchronous and asynchronous messages and their transition
state functions rely on data flow and constraint programming primitives.
The organization of the paper is as follows. In Section 2, we introduce the Oz
language and explain how message-passing concurrency can be modeled in it. In
Section 3, we show how to use the propagator and explain the implementation of
it by showing its message passing diagram and its corresponding state transition
system. We conclude in Section 4.

2 Message-passing concurrency in Oz2

2.1 The Oz language and its Execution Model (Declarative Subset)

The declarative part of the Oz execution model consists of a store and a set of
dataflow threads that reference logic variables in the store (see Figure 1). Threads
contain statement sequences Si and communicate through shared references. A
thread is a dataflow thread if it only executes its next statement when all the
values the statement needs are available. Data availability is implemented using

2 This section is a summary of section 2 of [7], and Chap. 5 of [6]

20

Fig. 1. The Oz execution model (Declarative Subset).

logic variables. If the statement needs a value that is not yet available, then the
thread automatically blocks until the value is available. There is also a fairness
condition: if all values are available then the thread will eventually execute its
next statement.
The shared store is not physical memory; rather it is an abstract store that only
allows legal operations for the entities involved, i.e., there is no direct way to
inspect their internal representations. The store consists of two compartments,
namely logic variables (with optional bindings) and procedures (named lexically
scoped closures). Variables can reference the names of procedures. The external
references of threads and procedures are variables. When a variable is bound,
it disappears, i.e., all threads that reference it will automatically reference the
binding instead. Variables can be bound to any entity, including other variables.
The variable and procedure stores are monotonic, i.e., information can only be
added to them, not changed or removed. Because of monotonicity, a thread
that is not blocked is guaranteed to stay not blocked until it executes its next
statement.
All Oz execution can be defined in terms of a kernel language whose semantics
are outlined in [1], [8] and [6]. We will just describe the declarative part of it.

S ::= S S Sequence
| X = f(l1 : Y1 . . . ln : Yn) | Value
| X =<number> | X =<atom>

| local X1 . . . Xn in S end | X = Y Variable
| proc {X Y1 . . . Yn}S end | {X Y1 . . . Yn} Procedure
| if X then S else S end Conditional
| thread S end Thread

Table 1. The Oz declarative kernel language.

21

Table 1 defines the abstract syntax of a statement S in the (declarative part
of the) Oz kernel language. Statement sequences are reduced sequentially inside
a thread. All variables are logic variables, declared in an explicit scope defined
by the local statement. Values (records, numbers, etc.) are introduced explicitly
and can be equated to variables. Procedures are defined at run-time with the
proc statement and referred to by a variable. Procedure applications block un-
til the first argument references a procedure name. The if statement defines a
conditional that blocks until its condition is true or false in the variable store.
Threads are created explicitly with the thread statement.

In the following section, we are going to be using a bit of syntactic sugar to
make programs easier to read. We will do so by considering that:

– proc {P V1 V2 ... Vn} <Decl> in <Stmt> end is equivalent to proc {P

V1 V2 ... Vn} local <Decl> in <Stmt> end end, where <Decl> is a
declaration (i.e., a statement declaring a variable) and <Stmt> is any state-
ment.

– fun {F V1 V2 ... Vn} <Stmt> <Exp> end is equivalent to proc {F V1

V2 ... Vn O} <Decl> in <Stmt> O=<Exp> end, where <Exp> is an ex-
pression representing a value.

– fun {F V1 V2 ... Vn} <Decl> in <Exp> end is equivalent to fun {F V1

V2 ... Vn} local <Decl> in <Exp> end end.

Procedures are values in Oz. This means that a variable may be bound to a
procedure. In particular, we have that proc {X V1...Vn}... end is equivalent
to X=proc {$ V1...Vn}... end.

2.2 The message-passing concurrent model

The message-passing concurrent model extends the declarative concurrent model
by adding ports. Ports are a kind of communication channel. Ports are no longer
declarative since they allow observable nondeterminism: many threads can send
a message to a port and their order is not determined. However, the part of the
computation that does not use ports is still declarative.

Ports. A port is an Abstract Data Type (ADT) that has two operations:

{NewPort S P}: create a new port P associated with stream S.
{Send P X}: append X to the stream corresponding to the entry point P. Suc-

cessive sends from the same thread appear on the stream in the same order
in which they were executed. This property implies that a port is an asyn-
chronous FIFO communication channel.

For example:

local S P in
{NewPort S P}

22

{Send P a}
{Send P b}
{Browse S}

end

This displays the stream a|b|_. Doing more sends will extend the stream. By
asynchronous we mean that a thread that sends a message does not wait for
reply; it immediately continues.

Port objects. A port object is a thread reading messages from port streams.
This allows two things. First, many-to-one communication is possible: many
threads can reference a given port object and send to it independently. Second,
port objects can be embedded inside data structures (including messages).
Here is an example of a port object with one port that displays all the messages
it receives:

local S P in
{NewPort S P}
thread {ForAll S proc {$ M} {Browse M} end} end

end

In this example, ForAll is a procedure that, given a list L and a procedure
P, applies P to each element of L. Doing {Send P hello} will eventually display
hello.

The NewPortObject abstraction. We can define an abstraction to make
it easier to program with port objects. Let us define an abstraction for the
case that the port object has just one port. To define the port object, we give
the initial state Init and the state transition function Fun, which is of type
State×Msg → State.

proc {NewPortObject Fun Init ?P}
proc {MsgLoop S1 State}

case S1 of Msg|S2 then
{MsgLoop S2 {Fun Msg State}}

[] nil then skip end
end
Sin

in
thread {MsgLoop Sin Init} end
{NewPort Sin P}

end

3 The Shortest Path Propagator

3.1 Interface of the Propagator

As shown in Figure 2, we need to specify the graph on which the propagator
is based and the node in the graph that is the goal. The representation of the

23

graph is an adjacency list. The function Create_Propagator returns a record
representing the interface of the propagator.
The propagator has the following interface:

Fig. 2. Description of the propagator.

fdVars exports a tuple T of FD variables. T.i is the FD variable associated
with node i. This FD variable corresponds to the cost of going from that
node to the goal.

removeEdge exports a 1-argument procedure:
proc {$ Edge} ... end. The parameter Edge is the edge to be removed.

increaseEdge exports a 2-argument procedure:
proc {$ Edge NewCost} ... end. The parameter Edge is the edge whose
cost is to be increased to NewCost3.

defineEdge exports a 5-argument function:
fun {$ Edge Graph Source Destination Host} ... end. Edge is the
edge to be replaced. Graph is the graph by which the edge is to be re-
placed. Source is the node in Graph with which the origin of Edge is to be
associated. Destination is the node in Graph with which the destination
of Edge is to be associated. Host is the url address of the host on which the
propagator of Graph is going to be executed. If Host is nil, the propagator
will be executed on the same machine.

In Oz, we use the following notation to represent FD variables: VariableName-
{LowerBound#UpperBound}. In the implementation, the upper bounds of the

3 The implementation assumes that the new cost is always greater than the current
cost.

24

Fig. 3. Updating the FD variables of each node.

propagator’s FD variables are set to a constant Max. This constant could be
the sum of the edges’ costs. As shown in Figure 3, after the creation of the
propagator, the lower bound of the FD variable of each node is set to the minimal
cost of reaching the destination. Internally, the propagator always keeps the
shortest path to the destination for every node. In Figure 3, we show how the
shortest path from node 1 to the goal node (node 8) is updated after removing
edges 2#6 and 1#3. In this Figure, you can also observe how the FD variables
are updated with respect to the changes in the graph4.

3.2 Implementing the propagator

The propagator is implemented as a set of port objects interchanging asyn-
chronous and synchronous messages. The implementation makes use of the New-
PortObject abstraction described in the previous section. In this section, we will
describe the messages that our objects interchange, the attributes that these port
objects have and their corresponding state transition functions. Even though Fig-
ure 4 shows three types of concurrent processes, only nodes are modeled as port
objects since neither the environment nor the monitors receive messages. In the
following, we will focus on the implementation of the nodes.

Attributes of the Nodes. As shown in Figure 4 each node has the following
attributes:

OutNodes: the tuple of outgoing nodes5.

4 An edge is represented as a tuple of two elements. The edge Ind1#Ind2 has Ind1
as origin and Ind2 as destination.

5 Y is an outgoing/incoming node of X if Y is the destination/origin of one of X’s
outgoing/incoming edges.

25

Fig. 4. Message Diagram and State of a Node.

OutCost: the tuple of costs of reaching the outgoing nodes.
InNodes: the tuple of incoming nodes.
MinCost: the minimum cost of reaching the destination.
UsedNode: the outgoing node that is being used to reach the destination.
H: the priority queue that keeps the outgoing nodes that are not being used.

Each one of these nodes is associated with a key that represents the cost
of going to the destination through that node.The priority queue is imple-
mented with a heap.

FDVar: the FD variable maintains the cost of reaching the destination. One of
the invariants of our system is that the lower bound of the FD variable is
equal to the minimal cost of reaching the destination.

NCProc: the procedure to be executed whenever MinCost is updated. As we
will see in Section 3.4, the implementation of virtual edges makes use of this
attribute.

Message Diagram. Figure 4 shows the Message Diagram of the Shortest Path
propagator. There are three kinds of entities: (i) nodes, (ii) FD variable monitors
and (iii) environment. A node may receive messages from another node, from
its FD variable monitor and from the environment. By environment, we mean
all those entities independent to the propagator that may interact with it.

The messages that the environment may send to a particular node are:

increaseOutEdge(Ind NewCost). It increases the cost of edge self#Ind to
NewCost and updates the state of the node accordinly.

26

removeOutEdge(Ind). It removes the edge self#Ind and updates the state of
the node accordinly.

A set of propagators in a Constraint Satisfaction Problem communicate with
each other through shared FD variables. The FD variables associated with each
node may be updated by other propagators working concurrently with the Short-
est Path Propagator. So, as the changes in the FD variables depend not only on
the Shortest Path Propagator, a concurrent process (namely the FD Variable
Monitor) is responsible for detecting those changes and updating the minimal
cost of the corresponding node. The messages that a FD variable monitor may
send to its node are:

updateMinCost(NewCost Ack). It updates the minimal cost of the node and
binds Ack once the cost has been updated. The Ack parameter is for the
sender to wait until the execution of the message has finished. As we are
using port objects, messages are asynchronous by default, so this mechanism
is a way of modeling synchronous messages.

publish(Cost). It communicates the new cost to the corresponding incoming
nodes.

The messages that a node may send to another node are:

newSP(Node Cost). It updates the state of the node according to the fact that
node Node has a new minimal cost Cost.

askMinCost(Cost). It binds Cost to the current minimal cost of the node.
increaseOutEdge(Ind NewCost). It increases the cost of edge self#Ind to

NewCost and updates the state of the node accordingly.
removeInEdge(Ind). It removes edge self#Ind and updates the state of the

node accordingly.
updateNCProc(P). It updates NCProc.

3.3 State Transition

As we are using port objects, our algorithm is reduced to specifying how the
state of our port objects evolve when receiving a particular message. We will
consider two cases:

removeOutEdge(Ind). As shown in Figure 5, there are two possibilities for
the node when receiving this message depending on whether the edge to be
removed is the one being used. If it is the used edge, another outgoing node
is chosen from the priority queue, the FD variable and the minimum cost are
updated and the procedure NCProc is executed. If it is not the edge used,
the information of the edge is simply removed.

newSP(Node Cost). As shown in Figure 6, the state transition for this message
involves more cases. If Node is not the used node, the heap is updated with
the new key for Node. If Node is the one used, there are two cases. One case is
when self only has one outgoing node. If this is the case, there is no option

27

Fig. 5. State Transition for the message removeOutEdge.

but to keep using the same node. So, the FD variable and the minimal cost
are updated according to Cost and the NCProc is executed. The other case
is when self has more than one outgoing node. In this case there are two
sub-cases. One sub-case is when the best option (to go to the destination)
offered by the nodes in the heap is worse than the new option offered by
the used node. In this sub-case, we simply update the FD variable and the
minimal cost according to Cost and execute NCProc. Otherwise, we have to
update the heap by extracting the node offering the best cost and inserting
the current used node. We also have to update the FD variable, the minimal
cost, the used node, and execute NCProc.

3.4 Dealing with virtual edges

The shortest path propagator allows the user to define the graph on which the
propagator is based incrementally. It does so by letting the user associate graphs
to edges. Thanks to the approach chosen to implement the propagator, the im-
plementation of this facility is straightforward :

fun {DefineEdge Edge Graph Source Destination Host}
if Host == nil then

Ind1#Ind2=Edge
SPP={Create_Propagator Graph Destination}
proc {NCProc}

thread {IncreaseEdge Ind1#Ind2 {SPP.askMinCost Source}} end
end

in
{SPP.updateNCProc Source NCProc}
SPP

else ... end
end

28

Fig. 6. State Transition for the message newSP.

An independent shortest path propagator is created for Graph. The port object
associated with Source is set so that it sends an increaseEdge message to the
origin of Edge whenever the corresponding MinCost of Source is updated. Here,
we only show how to implement the case where all the concurrent processes are
created on the same machine. Readers interested in seeing how this approach
could be extended to manage the case where the processes are created on different
machines may read Chap. 11 of [6].

4 Conclusion

We have presented the Shortest Path Propagator. Given a graph and a desti-
nation node, this propagator maintains, for every node, a finite domain variable
whose lower bound is the minimal cost of reaching the destination from that
node. Even though this is a problem already investigated (see for instance [5]6

and [9]), the value of our work lies in the fact that the algorithm is implemented
using a message-passing approach on top of data flow and constraint program-
ming primitives. The use of this sophisticated approach allows, for instance, the

6 The propagator can also be used as an incremental algorithm for the single source
shortest path problem. However, our incremental algorithm (besides only supporting
monotonic changes in the graph) is not as efficient as the algorithm presented in
[5]. We can only update MinCost monotonically (i.e., the value to which MinCost
is updated must always be greater than the current one) because this variable is
associated with the lower bound of a FD variable. [5] can perform better by allowing
MinCost to be updated non monotonically (e.g., by temporarily setting affected
nodes’ cost to be too high) even though the changes to the graph are monotonic.

29

easy extension of the propagator to deal with the incremental definition of the
graph on which the propagator is based. Another extension that comes for free
is the promotion of the propagator to a distributed status. Different shortest
path propagators running on different machines may be working together on the
same graph.
We identify, at least, two scenarios where the presented propagator may be of
great utility. One is for solving TSP derived problems using a hierarchical ap-
proach. [4], for instance, considers cases where the graph on which the problem
is based is explored by demand. The other scenario has to do with the imple-
mentation of propagators for the same kind of problem which duty is to prune
non-viable edges. If the cost of the nodes represent time, those nodes may be
associated with time windows (i.e., the node can only be visited within some
time periods). [3] suggests, for instance, the use of shortest path propagators for
inferring nodes that have to be visited before others (due to the presence of time
windows), thus avoiding failures during the search phase.

5 Acknowledgments

Special thanks are due to Kevin Glynn, who helped us to improve the quality of
our paper with his valuable comments. We would also like to thank the Mozart
Research group (at UCL) for their comments on the design of the shortest path
propagator.

References

1. S. Haridi and N. Franzen. Tutorial of Oz. December 1999. Available at
http://www.mozart-oz.org/.

2. Mozart Consortium. The Mozart Programming System Version 1.2.5. December
2002. Available at http://www.mozart-oz.org/.

3. G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic pro-
gramming algorithm for the travelling salesman with time windows. Transportation

Science, 32:12–29, 1998.
4. L. Quesada and P. Van Roy. A concurrent constraint programming approach for

trajectory determination of autonomous vehicles. In CP 2002 Proceedings, 2002.
5. G. Ramalingam and T.W. Reps. An incremental algorithm for a generalization of

the shortest-path problem. J. Algorithms, 21(2):267–305, 1996.
6. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-

gramming. 2003. To be published by MIT Press. Expected publishing date 2004.
7. P. Van Roy, S. Haridi, P. Brand, M. Mehl, R. Scheidhauerand, and G. Smolka. Effi-

cient logic variables for distributed computing. ACM Transactions on Programming

Languages and Systems, 21(3):569–626, May 1999.
8. P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer. Mo-

bile objects in distributed oz. ACM Transactions on Programming Languages and

Systems, 19(5):804–851, September 1997.
9. G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. MIT Press, Cambridge, MA, 1999.

30

Game-based CSP

James Little, Eugene Freuder & Paidi Creed

Cork Constraint Computation Centre,?

Department of Computer Science,
University College Cork, Ireland

{j.little,e.freuder,p.creed}@4c.ucc.ie

Abstract. The search for a solution to a multi-criteria constraint opti-
misation problem can be shown to be analogous to game playing. By con-
figuring agents to carry out game playing strategies within a constraint
based search, gives a novel way of reaching solutions. In this paper, we
describe how a constraint optimisation problem can be viewed as a game.
For each formulation of a constraint problem as a game, the quality of
solution depends on the gaming strategies employed by each player. We
show that even when criteria are difficult to measure consistently, good
balanced solutions can still be obtained using a heuristic approach.

1 Introduction

Constraint Optimisation Problems (COP) frequently require that a set of ob-
jectives are solved over a set of constraints. While each objective on its own is
quantifiable (at least in terms of measuring how good a particular solution is), it
is not apparent how they may be expressed as a single optimisation function or
even how these different objectives interact. The focus of this paper is on finding
balanced solutions, satisfying to some extent all the criteria as much as possible.
The approach being considered here is to develop a multi-criteria heuristic based
on AI game playing which will take us to a good solution. We will construct a
set of games around a multi-criteria constraint problem and solve the problem
by configuring players to play the game. In other words, we have a game master
who configures a game and controls all the players’ behaviour in such a way to
realise the game objective of finding good balanced solutions. The belief is that
if players are made to play in a selfish manner, making their best moves at each
turn, then the solution will be close to the game objective.

As an experimental evaluation of the approach, we start by finding all the
non-dominated solutions or “Pareto” optimal solutions to the problem. These
are the solutions for which no other solution is better across all criteria. These
solutions form a frontier on which all non-dominated solutions lie. By determin-
ing this frontier, we can see which solution is most balanced. For each criterion
there is a solution which maximises that aspect. For every other solution, it will

? This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075.

31

satisfy this criterion to some extent. We define a ”balanced” Pareto solution
to be one which satisfies each criterion equally. Our approach is to develop a
heuristic, based on well-known game playing strategies, which will get us close
to the most balanced non-dominated solution. The evaluation is therefore how
close we get.

A variety of ways of handling multi-criteria optimisation within COP’s have
already been proposed. Gavanelli[3] takes the approach of trying to find the
complete non-dominant frontier through an efficient implementation based on
Point Quad trees. He reports good performance with respect to the other algo-
rithms in this area and shows results on problems with up to 4 different criteria.
Hude et al[4] recognise that each optimisation criterion should be handled in-
dependently and within the search, through criterion-specific strategies and a
‘criterion choice heuristic’. A mono-strategy is chosen and used through to the
first solution. An alternative strategy is then chosen to continue searching for
improved solutions. Focacci and Godard[1] propose introducing bounding con-
straints, relating to each criterion, on finding a solution. However, guaranteeing
completeness is difficult as other non-dominated solutions can be ignored. Their
iterative approach performed well against other standard approaches on a set
of job shop problems. O’Sullivan[8] has also considered Pareto optimal solutions
when looking at different design schemes represented as CSP’s.

Many of the above approaches to multi-criteria optimisation rely on the user
being able to rank the criteria or provide a relative way of measuring each
criterion. Our approach does not assume such degree of precision by the user.
Instead our initial aim is to provide a good, ”balanced” solution for the user.

In the application of game playing to COP’s Oon[7] has proposed using it to
solve resource scheduling problems. These problems exhibit ”dissimilar objective
functions”. Here the approach is based on a complex system of bidding, arbitra-
tion and negotiation using techniques from multi-agent systems, collaborative
game theory and expert systems. Players can also be thought of as agents and in
the paper by Freuder and Eaton[2] they configure teams of agents with individual
interests to search through a set of constrained variables making assignments.
They focus on techniques of compromise between conflicting interests, but do
not incorporate any game-playing techniques. Although there are aspects of each
of these approaches similar and even complementary to our own, this is a new
approach using game playing strategies for multi-criteria COP’s.

Game playing has been incorporated into constraint programming (CP) in
other ways. Ricci[9] suggests that some problems are better solved by agents,
strategies and co-operation. To this end, every CP variable can be thought of as
a player, whose strategy is determined by its domain. However, a game may end
in a non-feasible CSP solution. Solutions of the CSP problem are proven to cor-
respond to Nash[6] Equilibrium points, since they cannot be improved upon (in
terms of number of satisfied constraints). Elsewhere, Kolaitis and Vardi[5] show
how underlying constraint consistency techniques behave like certain games.

In Section 2 of this paper, we describe the basics of AI game playing and
show in Section 3 how playing a particular type of modified game is analogous

32

to searching for a solution to a COP, based on constraint programming. Further,
we show how the different types of playing strategies correspond to different
approaches to solving a multi-objective COP. In Section 4, we present a selection
of games based on graph colouring, but with multi-criteria objectives added. We
carry out different game playing strategies across these games and compare the
resulting payoffs against exhaustive searches, in an attempt to assess the quality
of solutions found. Section 5 provides some initial conclusions to this approach
and speculates on future research direction suggested by the findings.

2 Game Playing

A game is made up of an initial position, a set of operators which define the legal
moves between positions, and a payoff function which gives a numeric value to
a player at the outcome of the game (terminal position). Players take turns to
make moves to advance the position/state of a game to some conclusion, where
no further moves are possible. At that point, each player has an outcome or pay-
off. The game finishes in a finite number of moves no matter how it is played.
Within AI game playing, a game can be described as kind of search (Russell
and Norvig[10]) through a space of possible game positions. Each player plays
the game with some objective in mind, so when the game achieves a terminal
state, they can calculate their payoff in terms of that objective. Each player has
an associated behaviour to decide, on their turn, which move to make within
the framework of legal moves. The player makes this decision, trying to direct
the game towards a favourable outcome for themselves i.e. improving their own
objectives. This decision may take into account their own objectives, the objec-
tives of the other players and the state of the game at various possible positions
ahead.

For small games, it is possible to evaluate all possible outcomes and from
that to determine logically the best moves for each player to make. The analysis
of such type of games is at the heart of Game Theory [11]. For larger games such
as chess it is not always possible to do so. AI game playing seeks to estimate how
to play a game without full information; depending instead on knowledge of the
game, to develop good search strategies. This knowledge of the game involves
evaluating the expected payoff for a player in reaching any given position, look-
ing a few moves ahead. Obviously, this calculation is imprecise, but extremely
important for the performance of the player. Once these estimates have been
made, the player can use them within their gaming strategy to decide the best
move to make.

One popular strategy which has found an amount of success in zero-sum
games is the ‘minimax’ strategy[10] based on Von Neuman and Morgenstern’s[11]
theorem. Zero-sum games are those in which any improvement in one player’s
payoff is directly reflected in the same amount of deterioration in the total payoffs
of the other players. Therefore, since each player starts the game with zero payoff,
the sum of payoffs at the end of the game will also equate to zero. General sum
games on the other hand imply the opposite; in them, one player’s gain does

33

payoffs

(player 1 first)
 [5,1]
 [6,7]
 [4,6]
 [6,0]
 [7,1]

worst for player 1
 5
 4

player 1

player 2

a
 b

c
 d

best for player 1
 6
 7

g
f
e

Fig. 1. Game Tree Showing Different Payoff Possibilities

not have an equal and opposite reflection in the others. Players can therefore
be seen as co-operating, since it is possible to improve both their payoffs in one
move. The ‘minimax’ strategy tries to minimise the worst possible outcome for a
player. In general sum games, which are considered here, other strategies derived
from the ‘minimax’ are also considered, see section 3.3.

In Figure 1, a partial game tree is shown. Player 1 can either make move a or
b, followed by player 2 making move c,d,e,f or g. Several positions are then gen-
erated based on different combinations. At these positions, evaluation functions
are run to determine the payoffs for each player. A higher score indicates that
this is a preferable position for the player. What is a good outcome for player 1
is not necessarily good for player 2 and vice versa. In this example, if player 1
chooses move a, they will at worst get to a position with value 5, irrespective of
what player 2 does. However, if player 1 had chosen move b, then there was a
chance of being in a stronger position with a payoff of 7. However, there was also
the possibility of being in a position of value 4. Using a maximin strategy, would
result in player 1 choosing the route which leads to the best of worst outcomes
i.e. the move corresponding to the left-hand branch.

3 Solving a Constraint Optimisation Problem as a Game

3.1 Structure of the Game

The game starts with a set of variables and for each member, a domain of possible
values. Players take turns to choose a variable(s) and assign a value to it. All the
variables must be assigned values, consistent with the constraints, for the game
to terminate. The rules of the game are represented by the constraints on the
variables, which prevent certain combinations of variable/values being chosen as
the game proceeds. Each player has their own objective, reflected in strategies for
assigning values to variables. A position in the game corresponds to some of the
variables assigned values consistent with the constraints. To advance the game
one position requires some of the unassigned variables to be given values. Due to
constraint propagation taking place the set of possible moves becomes restricted
during the game. This move and propagation creates the familiar constraint

34

......

......

......

value choice

variable choice

Player A's move
 Player B's move

......

Fig. 2. CP Search Tree as a Game

based search. As a game, we could expect it to terminate without necessarily
assigning all variables with values and still be able to calculate a payoff for
each player. This cannot be the case here, as we require that all the variables
have values satisfying the constraints. Therefore we need to modify the game
to include backtracking and allow players to take a turn again, but this time
choosing another move. The circumstance necessitating backtracking happens
when a game state contains variables with no possible values. At a terminal
position, each player calculates their payoff and this indicates how well they
have satisfied their objectives. How each player plays the game is likely to have
a bearing on these eventual payoffs.

At this point, it is apparent that many possible types of game can be designed
and played, based on assigning values to variables. However, the game proposed
here is a two-person, general sum game with each player choosing one variable
and value in turn. Each player has an objective which matches one criterion of
a 2-criteria optimisation problem. Each is also configured to play the game in a
manner consistent with trying to meet their objective. The playing behaviours
are under the control of the game master and each player knows what the others
players’ objectives are. In Figure 2, we illustrate a search tree as a game tree,
where the development of the search is equivalent to the moves in a game.

3.2 The Player’s Behaviour

Once a player has been given an objective there are many ways of configuring
the player to take part in the game. A player’s behaviour is characterised by
two aspects; their evaluation function and their strategy around applying this
function. When a player is deciding the next move to make, they need to look
ahead and evaluate positions they could get to. Obviously they cannot look all
the way to the end of the game, as this would in effect enumerating all possible
outcomes, which is not the approach we are proposing. However, by advancing
a certain number of moves, the player can assess how good a position would be

35

in terms of likely payoff. For this, players use an evaluation function to give a
value to every considered position. To reach a position of depth greater than
one, will require moves to be made by the other player. An evaluation of a
position allows us to approximate the likely payoff in getting to that position
without doing a complete search of the game tree. From this, the player would
then assemble the results of these evaluations of each position considered, and
decide on the next move to make, taking them hopefully nearer to one of those
positions. However the player cannot expect to necessarily get to that position,
as it is dependent on the moves of the other player. Choosing which positions to
evaluate and subsequently how to process the evaluation results determines the
player’s strategy which in turn describes a style of playing.

3.3 Playing the Game

In this game, each player in turn chooses a variable and assigns a value to it.
For these experiments we limit the number of moves ahead which are evaluated
to a depth of two. After each move, arc-consistency is applied to ensure that the
move is legal, before it is evaluated. In other words, player 1 will consider first
all their possible moves and extend this to all those following on by player 2.
At these positions the evaluation functions for player 1 and optionally player 2
are applied. All the results are passed back to player 1 and according to their
strategy a move is made and variable is assigned a value. It is now player 2’s turn
and in the same way, player 2 will look a further two moves ahead and evaluate
the valid positions. Then according to player 2’s strategy a choice of move will
be made. The game finishes when all the variables have been given values. At
any time it may not be possible to make any of the positions consistent for a
player. In this case, we will go back to the most recent move made by the other
player and choose the next best move.

The order in which the variables and values are considered in searching the
game tree is important. Currently we examine all combinations of variables and
permissable values in the order in which they are input. However, when ties
occur in the evaluations, it is the path of the variable and the value earliest in
the input order which will be chosen.

In any game, players can be given whatever game-playing strategies the game
master chooses, to play the game. Some common strategies used in the exper-
iments are described in Table 1 along with an interpretation on the style of
playing. In these set of initial experiments we shall consider both players adopt-
ing the same characteristics.

The minimax, maximin and maximax strategies are all derived from the tra-
ditional ‘minimax’ strategy used in AI game playing. This approach is suited to
pure adversarial games where one player’s gain is the other player’s loss, since
it splits the game into MAX and MIN levels, where the evaluation is maximised
at one and minimised at the other [10]. Since our’s is general sum game where
the objectives (and from them the evaluation functions) are not necessarily op-
posed, we consider three different combinations of the MAX MIN levels. All
these strategies reduce to the same when used in a zero-sum game.

36

Strategy Description of Strategy Playing Style

Depth 2 + maximin Maximise the worst outcome
from each of your payoffs

“conservative/ secure”

Depth 2 + minimax Minimise the best outcome of the
other player from each of your de-
cisions

“opposing”

Depth 2 + maximax Maximise your and the other
player’s expected outcome

“expectant”

Depth 2 + max weighted sum Maximise the weighted sum of
outcomes in a probabilistic way

“realistic”

Table 1. CP Strategy Description

Maximin assumes that the other player’s move might minimise our score, so
minimise on levels controlled by the opponent and maximises on levels under the
current player’s control. This will in effect maximise the minimum score. The
game is split into MIN and MAX levels where we return the maximum score for
the current player at the levels under their control and the minimum score for
the current player at the levels under the opponent’s control.

Minimax is a style to minimise the opponent’s score no matter what the
situation. It operates under the assumption that since the objectives are different,
a move that is good for my opponent is not good for me. The game is split into
MAX and MIN levels again, but in this case the opponent’s score is maximised at
the levels under their control and minimised at levels under the current player’s
control. This approach is fine for adversarial zero-sum games, although the games
described here are less so.

Maximax takes both players’ objectives into account. The game is split into
MAX1 and MAX2 levels where we return the maximum score for player 1 on level
MAX1 and player2 on MAX2. Since the strategies are not completely opposed,
this strategy can lead to situations where both players get a better score that
other strategies would have missed.

A fourth strategy called Max Weighted Sum is also considered. In every
game tree there is a degree of uncertainty since the other player will always look
further ahead. We have designed a strategy that instead of focusing on a single
move at each level, takes all the moves into account. At levels under the current
player’s control we return the maximum score but at levels under the opponent’s
control we calculate the payoffs to both players and return the sum of each of
our payoffs weighted by the probability that the opponent will make that move.
The probability for each move is calculated by dividing the opponents payoff
for that move by the sum of their payoffs for all moves at that level. In Figure
3 we give examples of how each of the strategies behaves with a given set of
evaluation values. With these particular payoffs, a variety of different moves are
recommended, indicated by the circled choice.

37

player 1
 A

player 2

payoffs

(player 1 first)
 [3,2]
 [1,1]
 [2,7]
 [2,8]
 [4,5]

maximin
 1
 2

B

[9,0]

maximax

minimax

max weighted sum

8

3
 2

2

= 5/2

(3*2/3 + 1*1/3 + 9*0/3)

=7/3

(2*7/20 + 2*8/20 + 4*5/20)

Fig. 3. Examples of Different Strategies on the Choice of Move

4 Experiments and Results

4.1 The Games

The experiments were carried out across a set of graph colouring problems ran-
domly generated and modified to have a multi-criteria objective. A graph colour-
ing problem consists of a set of nodes some of which are connected by links. Each
node has to be coloured by one of four colours (red, blue, green and yellow) and
those nodes which are linked cannot have the same colour. The problems con-
sidered, range in size from 4-node up to 15-node. Given these constraints and
the overall objective of colouring all the nodes, three games have been designed
around this problem. These are described below.

Game 1 : Player 1 tries to maximise the number of nodes coloured red, while
player 2 tries to maximise the number of nodes coloured blue.
Observations: this is a medium competitive game. Maximising on one colour
does not directly mean that the other colour is minimised. Yet both players
may compete on certain nodes to place their colour.

Game 2 : Player 1 tries to maximise the number of nodes coloured red. For
player 2 there is a benefit value associated with every node / colour combina-
tion. Player 2 tries to maximise the sum of these values.
Observations: This game is not directly competitive. There are situations where
red provides greatest benefit to player 2 also. However there are times when
red gives the smallest benefit. The numerical scale of the two objectives are
different; each red gets a score of 1, while the benefit on each node ranges
randomly from 0 to 3.

38

Game 3 : Player 1 tries to maximise the number of nodes coloured red. Player
2 tries to maximise the number of nodes coloured red AND blue.
Observations: This game is the least competitive one. The objectives are dif-
ferent, but the players share one common goal.

4.2 Evaluation Functions

We use a different evaluation function for each objective. When the objective
is counting the numbers of red or/and blue, then the evaluation function at a
position is as follows. A score of 2 is given for every variable assigned to that
colour or through propagation during the incremental moves made to that posi-
tion. A score of 1 is given to any unassigned variable which has that colour still
in its domain. The evaluation function will sum all the scores at that position.
A ‘good’ position is therefore one in which the colour has been assigned to some
variables in getting to that position and there is strong indication that there is
plenty of opportunity for more to be assigned in the remainder of the game.

When the objective is to maximise the benefit, the evaluation function be-
haves as follows. The benefit scores are summed for the assigned variables (and
those assigned through propagation)in making the two moves. This is then added
to the mean of the maximum benefit values of the unassigned variables.

4.3 Experiments

For each game type, we consider different combinations of 2-player strategies. In
all these experiments,we consider both players applying the same strategy with
appropriate evaluation function. The reason for this is initially to try to have
each player playing in a ‘balanced’ manner. We are also interested in recording
the order in which the players make the first move to see whether this influences
the outcome. On the non-dominated frontier there is a solution which is most
balanced. The definition of the most balanced solution on the non-dominated
frontier for a two criteria problem, is the one for which the difference between
the percentage satisfaction of each criterion is smallest. As an example of deter-
mining the most balanced solution, consider that for criterion 1, the maximum
achievable payoff is 100 and for criterion 2, it is 200. A solution on the frontier
with payoffs of 100/100 would satisfy the criteria 100% and 50% respectively.
Consequently, the measure of how balanced this solution is 100 - 50 = 50. How-
ever, a solution of 75/150 would satisfy each criterion by 75% and result in a
balance factor of 75 - 75 = 0. In cases where two solutions give the same balance
factor e.g. a solution of 50/100, then the sum of their percentage satisfactions is
taken to determine the best. The non-dominated frontier is obtained for these ex-
periments by exhaustive search. To evaluate the results we compare them against
the non-dominated frontier and the most balanced solution on that frontier.

4.4 The Results

The results of Games 1, 2 and 3 are presented in Tables 2, 3 and 4 respectively.

39

No of
Nodes

Maximin
reds vs
blues

Minimax
reds vs
blues

Maximax
reds vs
blues

W’ghted
sum reds vs
blues

No of reds / No
of blues

4 (2,1) (2,1) (3,1)* (2,1) 3/1
5 (2,2) (1,2) (3,2)* (2,2) 3/2
6 (2,2)* (1,2) (2,2)* (2,2)* 3/1, 2/2
7 (3,2)* (1,1) (3,2)* (3,2)* 3/2
8 (3,2) (2,2) (4,2)* (3,2) 4/2
9 (2,3) (2,2) (3,3) (3,3) 3/4
10 (3,3) (2,2) (4,3)* (3,3) 3/4
11 (5,2) (2,1) (3,5)+ (5,3)+ 3/5, 4/4
12 (4,5)* (2,3) (3,3) (5,4)* 4/5
13 (6,4) (3,1) (6,4) (5,4) 7/3, 6/4, 5/5
14 (4,4) (4,2) (4,4) (4,4) 5/4
15 (5,5)* (4,3) (3,5) (5,5)* 5/5

Table 2. Results for Game 1

* represents the most balanced solution on the non-dominated frontier
+ represents a solution on the non-dominated frontier
italics represents a non-dominated solution among those found

No of
Nodes

Maximin
reds vs
prefs

Maximin
prefs vs
reds

Minimax
reds vs
prefs

Minimax
prefs vs
reds

Maximax
reds vs
prefs

Maximax
prefs vs
reds

W’ghted
sum reds
vs prefs

W’ghted
sum
prefs vs
reds

No of reds/
sum of pref-
erences

4 (3,7)* (9,2)+ (1,4) (3,1) (3,6) (9,2)+ (3,7)* (8,2) 2/9, 3/7
5 (3,10)* (12,2)+ (1,4) (5,2) (2,8) (10,2) (2,11) (12,2)+ 1/13,

2/12, 3/10
6 (3,10)* (10,3)* (2,6) (5,2) (3,10)* (9,2) (3,10)* (10,3)* 2/12, 3/10
7 (3,11) (14,3) (1,11) (7,1) (3,14) (12,3) (3,13) (12,3) 2/16, 3/15
8 (3,17) (15,3) (2,12) (14,2) (4,16)* (17,2) (3,17) (18,2) 2/20,

3/19, 4/16
9 (3,18) (17,2) (2,13) (15,2) (3,21) (23,3)* (3,14) (21,3) 3/23, 4/13
10 (4,20) (23,3) (2,11) (12,2) (4,19) (19,3) (4,25)* (20,4) 3/26, 4/25
11 (4,25) (24,4) (2,14) (14,2) (5,22) (20,3) (4,23) (25,4) 2/28,

3/27,
4/25, 5/23

12 (4,18) (20,4) (2,15) (18,2) (4,21) (19,4) (4,22) (23,4)* 4/23, 5/15
13 (6,23) (27,4) (1,22) (17,2) (6,21) (28,5) (7,27)* (25,6) 2/31,

3/30,
6/28, 7/27

14 (4,31) (30,5) (2,23) (17,3) (4,24) (33,5) (4,31) (28,3) 3/37,
4/36, 5/35

15 (5,27) (28,5)* (4,9) (21,3) (4,17) (26,5) (4,26) (22,4) 5/28

Table 3. Results for Game 2

40

No of
Nodes

Maximin
reds vs
(reds/
blues)

Maximin
(reds/
blues) vs
reds

Minimax
reds vs
(reds/
blues)

Minimax
(reds/
blues)
vs reds

Maximax
reds vs
(reds/
blues)

Maximax
(reds/
blues) vs
reds

W’ghted
sum reds
vs (reds/
blues)

W’ghted
sum
(reds/
blues) vs
reds

No of
reds/No
of reds
+ No of
blues

4 (3,4)* (4,3)* (1,2) (3,1) (3,4)* (4,3)* (3,4)* (4,3)* 3/4
5 (2,4) (4,2) (1,3) (2,1) (3,5)* (5,3)* (3,5)* (5,3)* 3/5
6 (3,4)* (4,3)* (1,3) (2,1) (2,4) (4,3)* (3,4)* (4,2) 3/4
7 (3,5)* (5,3)* (2,3) (2,1) (3,5)* (4,3) (3,5)* (5,2) 3/5
8 (4,6)* (6,4)* (2,4) (4,2) (4,5) (5,4) (4,6)* (5,3) 4/6
9 (2,5) (7,4)* (1,4) (4,2) (4,7)* (6,4) (4,6) (6,3) 4/7
10 (3,6) (6,3) (2,4) (4,2) (4,6) (7,4)* (4,7)* (6,3) 4/7
11 (5,7) (8,5)* (2,4) (3,1) (5,7) (7,5) (5,8)* (8,4) 5/8
12 (4,7) (7,4) (2,6) (6,3) (5,9)* (7,4) (5,8) (7,4) 5/9
13 (7,10)* (9,7) (1,5) (4,1) (7,9) (10,7)* (7,10)* (10,5) 7/10
14 (5,9)* (9,5)* (2,6) (6,2) (4,9) (8,5) (5,8) (8,4) 5/9
15 (4,9) (8,4) (3,7) (7,3) (5,10)* (10,5)* (5,10)* (9,4) 5/10

Table 4. Results of Game 3

Across all the games, the strategies of maximin, maximax and weighted sum
all record instances of finding the most balanced non-dominated solution. The
minimax strategy however is not successful in finding good balanced solutions.

In game 1, the most balanced non-dominated solution is found by one or
more of the strategies in 9 out of the 12 cases. On the remaining 3 cases the
best solutions found were at most two units away from the best solution (some
were also on the non-dominated frontier). The combined maximax strategies
solved the majority of cases to find the most balanced solution(6) or to the non-
dominated frontier(2). All these solutions are symmetrical that by swapping red
for blue we get an equivalent solution. In game 2, the same pattern emerged as
in game 1, with three strategies finding a majority of the most balanced non-
dominated solutions(9) while the other best solutions, to the remaining problems
were no more than 2 units away. Game 2 also seems to have fewer instances where
the best solution is found. This game differs from the others in how the multi-
criteria are measured on a different scale. Game 3 provided the only case where
all the most balanced solution on the non-dominated frontier were found, by one
of the gaming strategies. The weighted sum strategy provided most instances of
finding the most balanced solution.

The order in which the game is played does result in different outcomes, but
it is not apparent whether it is better to move first or second to get the best
payoff for these types of games.

5 Conclusions and Future Work

We have shown that configuring simple games of two players with limited looka-
head, simple evaluation functions and strict input order of variables and values,

41

we are able to get good balanced solutions using a heuristic based on game play-
ing over a set of small competitive games. The incorporation of game playing
strategies into a CP search does provide an alternative way of looking at the
issue of multi-criteria optimisation and of achieving good, balanced results. We
found the most balanced solution on the non-dominated frontier in the majority
of cases. In fact for game 3, all the best solutions were found, although not neces-
sarily by the same game strategies. Where the best solution found, was not that
of the most balanced on the non-dominated frontier, the difference was only at
most 2 units. Only the minimax strategy did not return good results. This strat-
egy focusses on the ‘opponent’ player and in these general-sum games it does
not give a good indication of the outcome for the original player. In addition, it
is not in the interest of the overall game to try to reduce one player’s score. At
this stage it is not apparent which of the three combinations is superior.

The advantage of this heuristic approach is that it is not necessary to search
along the non-dominated frontier for the best solution. However, the heuristic
does require an amount of processing. On larger problems, if more positions are
evaluated, then time is likely to become an issue. There are techniques within
game playing such as alpha-beta pruning [10] which help to reduce the search.

Acknowledgements

We would like to thank Dr Ken Brown for the useful discussions and suggestions
he has provided us with.

References

1. Focacci, F. and D. Godard, A Practical Approach to Multi-Criteria Optimization
Problems in Constraint Programming, Proceedings of CPAIOR’02.

2. Freuder, E. and P. S. Eaton, Compromise Strategies for Constraint Agents, Con-
straints and Agents,Papers from AAAI Workshop 1997, Technical Report WS-97-05.

3. Gavanelli, M., An Algorithm for Multi-Criteri Optimisation in CSPs, Proceeding of
ECAI 2002, F. van Harmelen (ed.) IOS Press, pp136-140, 2002.

4. Le Hud, F., M. Grabisch, C. Labreuche and P. Savant, Multicriteria Search in
Constraint Programming, Proceedings CPAIOR’03.

5. Kolaitis, P.G. and M.Y. Vardi, A Game-Theoretic Approach to Constraint Satis-
faction, Proceedings of AAAI 2000.

6. Nash, J, Non-cooperative Games,Annals of Mathematics, 54:286-295, 1951.
7. Oon, W and A. Lim, Multi-Player Game Approach to Scheduling Problems, Pro-

ceedings of the International Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN02).

8. O’Sullivan, B, Constraint-Aided Conceptual Design, PhD Thesis, Department of
Computer Science, University College Cork, July, 1999.

9. Ricci, F, Equilibrium Theory and Constraint Networks, Proceedings of Constraint
Directed Reasoning Workshop, AAAI-90, Boston 1990, and Proceedings of the In-
ternational Conference on Game Theory, Florence, 1991.

10. Russell, S. J. and P. Norvig, Artificial Intelligence A Modern Approach, Prentice
Hall, 1995.

11. Von Neumann, J. and O. Morgenstern, Theory of Games and Economic Behavior,
Princeton University Press, 1944.

42

Implementing Constraint Imperative Languages

with Higher-order Functions

Martin Grabmüller

magr@cs.tu-berlin.de

Technische Universität Berlin
Fakultät IV – Elektrotechnik und Informatik
Franklinstr. 28/29, 10587 Berlin, Germany

Abstract. Constraint imperative programming languages combine de-
clarative constraints and imperative language features into an integrated
programming language. The language Turtle supports these program-
ming paradigms and additionally integrates functional programming with
higher-order functions and algebraic data types. This paper describes the
implementation of Turtle, consisting of a compiler, a run-time system
including constraint solvers and an extensive library of supporting mod-
ules.

1 Introduction

Declarative programming languages let the programmer concentrate on what the
solution to a problem is, by specifying the properties the solution should have
and letting the programming system find it. Imperative programming, on the
other hand, emphasizes how to calculate the solution. An imperative program
contains a step-wise description of the solution algorithm which finally leads to
the desired result. Each of these programming paradigms has its respective ad-
vantages. Declarative programming builds on a strong mathematical foundation
which simplifies program transformations (e.g. optimization) and verification.
Imperative programs can often model real-world activities more naturally, be-
cause of their state-changing semantics. The available implementations of imper-
ative languages also yield more efficient (in time and space) programs, despite
the developments in compiler technology over the last decades.

Several research activities have tried to integrate declarative and imperative
programming languages in order to combine the advantages of both. Constraint-
imperative programming [1] is one instance of this combination. It integrates
declarative constraints and imperative language constructs such as mutable data
structures and assignment. Besides novel language design issues, constraint im-
perative languages require new techniques for an efficient implementation.

This paper reports on the implementation of the constraint imperative pro-
gramming language Turtle [2], which integrates constraints, imperative con-
structs and features mainly known from functional programming languages, such
as higher-order functions and algebraic data types.

43

This paper is organized as follows. Section 2 briefly describes the language
Turtle. The implementation of Turtle is presented in Sect. 3. It consists
of a description of the compiler, the run-time system and the Turtle library.
Section 4 relates this paper to other work and finally concludes.

2 The Programming Language Turtle

This section gives a short survey on the programming language Turtle [2]. The
language was designed by starting with an imperative base language with higher-
order functions and a rich type system. Then, several language extensions for
constraint programming were added. We will first describe the imperative and
functional language constructs and then discuss the constraint programming fea-
tures.

Imperative programming. Turtle provides all control structures known
from traditional imperative languages: conditionals, loops, functions (and proce-
dures) and assignment statements. Variables and data structures can be modified
by assignment, and input/output is performed using side-effecting functions.
Turtle supports a rich set of data types, including integers, reals, booleans,
strings, characters, arrays, lists and tuples. Turtle also has a module system
for encapsulating the declaration of functions, variables and data types using ex-
plicit import/export relations between modules. Modules can be parametrized
by data types and functions can be defined in terms of these parameters, re-
sulting in polymorphic functions. The Turtle implementation comes with a set
of library modules which make extensive use of this feature, e.g. for providing
functions to handle lists of arbitrary element types.

Functional programming. Higher-order functions, which can receive func-
tions as parameters and can return functions as their value, are provided for
functional programming. The supported data types also include algebraic data
types as known from functional programming languages. In addition to imper-
ative loops, iteration can also be expressed by recursion, as is normally done in
functional languages. Turtle uses eager evaluation semantics to avoid conflicts
with side-effects introduced by imperative programming.

Constraint programming. Four extensions were added to the imperative and
functional base language: constrainable variables, constraint statements, user-
defined constraints and constraint solvers.

Constrainable variables are special variables, introduced by data type annota-
tions, e.g. a constrainable integer variable is declared with type ! int. The values
of normal variables are given by assignments, whereas the values of constrain-
able variables are determined by placing constraints on them. Since constrainable
variables not only hold values but also need to store additional information for
use with the constraint solvers, they are actually represented by variable objects,

44

which are explicitly created and must be dereferenced to obtain the variables’
values.

Constraint statements are block-structured statements which consist of (1) a
constraint conjunction and (2) of a sequence of statements, called the body. The
following example shows a constraint statement constraining a variable x to a
value greater than zero as long as the body (which prints the value of x) is
running.

require x > 0 in io.put (!x); end;

When a constraint statement starts to execute, the constraints in the constraint
conjunction are added to the constraint store and the built-in constraint solver
tries to satisfy the constraints by assigning suitable values to the constrainable
variables appearing in the constraints. Since a constrainable variable can only
hold a single value, an arbitrary value which satisfies the constraints is chosen.
When the solving process is successful, the statements in the body are executed.
The variables remain bound to their values during the execution of the body,
and the constraints are removed from the constraint store when the statement
is left. If the constraint solver detects that the constraints are not satisfiable, an
exception is raised which must either be handled by the program or otherwise
terminates execution. A second variant of the constraint statement without a
body is also provided. Constraints specified with such a statement remain valid
as long as the variables in the constraint do exist.

User-defined constraints abstract over constraints similar to functions, which
abstract over individual expressions or statements. User-defined constraints can
contain arbitrary statements, but their main purpose is to place constraints
on one or more of their parameters. When a user-defined constraint invocation
appears in a constraint conjunction, its body is executed.

Constraint solvers are built into the run-time system of Turtle and are
responsible for maintaining their associated constraint stores. Whenever con-
straints are added to the store, the solvers must satisfy their stores by calculating
assignments for the constrainable variables. When the constraints in the stores
are not satisfied, the solvers are responsible for raising an exception. Constraint
statements in Turtle allow to specify the importance of individual constraints
in a conjunction by so-called strength annotations. The constraint solvers will
try to satisfy the most important constraints, even if that means that less im-
portant ones will be violated. This treatment of preferential constraints is called
constraint hierarchies [3].

Currently, only linear constraints are supported by Turtle. Lifting this re-
striction requires modifications both to the solvers and the compiler, because
constraints are analyzed at compile time.

The code fragment in Fig. 1 illustrates the constraint extensions of Turtle.
The user-defined constraint all different receives a list of constrainable variables
and places inequality constraints on each pair of list elements. Line 11 declares
three constrainable variables a, b and c and initializes the variables with variable
objects holding different values. Line 12 invokes the user-defined constraint in

45

1 constraint all different (l: list of !int)
2 while (tl l <> null) do

3 var ll: list of !int := tl l;
4 while (ll <> null) do

5 require hd l <> hd ll;
6 ll := tl ll;
7 end;
8 l := tl l;
9 end;
10 end;

. . .
11 var a: !int := var 0, b: !int := var 1, c: !int := var 2;
12 require all different ([a, b, c]) in . . . end;

Fig. 1. Constraint imperative example

a constraint statement and thereby ensures that the variables’ values remain
pairwise different while the body executes.

3 Implementation

The implementation of the Turtle system consists of a compiler, a run-time
system and of a collection of library modules. The run-time system contains two
experimental constraint solvers and a garbage collector and the library provides
useful utility functions and abstract data structures. This section describes each
of the parts of the Turtle programming system.

3.1 Compiler

The compiler translates Turtle source code into object code. We will briefly
describe the general structure of the compiler and then present the handling of
constraints and functional programming features in more detail. The compilation
of the imperative base language into machine code will not be shown, because
it is rather standard.

Compiler structure. Turtle source programs are first parsed and converted
to a syntax tree, annotated with type information and fully resolved identifiers.
This intermediate program representation is called high-level intermediate lan-
guage (HIL). The HIL representation is converted to a low-level intermediate
language (LIL) suitable for machine code generation. LIL is the language of a
stack machine, designed for easy code generation and target language indepen-
dence. The code emitter finally converts LIL to the target language, which in
the current implementation is ANSI C. The compilation into machine code and
the linking of the program modules with the run-time library is handled by a
standard C compiler and object-code linker.

46

Compiling constraints. The handling of constraints requires the compilation
of user-defined constraints and constraint statements. Constrainable variables
only affect the type-checking and the compilation of the creation of variable
objects and accesses to their contents. The creation of variable objects is imple-
mented like the creation of user-defined data types and accesses are translated
to simple fetch instructions.

User-defined constraints are compiled in the same way as normal functions,
except that constraint statements contained in their bodies do not need to invoke
the constraint solvers to check their stores for satisfiability. This is because user-
defined constraints can only be invoked from constraint statements, which will
do this as soon as their statement bodies are entered.

Constraints are specified in constraint statements in Turtle. The architec-
ture of the system is flexible enough to integrate new constraint solvers, so it
is not in advance known how constraint solvers have to handle constraints in
order to efficiently solve them. Therefore, a solver-independent constraint repre-
sentation is built at run-time, whenever a constraint statement requires that a
constraint is added to the constraint store.

The compiler distinguishes two kinds of constraints in constraint statements:
first, we have trivial constraints which do not contain any references to constrain-
able variables. Second, there are non-trivial constraints. Trivial constraints are
translated like normal boolean expressions, followed by a test whether the re-
sult was true or false. If the result was false and the constraint was required,
an exception is raised. Such constraints may appear when constraint statements
are used for stating program invariants instead of using them for calculating
assignments for constrainable variables. For non-trivial constraints, compilation
is more complicated. Since constraints are first-class objects (they have to re-
main accessible to the constraint solver until the scope of the constraints is left),
a representation of the constraints is built. This representation must contain
references to the constrainable variables so that the constraint solver can fetch
the values of these variables and can store new values into them. References
to normal variables, function calls and constant subexpressions are treated as
constants, so that only the results of evaluating them have to be stored in the
constraint representation. This is done by evaluating these expressions as soon
as the containing constraint statement is entered, and by remembering the result
for inclusion in the symbolic representation. After building the representation,
the constraint is tagged with its strength (0 for required constraints, and values
greater than 0 for preferential (non-required) constraints) and added to the con-
straint store. Adding the constraint will cause the constraint solver to re-solve
the store. If any required constraints in the store cannot be satisfied after adding
the new constraint, the new constraint will be removed and an exception will be
raised. If any preferential constraints are not satisfied, the solver tries to satisfy
as many preferential constraints as possible, but without raising an exception.

The actual compilation of constraint statements consists of two phases. First,
the expressions of all constraints in the constraint conjunction are partitioned
into constant terms on the one hand and the constrainable variables and their

47

1 var y: int ← 4;
2 var x: ! int ← var 0;
3 require 10 * x + 10 > 3 * y − 1;

Fig. 2. Constraint compilation example

coefficients on the other hand. In the second phase, the code for evaluating
the constant terms (including function calls) is emitted as well as the code for
creating the symbolic representation.

For illustration of the translation of constraint statements, we will translate
the constraint statement in Fig. 2 step by step.

Line 1 declares the integer variable y. The variable x is declared in line 2 as
a constrainable integer variable, so the compiler will need to translate the re-

quire statement as a non-trivial constraint statement. The translation of line 3
proceeds by first partitioning the terms of the constraint into constants (that
includes non-constrainable variables and function calls, which are evaluated be-
fore the constraint is created) and constrainable variables, together with their
coefficients. For our example, we have the constant expression

−10 + 3 ∗ y − 1

and the constrainable variable with coefficient:

10 ∗ x

Figure 3 shows the generated code for the example. The translation of the re-

quire statement consists of first pushing the constraint’s strength onto the eval-
uation stack. For our example, since no strength was specified, 0 (the strongest
strength) is assumed (line 1). After that, an indicator for the kind of constraint
(the inequality ‘>’) is pushed, followed by the number of constrainable variables,
1 in the example (lines 2–3). Then the value of the constant term (which must
be evaluated before the constraint is created) is pushed onto the stack (lines 4–
10), followed by all constrainable variables with their corresponding coefficients
(lines 11–12). Finally, the constraint is added to the constraint store (line 13).
The add-constraint instruction is the only instruction which interfaces to the
constraint solvers (except for a remove-constraint instruction used at the end of
constraint statement bodies) and causes the solver responsible for the constraint
to build a representation from (1) the constraint strength, (2) the constraint
kind, (3) the constant and (4) from the constrainable variables and their coeffi-
cients found on the stack. Whenever the solver needs to check the satisfiability
of its store (because new constraints are added), it uses the internal constraint
represenation it has built.

Note the difference between the variables x and y. The value of y (an in-
teger) is used for calculating the constant term of the constraint, whereas the
variable object stored in x is pushed onto the stack so that the constraint solver
responsible for the constraint can access the variable.

48

1 push-constant 0 // constraint strength
2 push-constant 3 // constraint kind ‘>’
3 push-constant 1 // number of constrainable variables
4 push-variable y // calculate the constant term. . .
5 load-constant 3
6 mul
7 push
8 load-constant -11
9 add

10 push
11 push-variable x // load the constrainable variable object
12 push-constant 10 // load the coefficient
13 add-constraint // add the constraint to the store

Fig. 3. Generated code for the constraint example

User-defined constraints, which may appear as elements of the constraint
conjunction, are compiled into calls to the subroutines which are created when
each user-defined constraint is compiled. Since the code for adding constraints
to the store is contained in the user-defined-constraint, the call simply replaces
the code emitted for primitive constraints.

Before translating the constraints into code, the compiler checks whether the
constraint is representable in the symbolic representation. This check is purely
syntactic. Non-linear constraints or constraints with relations not supported by
the constraint solvers are rejected by the compiler.

In the current implementation the constraint solvers which are responsible for
individual constraints are determined at compile time, using type information:
constraints on integers are handled by the finite-domain solver and constraints on
reals are passed to the Indigo solver (see Sect. 3.2). A modification to choose the
solver at run-time, based on the constraint kind passed with the add-constraint

instruction, is planned as future work.
The separation of normal and constrainable variables in Turtle has two

advantages for the implementation. First, it is very easy for the compiler to an-
alyze constraints and to generate code for creating constraint representations.
Second, because constrainable variables can only be determined by constraints,
and constraints are monotonically added to the constraint store in nested con-
straint statements, semantic problems of assignments invalidating the constraint
store are avoided. This makes reasoning about constraint imperative programs
much easier.

Algebraic data types. Turtle supports the definition of user-defined alge-
braic data types. These data types are declared in datatype declarations, like
the declaration of the type tree in the following example:

datatype tree = leaf(value: int) or

node(left: tree, right: tree, key: int);

49

// Constructors
fun leaf (value: int): tree
fun node (left: tree, right: tree, key: int): tree
// Discriminators
fun leaf? (t: tree): bool
fun node? (t: tree): bool
// Selectors
fun value (t: tree): int
fun left (t: tree): tree
fun right (t: tree): tree
fun key (t: tree): int
// Mutators
fun value! (t: tree, value: int): ()
fun left! (t: tree, left: tree): ()
fun right! (t: tree, right: tree): ()
fun key! (t: tree, key: int): ()

Fig. 4. Induced signature for the tree data type

Using this data type declaration, the Turtle compiler automatically generates
a set of functions for creating instances of the type, for accessing the fields and
for examining the variant of a given value of the type. Figure 4 shows the names
and types of these generated functions. The constructor functions receive the
values which will be stored into the fields of the value as parameters and create
either a leaf or a node value. The discriminator functions are used to determine
the variant of a given tree value, and the selectors return the values stored in
the corresponding fields. The mutators modify the fields of a structured value
by storing new values into the appropriate storage locations and return the unit
type (). Mutator functions have been added to allow imperative programming
with data structures constructed from user-defined data types.

Tail-recursion elimination. Supporting functional programming requires a
proper implementation of functional programming concepts. One of these con-
cepts is to use recursive function calls instead of loops for expressing iteration.
Turtle supports proper tail-recursion, that means that an iterative algorithm
expressed as a tail-recursive sequence of function calls uses constant space, even
when more than one function is involved in the recursive call chain. This is imple-
mented by compiling each Turtle module into one (possibly large) C function.
Calls between functions in one module can then be implemented by simple C
goto instructions instead of C function calls. This compilation scheme solves
the problem of mutually recursive function calls in one module (so-called intra-

module calls), but not between different modules (inter-module calls), because
Turtle also supports separate compilation.

In order to achieve proper tail-recursive function calls, even across module
boundaries, the Turtle compiler uses a compilation technique similar to the

50

one used in the Gambit Scheme compiler for its C back-end. Feeley et al. [4]
describe how to compile languages with higher-order functions to portable C.
The solution is to add a wrapper function to the run-time system whose purpose
is simply to repeatedly call the C functions into which the Turtle modules have
been compiled. The C functions take a function descriptor as an argument which
tells which of the Turtle functions represented by the C function is to be called.
Whenever an inter-module call is made, the C function passes a descriptor of
the function to be called back to the wrapper function.

Higher-order functions. Functions are represented as closure objects at run-
time. A closure object contains a pointer to the code of the function and the
environment in effect when the closure was created. An environment holds the
values of all free variables of a function. Since the free variables of top-level
functions are the global variables whose addresses are fixed, there is no need to
create closures for these functions. The Turtle implementation uses a technique
also from [4] for reducing the overhead of calling functions: top-level functions
are not represented directly by their machine code addresses, but by statically
allocated descriptors which have the same memory layout as closure objects. This
makes it possible to call all functions in the same way, while avoiding to create
closure objects (which have to be copied on garbage collection, see Sect. 3.2) for
top-level functions.

3.2 Run-time System

Turtle is a high-level language, supporting constraints as well as functional
programming with higher-order functions. A language implementation for such
a language requires a large run-time system to handle all the low-level function-
ality, for example constraint solving and memory management. The Turtle

run-time system is implemented as a shared library, written in C.
A Turtle program at runtime consists of a code section, a data section,

a stack section, a run-time library, constraint solvers, constraint stores and a
heap. The code section contains the machine code of the program and the data
section holds both the global variables of the Turtle program and of the run-
time system. The stack is provided by the operating system and is used by the
run-time system, by the constraint solvers and for interfacing with the operating
system. The Turtle run-time contains the code of the run-time system. The
constraint solvers and the constraint stores manage the active constraints and
determine the values of constrainable variables. The heap stores all dynamically
allocated memory and is organized in two semi-spaces for garbage collection.

Constraint solvers. Two constraint solvers are currently implemented for
Turtle. The first is a finite-domain solver over the integers. This solver is a
simple backtracking implementation without any consistency checks or other
optimizations and mainly serves as a proof-of-concept for the easy integration of
constraint solvers into the system. The second is a solver over cycle-free linear

51

equalities and inequalities over the reals. It is based on the Indigo algorithm,
an interval based local propagation solver [5]. Both solvers implement the run-
time/constraint solver interface described in Sect. 3.1. They receive the symbolic
representations of constraints on the run-time stack and create data structures
for handling them on the heap. For each constrainable variable and each con-
straint added through this interface, the solvers create data structures for main-
taining the lower/upper bounds of the variables. The finite-domain solver uses
this information for simply reducing the number of instantiations it must per-
form, whereas the Indigo solver uses propagation for reducing the domains of
the variables.

Garbage collection. The dynamic memory of the Turtle system is main-
tained automatically by the garbage collector included in the run-time system.
The collector employs a simple stop© algorithm, as described by Cheney [6].
When the garbage collector is invoked, all memory cells reachable from the ma-
chine registers and the run-time stack are copied into the second half of the
heap and then all cells which were not copied are reclaimed. Since these cells
are not reachable anymore, they cannot affect any future computation and may
therefore be recycled.

The garbage collector is also responsible for determining whether any con-
strainable variables have left their scopes, and to notify the constraint solvers
of that fact. This is necessary, because all constraints placed on such variables
need to be removed from the stores, so that they cannot influence the program
execution any more.

The Trampoline. The compilation scheme described in Sect. 3.1 for functions
and user-defined constraints, where each module is compiled into a single C func-
tion requires some support in the run-time system. The run-time system contains
a short function (called trampoline) which calls the Turtle functions requiring
inter-module calls. The function is simply a loop which repeatedly calls the func-
tion contained in the global program counter. This function is also responsible
for repeatedly checking whether an interrupt (user interrupt or operating system
signal) has occured, and for calling the Turtle interrupt handler.

3.3 Library Modules

A library containing often-used data structures and functions is very important
if a language is intended to be used in practice. Therefore, a standard library for
Turtle has been designed and implemented in the reference implementation.

The library provides a range of useful data types, such as trees and hash ta-
bles, support modules for the built-in data types for list, array, string and number
manipulation and of course functions for imperative in- and output. Addition-
ally, some low-level library modules have been included for interfacing with the
operating system, such as for process management and network programming.
The library makes intensive use of Turtle features such as the module system,

52

parametrized modules and higher-order functions. Thus the library implementa-
tion was very useful in debugging the compiler and testing the language design.
The structuring of the library was inspired by the design of the “Bibliotheca
Opalica”, the standard library of the functional language Opal [7].

4 Related Work and Conclusion

This paper describes the implementation of the constraint imperative program-
ming language Turtle. It combines well-known techniques for implementing
imperative and functional languages with new compilation schemes for the con-
straint extensions supported by Turtle: constrainable variables, constraint state-
ments, user-defined constraints and the interface between the user program and
the constraint solvers. We will now relate our implementation to other work and
draw a conclusion.

The constraint imperative programming language Kaleidoscope [8] combines
object-oriented and constraint programming. The implementation of its compiler
and run-time system [9,10] is based on a translation of all imperative source lan-
guage constructs (assignments etc.) into primitive constraints, which are in turn
handled by constraint solvers. Kaleidoscope is thus based on a constraint solving
virtual machine on which imperative programming is modelled. The approach
we have taken in designing and implementing Turtle is the opposite: we have
started with an imperative language and added constraints on top of it. Apt et
al. [11] have designed an extension of Modula-2 with non-determinism, based
on backtracking. This language, called Alma-0, has been implemented, but the
proposed extensions to a constraint imperative language have not [12], making
it difficult to compare it to our approach. Other work comparable to ours are
constraint libraries for imperative languages, such as ILOG [13] for C++ or
JACK [14] for Java. Their advantage is the easy integration into existing pro-
grams written in imperative languages, but their disadvantage is the semantic
gap between their constraint solving capabilities and the imperative execution
model of their underlying languages.

The implementation presented in this paper has been used to implement
various example programs, ranging from simple constraint imperative programs
solving crypto-arithmetic puzzles to a working web server and a front-end (scan-
ner and parser) for the Turtle language. The performance of the functional
and imperative part of the language is quite satisfactory, for some simple test
programs the Turtle implementation yields programs which are by a factor of
10 slower than comparable programs written in C. This overhead is partly due to
the automatic memory management and to the trampoline technique necessary
for tail-recursive inter-module calls, which are not available in C. The constraint
part of the language was not measured against other systems, because the solvers
are very weak and cannot compete with any reasonable constraint programming
system.

As we have shown, many techniques for implementing imperative and func-
tional languages can be transferred to the implementation of integrated pro-

53

gramming languages and seamlessly combined. The combination of imperative
and functional language constructs in Turtle is already efficiently usable, and
with the integration of more powerful constraint solvers, constraint imperative
programming with higher-order functions will also be usable in practice.

References

1. Freeman-Benson, B.N.: Constraint Imperative Programming. PhD thesis, Univer-
sity of Washington, Dept. of Computer Science and Engineering (1991)

2. Grabmüller, M.: Constraint Imperative Programming. Diploma Thesis, Technische
Universität Berlin (2003)

3. Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. Lisp and
Symbolic Computation 5 (1992) 223–270

4. Feeley, M., Miller, J.S., Rozas, G.J., Wilson, J.A.: Compiling higher-order lan-
guages into fully tail-recursive portable C. Technical Report 1078, Département
d’informatique et de recherche opérationelle, Université de Montréal (1997)

5. Borning, A., Anderson, R., Freeman-Benson, B.: The Indigo algorithm. Techni-
cal Report 96-05-01, Dept. of Computer Science and Engineering, University of
Washington (1996)

6. Cheney, C.J.: A non-recursive list compaction algorithm. Communications of the
ACM 13 (1970) 677–678

7. Pepper, P.: Funktionale Programmierung in OPAL, ML, HASKELL und GOFER.
2nd edn. Springer (2003)

8. Lopez, G., Freeman-Benson, B., Borning, A.: Kaleidoscope: A constraint impera-
tive programming language. In Mayoh, B., Tyugu, E., Penjaam, J., eds.: Constraint
Programming: Proc. 1993 NATO ASI Parnu, Estonia, Springer (1994) 305–321

9. Lopez, G., Freeman-Benson, B.N., Borning, A.: Implementing constraint impera-
tive programming languages: the Kaleidoscope’93 virtual machine. In: Proceedings
of the 1994 ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. (1994) 259–271

10. Lopez, G.: The Design and Implementation of Kaleidoscope, A Constraint Imper-
ative Programming Language. PhD thesis, University of Washington, Department
of Computer Science and Engineering (1997)

11. Apt, K.R., Brunekreef, J., Partington, V., Schaerf, A.: Alma-0: An imperative
language that supports declarative programming. ACM Toplas 20 (1998) 1014–
1066

12. Apt, K.R., Schaerf, A.: The Alma project, or how first order logic can help us
in imperative programming. In: Correct System Design. Number 1710 in LNCS,
Springer (1999) 89–113

13. Puget, J.F.: A C++ Implementation of CLP. In: Proceedings of the Second
Singapore International Conference on Intelligent Systems, Singapore (1994)

14. Abdennadher, S., Krämer, E., Saft, M., Schmauss, M.: JACK: A Java constraint
kit. In: WFLP 2001, University of Kiel; Technical Report No. 2017 (2001)

54

Constraint Imperative Programming with C++

Olaf Krzikalla
Reico GmbH

krzikalla@gmx.de

Abstract. Constraint-based programming is of declarative nature. Prob-
lem solutions are obtained by specifying their desired properties, whereas
in imperative programs the steps that lead to a solution must be de-
fined explicitly. This paper introduces the Turtle Library, which com-
bines constraint-based and imperative paradigms. The Turtle Library is
based on the language Turtle[1] and enables constraint imperative pro-
gramming with C++.

1 Constraint Imperative Programming at a Glance

In an imperative programming language the programmer describes how a solu-
tion for a given problem has to be computed. In contrast to that, in a declarative
language the programmer specifies what has to be evaluated. Constraint-based
programming is a rather new member of the declarative paradigm that was first
developed from logic programming languages. In constraint-based programming
the programmer describes the solution only by specifying the variables, their
properties and the constraints over the set of variables. Actually, no algorithms
have to be written. The compiler and run-time environment are responsible for
providing appropriate algorithms and eventually obtaining a solution.

Meanwhile, constraint-based programming has been extended by concepts of
other - mostly declarative - programming languages. However, the combination
of imperative and constraint-based languages is far less explored. Borning and
Freeman-Benson[2] introduced the term ’constraint-imperative programming’
and developed the language Kaleidoscope[3], combining constraint and object-
oriented programming. But object-orientation is no precondition for constraint-
imperative programming. This paper deals with more fundamental problems of
the integration of constraints and constraint solvers in imperative language con-
cepts. This integration promises some advantages. Imperative programming is a
well known paradigm, which is intuitively understood by most programmers. A
lot of efficient and industrial-strength imperative languages exist. However, an
imperative program for a difficult algorithm is sometimes very cumbersome. Es-
pecially for this sort of problems declarative languages have proven their power.
Constraint programming enables the programmer to specify required relations
between objects directly rather than to ensure these relations by algorithms only.
So constraint programs not only often become more compact and readable, but
also less erroneous than their imperative counterparts.

Constraint imperative programming tries to combine the advantages of con-
straint-based and traditional imperative programming. A recent development in

55

this field is the language Turtle, a constraint imperative programming language
developed at the Technische Universität Berlin. Based on the ideas presented
in [1] I developed the Turtle Library, a constraint imperative programming ap-
proach in C++.

2 The Basic Concept of Turtle

The fundamental difference between imperative and declarative languages is the
model of time. In pure declarative languages a timing model simply does not
exist - computations are specified independent of time. On the other hand, an
imperative language always describes transformations of a given state at one
point in time to another state at the next point in time. Computations are
specified by sequences of statements.

Whenever declarative and imperative languages are combined, one of the
main issues is the interaction of the integrated declarative concepts with the
imperative timing model. In Turtle this is solved by introducing a lifetime for
constraints and the statement require, which defines a constraint:

require constraint;

When a require is reached during the execution of the program, the given
constraint is added to a global constraint store and taken into account during
further computations - its lifetime starts. A constraint doesn’t exist (and the sys-
tem doesn’t know anything about it) until the corresponding require-statement
is executed. Eventually a sequence of require-statements form a conjunction of
the appropriate constraints in the constraint store. Constraints in the constraint
store are considered active.

Of course, if a constraint starts to exist at a certain time, it also can be
removed at a certain time:

require constraint in
statement;
...

end;

The given constraint exists only between the in and end. When the program
reaches the end statement (or otherwise leaves the block), the constraint is
removed from the constraint store - its lifetime ends. After this the constraint
isn’t active any longer.

In order to deal with over- and underconstrained problems constraints need
to be labelled with strengths to form a constraint hierarchy. Although a con-
straint imperative system without constraint hierarchies could be designed, its
usefulness would be drastically reduced, because it would be difficult to constrain
variables while the program dynamically adds or removes constraints. In Turtle
each constraint can have a strength annotation in its definition:

56

require constraint1 : strong;
require constraint2 : mandatory;

When a constraint is annotated with a strength, it is added to the store
with the given strength, otherwise with the strongest strength mandatory. This
strength was specified in the previous example for clarity only.

Constraints are defined on constrainable variables. Most of the time a con-
strainable variable acts like a normal variable: it can be used in expressions
and as a function argument. Only in a constraint statement they differ from
their normal counterparts. A normal variable is treated like a constant, but a
constrainable variable acts like a variable in the mathematical sense, and the
constraint solver may change its value in order to satisfy all constraints existing
at this point in time.

var x : int; // a normal variable
var y : ! int; // the exclamation defines a constrained variable
x := 0;
require y <= x in

... // during the execution of this block Turtle ensures y <= 0
end;

Constraints in Turtle are boolean expressions. During the execution of a
require statement the constraint solver computes a certain value for each con-
strained variable, such that all active constraints evaluate to true. Constraints
are handled strictly eager, i.e. changing a non-constrained variable after it was
used in a constraint doesn’t affect the constraint store. Whenever the program
reads a constrained variable, the value last computed by the solver for this vari-
able is supplied. An exception is raised, if it isn’t possible to satisfy all mandatory
constraints during the execution of a require statement.

In Turtle constraints can be used for computing solutions to a certain problem
like other constraint programming approaches. But they are not limited to this
usage. require statements introduce conditions a priori, which are maintained
automatically by the constraint solver. Hence backtracking like in approaches
with a posteriori tests (e.g. Alma-0[6]) is not neccessary. Due to the a priori
nature of constraints in Turtle they can be used to describe and preserve program
invariants or - more generally - to express in declarative manner the meaning of
an otherwise imperative program without disrupting the familiar execution flow.

3 A Turtle in C++

The concepts of Turtle were first implemented in a language developed from
scratch. This approach was chosen because some other features like higher-order
functions should also be integrated. And a new language seemed to be the best
choice for the seamless combination of imperative, functional and constraint
programming. However, a new language is always in a difficult position. The

57

knowledge base is small, tools don’t exist, and further development is sometimes
driven by academic interests only.

All concepts of Turtle related to constraint programming are also imple-
mentable in C++. That is why I think a Turtle Library written in pure C++
serves both the widespreading and further development of Turtle better. In ad-
dition it allows an application programmer to use the benefits of constraint pro-
gramming in his professional work. In the recent years a lot of developments—
especially on the field of generic programming in C++ - made it possible to
move almost all concepts from the Turtle language to the C++ Turtle Library
without any losses. Furthermore, the generic approach of the Turtle Library en-
ables every user to add, change or optimize constraint solvers at will. This is
especially important for user-defined domains and offers a wide application field
for the Turtle Library. The Turtle Library might be used to solve operational
research problems or to program a graphical user interface. Both problems are
typical constraint problems. In the first problem constraint programming is used
only to obtain a solution, which often can be done in a constraint logic language
too or by using a rather imperative approach[5]. But for the second problem
constraint imperative programming really shines. The ’canonical’ example is a
graphical element, which can be dragged by the mouse inside certain borders[4].
The imperative approach looks like this:

void drag ()

{

while (mouse.pressed) { //message processing is left out

int y = mouse.y;

if (y > border.max)

y = border.max;

if (y < border.min)

y = border.min;

draw_element (fix_x, y, graphic);

}

}

Using the Turtle Library the example would look as follows:

void drag ()

{

while (mouse.pressed) {

constrained<int> y = mouse.y;

require (y >= border.min && y <= border.max);

draw_element (fix_x, y(), graphic);

}

}

The above is not only shorter, but expresses the relation between the border-
object and the y-coordinate in exactly the way a programmer would think about
it.

58

3.1 Constrained Variables

A constrained variable is of the generic type constrained. A constrained variable
has identity semantics, the copy constructor and standard assignment operator
aren’t implemented. If they are needed, an appropriate wrapper (e.g., a reference
counted pointer) has to be defined. The public interface given here is described
in detail in the following sections.

template<class T>

class constrained

{

public:

constrained (const T& prefer = T());

T operator ()() const throw (overconstrained_error, ...);

void unfix() const;

};

The template parameter specifies the value type of the variable. It might be
a fundamental type like int or double or an user-defined class. Domains are
formed by non-intersecting sets of value types and for each domain an appropri-
ate constraint solver has to be provided. Thus each value type is unambiguously
bound to a constraint solver. However Turtle can be used for hybrid domains, be-
cause the interface enables the implementation of a constraint solver responsible
for more than one value type.

3.2 Declaring Constraints

Constraints can be declared as straightforward as presented in the Section 2:

constrained<double> a, b;

double c = 2.0;

require (a >= 0.0);

require (a <= b && a + b <= c);

The composition of the boolean expression inside a require is done using
operator overloading and expression template techniques. Which operators are
supported for a certain value type is defined by the domain and the available
constraint solver. E.g. it is rather pointless to support >, < or != for floating
point values1. In domains other than the algebraic ones it’s often better to avoid
otherwise meaningless operator overloading. For this purpose named predicates
can be defined and used instead:

edge e = /*...*/; //compute an edge

constrained<vertex> p;

require (point_on_edge (e, p));

1 Due to the same reasons even the support of == could be argued.

59

The operator && forms a conjunction of two expressions just like two subse-
quent requires, hence

constrained<double> a;

require (a >= 0 && a <= 2);

is equivalent to

constrained<double> a;

require (a >= 0);

require (a <= 2);

The operator || defines a disjunction. A disjunction can be seen as a branch
in a tree of solutions. Subsequent requires add their constraints to all leafs of
the tree.

constrained<double> a, b;

require (a == 0 || a == 1);

require (b == a + 1);

// the store now contains :

// (b == a + 1 && a == 0) || (b == a + 1 && a == 1)

The Turtle Library provides a simple generic algorithm for handling disjunc-
tions. A certain constraint solver may implement a more sophisticated approach
to compute and maintain solution trees efficiently.

Constraint strengths can be given as a second argument to require like in the
Turtle language:

require (a == b, weak);

Of course these values are only of interest if the underlying constraint solver
supports hierarchical constraints.

The Turtle Library internally stores the constraints in several constraint sub-
stores. A constraint sub-store is defined as the set of all constraints over a set
of constrained variables, where each variable of the set is linked to each other
variable of the set. Two variables x and y are linked, if they either both appear
in one constraint or if x appears in a constraint containing a variable linked to
y.

constrained<double> a, b;

require (a >= 0.0); // generate constraint sub-store 1

require (b >= 0.0); // generate constraint sub-store 2

require (a <= b); // sub-store 1 and 2 are merged together

The function template require returns a handle to manage the lifetime of
the constraint. If the return value is ignored, the imposed constraint exists as
long as all constrained variables in this constraint:

60

constrained<int> a;

{

constrained<int> b;

require (a == b);

//...

//leaving the scope of b, hence a == b

//is removed from the constraint store:

}

Otherwise, the lifetime of the constraint is also bound to the lifetime of
the returned constraint handle. Constraint handles are useful especially when
imperative execution flow elements (e.g. loops) and constraints are used together:

constrained<int> a;

//setup some inital constraints over a

while (not_done()) {

int b = compute_something();

constraint_handle<int> z = require (a >= b);

//...

//leaving the scope of z, hence a >= b

//is removed from the constraint store:

}

Still, a constraint exists no longer than all constrained variables in it. When
the handle ceases to exist after the appropriate constraint did, it is ignored.

3.3 Obtaining Values from Constrained Variables

The function call operator operator()() const is overloaded to obtain a value
from a constrained variable in a convenient way:

std::cout << a(); //prints a value matching all constraints to a

Whenever this operator is invoked, the constraint solver is started to de-
termine the value of the appropriate variable. How the value is determined de-
pends mainly on the solver. When the store is overconstrained and no value can
be determined, an exception of type overconstrained_error (derived from
std::logic_error) is raised.

But more often underconstrained situations occur. For this purpose the Tur-
tle Library supports a preferred value. A value of type T can be assigned to
a constrained<T> or used to construct such a variable. This value then be-
comes the preferred value of the constrained variable. Now, if it turns out that
more than one solution exists for a certain variable, the solution closest to the
preferred value is taken:

constrained<double> a (3);

require (a <= 2.5);

std::cout << a(); // prints 2.5

61

To a certain degree the preferred value acts like a weak constraint. This is
especially useful, if the constraint solver itself doesn’t support constraint hierar-
chies. Thus a hierarchical constraint solver isn’t as necessary as in the original
Turtle language.

The evaluation of the preferred value is done by the solver implementation.
It can be used to define a threshhold or destination value enabling the solver to
terminate the search through the solution tree as soon as possible.

Some domains consist of incompareable values making it impossible to define
a closest solution. In this case no general behaviour can be defined. Instead the
solver implementation has to define the use of the preferred value.

3.4 Implicit Fixing

Once a value is determined for a constrained variable, this value has to be taken
into account for further calculations. The constrained variable itself gets implic-
itly fixed to the determined value:

constrained<int> a (2), b (0);

require (a == b);

std::cout << a(); // prints 2

std::cout << b(); // also prints 2

Without implicit fixing the value of b would be evaluated to 0 and hence
violate the required constraint a == b. Implicit fixing is done by generating a
new constraint of the form variable == value. Due to this important side effect
the evaluation order of constrained variables must be carefully considered. If the
output lines of the above example were exchanged, both lines would print 0. And
the following leads to unspecified behavior:

std::cout << a() << b(); // which variable is evaluated first?

The implicit fix is not immediatly added to the constraint sub-store but kept
in a delay store inside the sub-store. If only one implicit fix exists in a constraint
sub-store, and the same variable shall be evaluated again, the fix is erased before
the evaluation (later in the process a new fix will be added). If more implicit
fixes exist, always all are taken into account.

constrained<int> a (2), b (0);

require (a == b);

for (int i = 0; i < 3; ++i) {

int j;

std::cin >> j;

a = j;

// prints j, because the only implicit fixed variable is a:

std::cout << a();

}

62

constrained<int> a (2), b (0);

require (a == b);

std::cout << b(); // prints 0, fixes b

for (int i = 0; i < 3; ++i) {

int j;

std::cin >> j;

a = j;

// always prints 0, because b is fixed, but a is evaluated:

std::cout << a();

}

As shown in the last example, sometimes implicit fixes are harmful, especially
if more than one variable is evaluated inside a loop. Thats why a constrained
variable can be unfixed explicitly via the member function unfix():

constrained<int> a (2), b (0);

require (a == b);

for (int i = 0; i < 3; ++i) {

int j;

std::cin >> j;

a = j;

std::cout << a(); // prints j and get fixed

std::cout << b(); // prints also j and get fixed

//now more than one fix exist, so all fixes would be considered

//during further evaluations unless we explicitly

//unfix the variables:

a.unfix();

b.unfix();

}

The computation of a value for a constrained variable differs a lot from the
original Turtle language. While in the Turtle language the values of constrained
variables are already determined during a require statement, the Turtle Library
delays the computation until a read-action to a constrained variable occurs. The
disadvantage of this approach seems the need of implicit fixing, which isn’t part
of the Turtle language. But actually the problem exists also there:

var x, y : ! int;
require x == 0 : weak;
require y == 2 : medium;
writeln (x); // prints 0
require x == y;
writeln (y); // should print 0

On the other hand the delay of the computation offers some advantages. First,
only when the computation is delayed until a read-action, the preferred value
can be evaluated correctly. Otherwise a change of the preferred value after some

63

requires could be ignored. Second, a solver knows which constrained variable
actually is being read, can consider this fact during the computation and hence
doesn’t have to evaluate all variables in every case. And third, lazy evaluation
becomes possible. Although also the Turtle Library handle constraints eager
mostly, it is not limited to this.

4 Programming with the Turtle Library

The Turtle Library can be downloaded from
http://home.t-online.de/home/krize6/turtle.htm.
At this page also some technical issues are discussed in more detail. Especially
the steps needed to integrate a new constraint solver in the Turtle Library are
described. Some more sophisticated examples of constraint imperative program-
ming are already provided. They demonstrate the use of some techniques and
little patterns to make constraint imperative programming more convenient and
flexible.

4.1 User-defined Constraints and Dynamic Expressions

Often the declarative power of expression templates is sufficient to express the
constraints in a compact and readable manner. But some constraints are so
common that they deserve an own name. Such user-defined constraints can be
generated using the function template build_constraint, which takes an con-
straint just like require, but only builds the internal representation of the given
expression without adding it to the constraint store.

typedef constrained<int> int_c;

constraint_solver<int>::expr domain (const int_c& x, int min, int max)

{

return build_constraint (x >= min && x <= max);

}

int_c a, b, c;

require (domain (a, 0, 9));

require (domain (b, 0, 99));

require (domain (c, -1, 1));

The naming of complex static expressions further enhances the readability
of a program. But besides this constraint imperative programming also needs
a way to create constraints dynamically. For this the Turtle Library provides
a generic class dynamic_expr, which holds an (sub)expression and can be used
like that, but has value semantics. A rather complex example is the function
example_dynamic_puzzle, which is part of the sample file provided on the in-
ternet page of the Turtle Library.

64

4.2 Optimization

Constraint programming supplies a lot of tools to optimize a given function for
a given set of constraints. Optimization is one the main usages of constraint
programming. Hence, optimization should be possible with the Turtle Library,
too. By using a preferred value for a given expression, optimization can be done
without the needs of special library functions. Consider the following example:

typedef constrained<double> double_c;

double_c x, y;

require (y >= 0);

require (y >= 3 - 2 * x);

Given these constraints the sum of x and y shall be minimized. These can be
done by a little pattern of the following three lines:

double_c min (- 1000.0);

require (min == x + y);

std::cout << min(); // prints 1.5

First a constrained variable has to be declared and the preferred value have
to be set to an absolute minimal or maximal border. 2 Second, this variable has
to be set equal to the expression to be optimized. And third, by reading the
variable the value closest to the given preferred value gets calculated and stored
in the variable. Furthermore the implicit fixing also immediately limits other
constrained variables to values at the searched optimum.

5 Conclusion and Future Works

The Turtle Library defines an interface for the integration of constraint program-
ming concepts in an imperative language and provides an implementation of this
interface for a popular language. Hopes are, that this opens a wider application
field for constraint imperative programming. Only the practical use will show
further needs. E.g. if an implicit fix of a constrained variable has to be considered
is defined by a rather complex rule. It’s unclear if this rule is of any practical
value. Also, for the moment there is no way to unfix a bunch of variables at once
(e.g. all variables of a sub-store).

The modelling of algebraic problems using the Turtle Library is already very
convenient. But the generic approach offers a lot more. A lot of publications
in the recent decade has shown, that constraint programming is well-suited for
several problem domains. But unfortunately a lot of these publications either
introduced a whole new language or at least extended an existing language by

2 This example is rather abstract and hence knows no ’absolute’ minimum. In prac-
tical applications it should be always possible to find a reasonable value (see also
example knapsack).

65

adding new language constructs (and thus became incompatible to the parent
language). But an application programmer can’t just move from one language
to the next at will. Due to business, management and also educational issues
he has to stick to one - often for years. With the Turtle Library now even the
application programmer gets a tool to use constraints in C++ in the convenient
declarative manner as it is already used for years in other languages.

References

1. Grabmüller, M. and Hofstedt, P.: Turtle: A Constraint Imperative Programming
Language. In Proceedings of the Twenty-third SGAI International Conference on In-

novative Techniques and Applications of Artificial Intelligence. Research and Devel-
opment in Intelligent Systems XX, 2003. To appear.

2. Freeman-Benson, B.N.: Constraint Imperative Programming. PhD Thesis, Univer-
sity of Washington, 1991. Published as Department of Computer Science and Enge-
nieering Technical Report 91-07-02

3. Borning, A. and Freeman-Benson, B.N.: The design and implementation of Kaleido-
scope’90, a constraint imperative programming language. In Proceedings of the IEEE

Computer Society 1992 International Conference on Computer Languages, pages 174-
180, 1992

4. Lopez, G.: The design and implementation of Kaleidoscope, a constraint imperative
programming language. PhD Thesis, University of Washington, 1997.

5. ILOG. ILog Web Site.
http://www.ilog.com, last visited 2003-06-23

6. Apt, K.R., Brunekreef, J., Partington, V. and Schaerf, A.: Alma-0: An impera-
tive language that supports declarative programming. ACM Toplas, 20(5):1014-1066,
1998.

66

firstcs —

A Pure Java Constraint Programming Engine

Matthias Hoche, Henry Müller, Hans Schlenker, Armin Wolf

Fraunhofer FIRST
Kekuléstraße 7, D-12489 Berlin, Germany

{Matthias.Hoche|Henry.Mueller|Hans.Schlenker|Armin.Wolf}@first.fraunhofer.de

Abstract. This work presents the object-oriented Java constraint pro-
gramming engine firstcs for finite domain constraint solving. Beyond
the architecture of the system and the supported constraints, this presen-
tation focuses on the available constraint processing and search strate-
gies. The presentation is completed by some applications realised with
this engine.

1 Introduction

Java is an object-oriented, state-of-the-art programming language that is well-
suited for the rapid development of remarkable large and complex interactive
and/or distributed computational applications [3, 8]. Thus, Java is more and
more used in commercial applications. One of the demanding areas in these
commercial applications is optimisation, as planning and scheduling in supply
chain management or enterprice resource planning (ERP).

There are some constraint solving approaches for (distributed) Java-based
applications: JSolver [6] is a Finite Domain solver, written purely in Java. It
was one of the first such attempts in Java. JSolver is now owned by ILOG,
whose Solver (written in C++) is the most famous and most successful cur-
rent constraint solver. ILOG’s Irvin Lustig stated in 2001, that Java-constraint

programming tools are still in a state of development. The next year should see

the introduction of pure Java constraint programming engines [5, 14]. JSolver is
ILOG’s basis for that. The Java Constraint Library JCL [20] implements binary
constraints with explicit constraint representation (enumeration of admissible
value combinations) and some well-known propagation and search algorithms.
There are two approaches dealing with Constraint Handling Rules (CHR) and
Java: [19] and [22]. POOC [18] is a Platform for Object-Oriented Constraint pro-
gramming and provides a generic Java-Interface to some C(L)P systems. Finally,
Koalog [12] is – like JSolver and firstcs – a pure-Java FD-solver and probably
the one that currently has the largest set of functionality.

This work presents a pure and extendible Java constraint programming en-
gine for finite domain constraint solving widely used for planning, scheduling,
and configuration problems. The engine supports the integration of new con-
straints as well as new search strategies.

67

2 The Constraint Programming Engine’s Architecture

The kernel of our Java constraint programming engine called firstcs is formed
by a Java class called CS which is an acronym for the term Constraint System.
Each object of this class is indeed a constraint system managing finite domain
variables and constraints over these variables. Due to the object-oriented design,
it is possible to generate and manipulate several constraint systems in a single
application. In the current version these systems are independent: they neither
share variables nor constraints. This restriction will be overcome in future ver-
sions of the engine.

There are the Java classes Domain, Variable, Constraint and the subclasses
of Constraint around the kernel providing the tool box to model and solve
constraint problems.

The class Domain implements the finite domains (fd) of the variables, i.e. finite
integer sets represented by lists of integer intervals. There are several methods
to manipulate these sets, e.g. the usual set operations. All these methods return
a boolean value which is false if and only if the manipulated set becomes the
empty set. This information is used to detect inconsistencies during constraint
propagation.

The class Variable implements the fd-variables representing the unkowns
of a constraint problem. Their admissible values are restricted by their finite
domains and their constraints. Thus, they are implemented as attributed vari-

ables [10]: Together with the domains, the constraints are attached to their vari-
ables. This construct is commonly used in constraint logic programming systems,
e.g. like SICStus Prolog1.

The abstract class Constraint samples all the concrete constraint classes.
Beyond other application-specialised constraints, these are:

– Abs constrains a variable to be the absolute of another, i.e. x = |y|.
– Before constrains an activity to be finished before another one starts, i.e.

a.start + a.duration ≤ b.start.
– Equal, Greater, GreaterEqual, Less, LessEqual, and NotEqual relate two

variables with respect to the corresponding arithmetical relation, i.e. s < t.
– Kronecker states that a variable has a given integer value if another boolean

value is true (1) or false (0), i.e. δv,i = 1 if v = i and 0 otherwise.
– Resource and MultiResource state that some activities are processed either

on an exclusively available resource or on alternatively available resources.
– SetUpTime and SetUpCost state sequence-dependent setup times or cost for

activities that are processed successively on some resources.
– Product, Sum and WeightedSum establish arithmetic relations between vari-

ables, especially cost functions for optimisation problems.

In these concrete constraint classes there are constraint-specific implementa-
tions of the method activate() defined abstractly. This method performs lo-
cal constraint propagation, i.e. the domains of the constraints’ variables are

1 See http://www.sics.se/sicstus.html.

68

pruned and either other constraints are (re)activated via common variables or an
InconsistencyException is thrown if an inconsistency is detected. Expections
are thrown instead of returning a value, e.g. false, to force an explicit handling of
inconsistencies. Thus, it is impossible to ignore inconsistencies avoiding senseless
deductions, i.e. when ex falso quod libet holds.

The Resource constraint is implemented as a dynamic global constraint as
proposed in [4] and uses state-of-the-art pruning algorithms [23]. Thus, af-
ter the creation of a new resource constraint, i.e. Resource resource = new

Resource(), it is possible to add a new task with variable start time and
duration incrementally, i.e. resource.addTask(start, duration). The ad-
dition of any constaint, i.e. of an object of any subclass of the abstract class
Constraint, is realised by the method void add(Constraint c). It is possible
to undo both kinds of additions via a backtracking mechanism, further explained
in Section 4.

3 Customizing Constraint Processing

In contrast to other constraint programming systems, especially to constraint
logic programming systems, with the addition of a constraint its activation, i.e.
the propagation of its consequences, is not automatically performed: Any possi-
ble pruning of the variables’ domains with respect to this constraint is delayed by
default. It must be performed either via constraint propagation or explicitly by
a method call. Thus, it is possible to build-up a constraint system representing
a problem to be solved completely before propagating the constraints’ conse-
quences. This may improve the overall performance of the constraint processing
as the following example shows:

Example 1. Considering the constraint problem vari−1 < vari for i = 1, . . . , n−1
any incremental constraint propagation is O(n2): Any extension of var0 < · · · <
vari to var0 < · · · < vari < vari+1 will adopt the domains of all considered
variables. However, a delayed propagation triggered after adding the constraints
might be O(n). The corresponding Java program realises both: incremental prop-
agations immediately after adding constraint by constraint and a delayed prop-
agation after adding all constraints – the flag INCREMENTAL triggers both cases.

CS cs = new CS();
Variable[] var = new Variable[n];
for (int i=0; i<n; i++) {

var[i] = new Variable(i, n);
if (i>0) {

cs.add(new Less(var[i-1], var[i]));
if (INCREMENTAL) cs.activate();

}
}
if (!INCREMENTAL) cs.activate();

Here, cs.activate() activates all constraints that were added to the constraint
system cs but are not yet activated. Thus, in the incremental case only the most
recently added constraint is activated while in the non-incremental case all added
constraints are activated. Runtime experiments have shown that the delayed

69

non-incemental propagation is in fact linear if the constraints are activated in a
last-in-first-out ordering. ut

For further performance improvements we implemented several strategies to
schedule the constraints’ activations while calculating the global fix-point of the
entire constraint propagation process (cf. [2]). Therefore, the delayed propagation
can be used to control the processing of the constraints. Information of changes in
variable domains or special constraint-properties are used to check the necessity
of an activation or to influence the order of activations.

The goal of controlling constraint-processing is to find a heuristic that allows
a complete propagation with a minimum of time-consuming constraint activa-
tions. Our approach is based on two different abstraction levels. On the one level
we distinguish between general and specific triggers for the re-activation of con-
straints. On the other level we have realised different sequenzing strategies for
these activations.

The general trigger for constraint re-activation is called non-directed prop-

agation: Whenever the domain of a variable changes, the constraints on this
variable are scheduled for re-activation.

More specific information for re-activation is used by directed-propagation:
The kind how the variables’ domains are changed is used to decide which con-
straint really has to be activated. Therefore for each variable in a constraint
there are additional properties: val, min, max, mixed, and dom. These are used
to decide whether the constraint has to be activated if the variable has a deter-
mined value or the domain’s minimum, the maximum, some of them, or anything
in the domain has changed (cf. [7]).

In general, we either re-activate the constraints in last-in-first-out (LIFO)
or in first-in-first-out (FIFO) manner. LIFO means that the constraints on the
variable with the most recently changed domain will be re-activated before any
other constraints. If the variable’s domain changes again the activation is re-
peated until its domain stays unchanged. Then the propagation continues with
the next re-activated constraints. FIFO instead propagates the constraints on the
variable having a changed domain once. If the variable’s domain changes again
by its constraints, it is queued for another activation. However, the re-activation
is done after the re-activation of previously queued constraints.

We also tried to avoid useless propagation by using the complexity of the
constraints to further influence the order of re-activations.

The weighted approach is a heuristic to reduce the activation of constraints
of high complexity, i.e. like the Resource constraints. Our anticipation is that if
constraints having constant complexity are processed before constraints having
linear or even quadratic or cubic complexity, all the possible domain reductions
are performed with fewer activations of more complex constraints. Therefore,
we implemented a new constraint processing that is based on several sets of
constraints corresponding to the different complexity classes, instead of only
one. This strategy does a good job, as we see in Table 1.

In total, we implemented 3 different scheduling strategies and for each of it
a LIFO and FIFO variant.

70

constraint-activations % runtime %
ordering propagation total av total av

before resource all before resource all
NON-DIRECTED 100 100 100 100 100 100 100 100

LIFO DIRECTED 95 98 96 87 98 89 99 102
WEIGHTED 162 46 134 137 51 118 49 58
NON-DIRECTED 105 48 91 98 48 87 58 59

FIFO DIRECTED 93 52 83 86 51 79 63 64
WEIGHTED 118 24 96 102 29 86 33 40

Table 1. Comparison of different activation strategies.

Table 1 shows benchmark results of implementations of the 3 different strate-
gies and its LIFO and FIFO variants. Therefore the constraint activations and
runtime data of every strategy were logged for more than 20 job-shop schedul-
ing problems. The problems were taken from [1, 9, 13]. These job-shop schedul-
ing problems are modelled by the use of Before constraints having constant
complexity and some Resource constraints having quadratic complexity. This
mixture of complexities allows a good testing of the weighted strategy.

The benefits of the delayed propagation are obvious but in contrast to Ex-
ample 1 the results show a great advantage of the FIFO implementations. All
FIFO strategies are better than the respective LIFO strategies. The propaga-
tion of some domain changes over the complete constraint network at first has a
great impact on the calculation of the global fix-point. In combination with the
weighted approach we achieve best results. Especially larger problems perform
well with the weighted propagation. As you can see, we reached 33% as a total
value and 40% in average, where the relations total and average are calculated
as follows.

total: sum up all benchmark results of a considered strategy, then relate it to
the sum of the base implementation,

average: relate each benchmark result of the considered strategy to the corre-
sponding result of the base implementation, then average all these ratios.

This means that in average calculations each benchmark-problem has the same
impact. In total calculations the impact depends on the problem complexity, i.e.
the runtime or number of activations. That is the reason for the 40% in average,
because larger problems benefit more of weighted propagation. Problems with
less complexity have a smaller improvement because of the generated overhead.
Anyway, this strategy reaches best runtime results for all benchmark problems
and is permanently almost three times faster than the non-directed strategy that
serves as the reference base.

4 Realizing Search

After the addition of all constraints defining a problem to be solved and their
propagation a search process is used in general to find a solution of the consid-
ered problem. The constraint engine firstcs supports search based on different

71

pre-defined strategies but also the necessary basics for any user-defined search
based on backtracking. These basics are choicepoints, i.e. objects of the class
ChoicePoint. For a given constraint system, we are able to generate several
choicepoints to store the system’s state at a specific program state. Therefore, a
choicepoint is set with the method set(), signalling the engine that the current
state of the constraint system has to be stored for any future backtracking. The
call of the method backtrack() for a previously set choicepoint will restore the
stored state at the program state where the choicepoint was set. For any re-use
of a choicepoint at another program state it might be reset with the method
reset().

The usage of choicepoints is illustrated for simple depth-first search: Here,
variables in a given array are labelled iteratively choosing a value from the
minimum up to the maximum of their domains. For each variable a choicepoint is
set before labelling it. If the labelling results in an inconsistency, a corresponding
exception is thrown and catched and furthermore search backtracks to the set
choicepoint undoing the labelling and all of its consequences. This allows the
selection of the next value, if there is any. If there is no inconsistency, labelling
is applied recursively to the not yet labelled variables (see Figure 1).

static boolean label(CS cs, int i, Variable[] var) {
if (i == var.length) // base case:

return true;
ChoicePoint cp = new ChoicePoint(cs);
cp.set();
for (int val = var[i].min(); val <= var[i].max(); val++)

try {
var[i].equal(val);
cs.activate();
if (label(cs, i+1, var)) {

cp.reset();
return true;

} // else:
cp.backtrack();

} catch (InconsistencyException e) {
cp.backtrack();

}
cp.reset();
return false;

}

Fig. 1. The labelling algorithm

For users that are not familiar with the implementation of search strate-
gies the engine offers some pre-defined search strategies, i.e. subclasses of the
class Label. All these classes offer a method nextSolution() that allows
an iteration over all solutions of a given constraint problem. Some of these
classes offer the methods nextMinimalSolution(Variable objective) and
nextMaximalSolution(Variable objective) additionally, allowing an itera-
tion over all minimal and maximal solutions with respect to a given objective

72

function. Therefore, the variable objective has to be constrained to the func-
tion’s result. Beyond others the engine offers the following subclasses of Label:

– StdLabel implements the previously presented depth-first search. Incremen-
tal search as proposed in [21] is used to find optimal solutions.

– ResourceLabel implements a specialised search for job-shop scheduling
problems. Before any labelling of the tasks’ start times search looks for a
linear ordering of the tasks on the considered resource.

– OrderLabel implements the Reduce-To-The-Max search algorithm presented
in [17, 24] for contiguous task scheduling and optimisation problems. A di-
chotomizing algorithm is used to determine the optimal of the objective
function.

The usage of any of these classes is quite simple. Let a constraint system cs

with constraints be given that restrict the values of the variables in an array
var. Then the following piece of code will find and print all solutions of the
constraint problem. Finally, it will reset the constraint system to the state before
the search:

StdLabel label = new StdLabel(cs, var);
label.set();
while (label.nextSolution())

for (int i=0; i <= var.length; i++)
System.out.println(var[i]);

label.reset();

Furthermore, we extended constraint processing by justifying all prunings
that result from constraint propagation. Especially, dead ends detected during
search, i.e. inconsistencies resulting from the decisions made at some choice-
points are justified. Thus, intelligent search strategies are realisable. In fact, we
implemented a variant of conflict-directed backjumping (CBJ) [16] and applied
this search strategy to random 3-SAT-problems.

The main intelligence of CBJ lies in its ability to know the cause of an
inconsistency, if it occurs. This enables a direct jump to the cause, which saves
all the useless work that a standard backtracking algorithm (BT) would do to
get back to it. BT can only try to find a feasible value for the current variable,
and if it finds none, it has to go back step by step. Thus, it will try all other
values for the variables between the current and the causal one.

To accomplish CBJ, firstly we need an additional data structure for every
variable to hold the causes for domain modification. We call this a justification

of a variable. It contains references to all variables, which are responsible for the
domain state of its variable. Secondly, we need a data structure to manage the
backjumping. It holds references of variables, which forestalled the assignment
of its variable with a value. It is called the conflict set of a variable. In the worst
case, CBJ jumps through the search space in steps of 1 level, which is equivalent
to standard backtracking. Mostly, this is not the case, as we will see later, but
we assert that in the worst case, CBJ behaves like BT.

Let us have a look at the ”cbj-enhanced” labelling algorithm. Basically, it is
the same as in Figure 1, but extended with CBJ “intelligence”:

73

int cause = 0; // initialise cause value
static boolean label(CS cs, int i, Variable[] var) {

if (i == var.length) { return true; } // base case
ChoicePoint cp = new ChoicePoint(cs);
cp.set();
for (int val = var[i].min(); val <= var[i].max(); val++)

try {
(1) var[i].equal(val, new Justification(i));

cs.activate();
if (label(cs, i+1, var)) {

(*) var[i].conf.reset();
cp.reset();
return true;

} // else:
(2) if (cause > i){
(*) var[i].conf.reset();

cp.reset();
return false;

} else if (cause==i) { cause = 0; }
cp.backtrack();

} catch (InconsistencyException e) {
(3) if (!e.var.just.isEmpty()){

var[i].conf.addSet(e.var.just);
}
cp.backtrack();

}
(4) if (!var[i].conf.isEmpty()){

cause = var[i].conf.getReason(i);
var[cause].conf.addSet(var[i].conf);

}
(*) var[i].conf.reset();

cp.reset();
return false;

}

First of all, in (1) a variable assignment during labelling is now justified with
its level, which acts as a reference to the variable. If an assignment leads to an
inconsistency exception, the justification of the variable where the inconsistency
occured, extends the conflict set of the current variable in (3). If no assignment
can be found for the current variable, one has to jump back. In (4) the greatest
value of the conflict set, which is smaller than the current level i, determines
the target of the jump with getReason(i). The backjumping itself is performed
in (2): As long as the level i of the current variable is greater than the causal
variable’s level cause, the algorithm steps back. The handling of the conflict
sets cannot be handled in cp.reset(), as we want to collect justifications across
several assignments attempts of a variable, so there are handled manually in (*).

Search is a demanding job. For this reason, we should have an eye on the
performance of our labelling algorithm. In our case, it is important to use an
efficient implementation for the justifications and the conflict sets, because they
are used intensely. At the moment, we prefer a fast set implementation which is
more efficient and faster than the usual appropiate Java structures.

Let us take a look at a few results in Table 2. Based on a CHR approach [22]
we developed some boolean constraints for the solution of random 3-SAT-
problems, i.e. the so called AIM-instances [11]. Among other things these in-
stances are classified into solvable yes-instances and unsolvable no-instances, so
there is either exactly one solution or no solution at all. We concentrated on
the no-instances in the benchmark set because the whole search space has to

74

file alg - static1 static2 dyn static1 static2
& dyn & dyn

1 6− no− 1.cnf bt 1008585 17705 1686 1008585 17705 1686
cbj 877 58 151 216 36 104

ratio[%] 0.09 0.33 8.96 0.02 0.20 6.17
1 6− no− 2.cnf bt 220520 159187 6782 220520 159187 6782

cbj 82 615 259 55 87 198
ratio[%] 0.04 0.39 3.82 0.02 0.05 2.92

1 6− no− 3.cnf bt 5751947 16385611 302 5751947 16385611 302
cbj 1554 21375 67 587 1271 49

ratio[%] 0.03 0.13 22.19 0.01 0.01 16.23
1 6− no− 4.cnf bt 967818 67404 280062 967818 67404 280062

cbj 62 42 21 23 32 21
ratio[%] 0.01 0.06 0.01 0.00 0.05 0.01

2 0− no− 1.cnf bt 453303 337314 182 453303 337314 182
cbj 21977 652 40 309 47 46

ratio[%] 4.85 0.19 21.98 0.07 0.01 25.27
2 0− no− 2.cnf bt 35157 64974 361 35157 64974 361

cbj 769 8556 49 148 1007 51
ratio[%] 2.19 13.17 13.57 0.42 1.55 14.13

2 0− no− 3.cnf bt 86099 9839 58 86099 9839 58
cbj 19729 660 47 1505 798 47

ratio[%] 21.91 6.71 81.03 1.75 8.11 81.03
2 0− no− 4.cnf bt 30257 65102 4259 30257 65102 4259

cbj 190 6318 48 93 304 31
ratio[%] 0.63 9.70 1.13 0.31 0.47 0.73

sum bt 8553686 17107136 293692 8553686 17107136 293692
cbj 45240 38276 682 2936 3582 547

ratio[%] 0.53 0.22 0.23 0.03 0.02 0.19

avg bt 1069210.75 2138392.00 36711.50 1069210.75 2138392.00 36711.50
cbj 5655.00 4784.50 85.25 367.00 447.75 68.38

ratio[%] 3.84 3.84 19.09 0.33 1.31 18.31

Table 2. A benchmark set shows the progress from simple BT to heuristic assisted CBJ. Ratio shows
the relative improvement of CBJ to BT depending on the configuration in percent. Sum shows the
overall improvement, avg shows the average of the results.

be scoured completely, for a non-existing solution. The yes-instances were ne-
glected, because the labelling algorithm aborts processing, as soon as it finds
the solution. In Table 2 one can see the comparison between BT and CBJ for all
no-instances with 50 variables. The comparison concerns the number of jumps
needed by an algorithm to process a problem.

Although we reached satisfying results - as one can see - with pure CBJ, we
drove it even further and developed heuristics to reduce the number of jumps
a lot. Two static sort methods (static1, static2) were created, which can be
applied to define an initial ordering of the variables. Futhermore, a method was
developed for dynamic variable sorting (dyn) during the labelling process. The
functionality of those heuristics will be presented aside more detailed information
on CBJ and intelligent search in [15].

All together, we managed to solve the instance-collection with CBJ on aver-
age in 3.84% of jumps needed for BT, in combination with heuristics the ratio
is even better. With the best combination of static and dynamic ordering we
even came down to satisfying 0.0064% = 547 [cbj+static2&dyn] / 8553686 [bt]
* 100%. For the future, we are looking forward to implement CBJ for more
complex constraints, especially the (multi-)resource constraints.

75

5 A Practical Application

There are several applications realised with our constraint programming engine
firstcs. One of the practical applications is a participant booking and planning
system, sucessfully applied to organise workshops with parallel sessions.

Participant Marketing Personnel Human Resources Project Risk
Management Development Management Management

Ms. Breitschopf X X X
Ms. Dunkel X X X
Ms. Friedrich X X X
Ms. Helmig X X X
Ms. Karlson X X X
Ms. Mayerhofer X X X
Ms. Oppermann X X X
Ms. Quendlin X X X
Ms. Tengelmeier X X
Ms. Ulmer X X
Mr. Anderl X X X
Mr. Cornelsen X X X
Mr. Emmerich X X X
Mr. Guenther X X X
Mr. Jensen X X X
Mr. Ludewig X X
Mr. Nickel X X
Mr. Paulsen X X
Mr. Ritsch X X
Mr. Strohmer X X

Table 3. The participants’ choices for their management seminar.

The participant booking planning system called DOTPlan was developed in a
few days. It is mainly based on the Kronecker constraint that was designed and
implemented while realizing the whole system and on WeightedSum constraints,
especially used to represent the objectives to be optimised. Given the partic-
ipants’ choices of their selected sessions as in Table 3 the system satisfies all
these choices optimally, i.e for a minimal number of repetitions and an equally
distributed turnout.

The Kronecker constraint is used to represent the fact that the selected
course for a person p at day d is c, i.e. δcourse[p][d],c = 1 if course[p][d] = c and 0
otherwise. These boolean variables are further used in WeightedSum constraints
representing the sums of entries per persons, sessions and days.

An optimal plan of the sample problem is shown in Table 4: It is impossible
to distribute the seminars over two days because there is at least one participant
who has chosen three different courses. The optimality of the turnout will become
clear considering the summary in Table 4: It is neither possible to increase the
minimal number of participants per day nor to decrease their maximal number.
A minimal number of 4 requires at least 3× 4 = 12 participants in each course
and a maximal number of 4 requires at most 3 × 4 = 12 participants in each
course; both requirements are not satisfiable in the considered example.

76

Participant 1st Seminar Day 2nd Seminar Day 3rd Seminar Day
Ms. Breitschopf Human Res. Develop. Personnel Management Marketing
Ms. Dunkel Marketing Risk Management Human Res. Develop.
Ms. Friedrich Project Management Marketing Personnel Management
Ms. Helmig Project Management Human Res. Develop. Personnel Management
Ms. Karlson Risk Management Project Management Human Res. Develop.
Ms. Mayerhofer Personnel Management Marketing Project Management
Ms. Oppermann Human Res. Develop. Project Management Risk Management
Ms. Quendlin Personnel Management Risk Management Project Management
Ms. Tengelmeier Personnel Management – Human Res. Develop.
Ms. Ulmer Risk Management Project Management –
Mr. Anderl Marketing Risk Management Project Management
Mr. Cornelsen Human Res. Develop. Personnel Management Marketing
Mr. Emmerich Risk Management Human Res. Develop. Marketing
Mr. Guenther Project Management Human Res. Develop. Marketing
Mr. Jensen Marketing Human Res. Develop. Risk Management
Mr. Ludewig – Personnel Management Marketing
Mr. Nickel Human Res. Develop. – Personnel Management
Mr. Paulsen Project Management – Human Res. Develop.
Mr. Ritsch Project Management – Risk Management
Mr. Strohmer – Marketing Human Res. Develop.

Course Marketing Personnel Human Resources Project Risk Sum
Management Development Management Management

1st Seminar Day 3 3 4 5 3 18
2nd Seminar Day 3 3 4 3 3 16
3rd Seminar Day 5 3 5 3 3 19

Sum 11 9 13 11 9 –

Table 4. An optimal plan for the management seminar.

References

1. David Applegate and William Cook. A computational study of the job-shop
scheduling problem. ORSA Journal on Computing, 27(3):149–156, 1991.

2. Krzysztof R. Apt. From chaotic iteration to constraint propagation. In Proceed-
ings of 24th International Colloquium on Automata, Languages and Programming
(ICALP ’97), number 1256 in Lecture Notes in Computer Science, pages 36–55.
Springer-Verlag, 1997.

3. Ken Arnold, James Gosling, and David Holmes. The Java Programming Language,
Third Edition. Addison-Wesley, June 2000.

4. Roman Barták. Dynamic global constaints: A first view. In Proceedings of ERCIM
Workshop on Constraints, Pague, June 2001.

5. Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving linear arithmetic
constraints for user interface applications. In Proceedings of the 1997 ACM Sym-
posium on User Interface Software and Technology, pages 87–96, October 1997.

6. Andy Hon Wai Chun. Constraint programming in Java with JSolver. In Proceed-
ings of PACLP99, The Practical Application of Constraint Technologies and Logic
Programming, London, April 1999.

7. Philippe Codognet and Daniel Diaz. Compiling constraints in clp(fd). The Jour-
nal of Logic Programming, pages 185–226, 1996.

8. David Flanagan. Java in a Nutshell. O’Reilly, 3rd edition, November 1999.

9. G. L. Thompson H. Fisher. Probabilistic learning combinations of local job-shop
scheduling rules. In G. L. Thompson J. F. Muth, editor, Industrial Scheduling,
pages 225–251. Prentice Hall, Englewood Cliffs, New Jersey, 1963.

77

10. Christian Holzbaur. Specification of Constraint Based Inference Mechanism
through Extended Unification. PhD thesis, Dept. of Medical Cybernetics & AI,
University of Vienna, 1990.

11. K. Iwama, E. Miyano, and Y. Asahiro. Random generation of test instances with
controlled attributes. In Cliques, Coloring, and Satisfiability, volume 26 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages
377–394. American Mathematical Society, 1996.

12. Koalog. Koalog Constraint Solver. http://www.koalog.com/php/jcs.php.
13. S. Lawrence. Resource constrained project scheduling: an experimental investi-

gation of heuristic scheduling techniques (supplement). Technical report, Gradu-
ate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 1984.

14. Irvin J. Lustig. Optimization and Java. Java Developer’s Journal, 6(6):110–116,
2001.

15. Henry Müller. Analyse und Entwicklung von intelligenten
abhängigkeitsgesteuerten Suchverfahren für einen Java-basierten Constraintlöser.
Master’s thesis, Technische Universität Berlin, 2003. Work in Progress, will be
published between Nov. 2003 and Jan. 2004.

16. Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9(3):268–299, August 1993. (Also available as Technical
Report AISL-46-91, Stratchclyde, 1991).

17. Hans Schlenker. Reduce-To-The-Max: ein schneller Algorithmus für Multi-
Ressourcen-Probleme. In Francois Bry, Ulrich Geske, and Dietmar Seipel, editors,
14. Workshop Logische Programmierung, number 90 in GMD Report, pages 55–64,
26th–28th January 2000.

18. Hans Schlenker and Georg Ringwelski. POOC - a platform for object-oriented
constraint programming. In ERCIM/CologNet Workshop on Constraint Solving
and Constraint Logic Programming. Springer LNCS 2627, 2002.

19. Matthias Schmauss. An implementation of CHR in Java. Master’s thesis, Ludwig
Maximilians Universität München, Institut für Informatik, May 1999.

20. Marc Torrens, Rainer Weigel, and Boi Faltings. Java constraint library: Bringing
constraint technology on the Internet using Java. In Proceedings of the CP-97
Workshop on Constraint Reasoning on the Internet, November 1997.

21. Pascal van Hentenryck and Thierry le Provost. Incremental search in constraint
logic programming. New Generation Computing, 9(3 & 4):257–275, 1991.

22. Armin Wolf. Adaptive constraint handling with CHR in Java. In Proceedings of
the 7th International Conference on Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science. Springer Verlag, 2001.

23. Armin Wolf. Pruning while sweeping over task intervals. In Proceedings of the Ninth
International Conference on Principles and Practice of Constraint Programming
(CP 2003), Lecture Notes in Computer Science, Kinsale, County Cork, Ireland, 29
September – 3 October 2003. Springer Verlag. (to appear).

24. Armin Wolf. A specialized search algorithm for contiguous task scheduling prob-
lems. In Proceedings of the Joint Annual Workshop of the ERCIM Working Group
on Constraints and the CoLogNET area on Constraint and Logic Programming,
MTA SZTAKI, Budapest, Hungary, 30 June – 2 July 2003.

78

79

80

RCoRP’03: Fifth International Workshop on Rule-
Based Constraint Reasoning and Programming

September 29, 2003
Kinsale, County Cork, Ireland
at the Ninth International Conference on Principles and Practice of Constraint
Programming (CP’03)

Rule-based formalisms are ubiquitous in computer science, and even more so
in constraint reasoning and programming. In constraint reasoning, algorithms
are often specified using inference rules, rewrite rules, sequents, proof rules or
first-order axioms written as implications. Advanced programming languages
like CHR, CLAIRE and ELAN allow to implement both constraint solvers and
programs using constraints in a rule-based formalism.

This workshop invites papers describing ongoing work in using rule-based
formalisms in constraint reasoning and programming including

• specification of algorithms for solving constraints by rules,
• implementations of constraint solvers and programs solving problems in a

novel way using rule-based programming languages that go beyond con-
straint logic programming,

• automatic generation of rule-based constraint solvers,
• analysis of rule-based programs, and
• other issues related to rule-based language design and implementation.

Organization

Workshop organizers:

Slim Abdennadher (University of Munich)
Thom Frühwirth (University of Ulm)
Arnaud Lallouet (University of Orléans)

Program Committee:

Slim Abdennadher (University of Munich)
Thi Bich Hanh Dao (University of Orléans)
Abdelali Ed-dbali (University of Orléans)
Thom Frühwirth (University of Ulm)
Arnaud Lallouet (University of Orléans)
Eric Monfroy (University of Nantes)

81

82

Delaying “big” operators in order to construct

some new consistencies

Andrëı Legtchenko

Université d’Orléans – LIFO
BP 6759 – F-45067 Orléans – France

Abstract. What makes a good consistency ? Depending on the con-
straint, it may be a good pruning power or a low computational cost.
By “weakening” arc-consistency, we propose to define new automati-
cally generated solvers which form a sequence of consistencies weaker
then arc-consistency. The method exploits on some form of regularity
in the cloud of constraint solutions. This approach is illustrated on the
constraints wordn(X1, X2, .., Xn) and crossword CSP, where interesting
speed-up are achieved.

1 Introduction

Since their introduction [7], CSP consistencies have been recognized as one of
the most powerful tool to strengthen search mechanisms. Since then, their con-
siderable pruning power has motivated a lot of efforts to find new consistencies
and to improve the algorithms to compute them.

Consistencies can be partially ordered according to their pruning power.
However, this pruning power should be put into balance with the complexity
of enforcing them. For example, path-consistency is often not worth it: its prun-
ing power is great, but the price to pay is high. Maintaining path-consistency
during search is thus often beaten in practice by weaker consistencies. Similarly,
on many useful CSPs, bound-consistency is faster than arc-consistency even if it
does not dig holes in the variables domains: this is left to the search mechanism
ensuring the completeness of constraint solving.

Recently, it has been shown that consistencies can be built automatically
using machine learning techniques. In [2], a consistency weaker than bound-
consistency but as close to it as possible was constructed. The method de-
scribed in this paper allows to build a full range of comparable consistencies
for a given constraint. These consistencies are weaker and sometimes quicker
then arc-consistency.
The paper is structured as follows:

– A framework to express consistencies. Consistencies are usually built as
global CSP properties. But it is now rather common to express them mod-
ularly by the greatest fixpoint of a set of operators associated to the con-
straints, which is computed using a chaotic iteration [1]. We present a frame-
work which allows, starting from arbitrary operators, to progressively add
properties in order to build a consistency.

83

– A consistency construction method. For a given constraint, we express the
arc-consistency as a set of particular reduction operators. These operators
do not have the same computational cost. Expensive ones are delayed until
instantiation of all variables. The closure of all the operators defines a new
consistency for a given constraint, weaker but quicker than arc-consistency.

– An example. The interest of these consistencies is shown by the constraints
”words” and the crossword CPSs.

2 Consistency as an operator

Let V be a set of variables and D = (DX)X∈V their (finite) domains. For W ⊆ V ,
we denote by DW the set of tuples on W , namely ΠX∈W DX . Projection of a
tuple or a set of tuples on a variable or a set of variables is denoted by |, natural
join of two sets of tuples is denoted by on. If A is a set, then P(A) denotes its
powerset and |A| its cardinal.

Definition 1 (Constraint). A constraint c is a pair (W,T) where:

– W ⊆ V is the arity of the constraint c and is denoted by var(c).
– T ⊆ DW is the set of solutions of c and is denoted by sol(c).

The join of two constraints is defined as a natural extension of the join of tuples:
c on c′ = (var(c) ∪ var(c′), sol(c) on sol(c′)).

A CSP is a set of constraints. Join is naturally extended to CSPs and the
solutions of a CSP C are sol(on C). A direct computation of this join is too
expensive to be tractable, especially when considering that it needs to represent
tuples of the CSP’s arity. This is why a framework based on approximations is
preferred, the most successful of them being the domain reduction scheme where
variable domains are the only reduced constraints (see [1, 4] for a more general
framework). So, for W ⊆ V , a search state consists in a set of yet possible values
for each variable: sW = (sX)X∈W such that sX is a subset of DX . The search
space is SW = ΠX∈WP(DX). The set SW , ordered by pointwise inclusion ⊆, is
a complete lattice. Likewise, union and intersection on search states are defined
pointwise. The whole search space SV is simply denoted by S.

Some search states we call singletonic play a special role in our framework.
A singletonic search state comprises a single value for each variable, and hence
represents a single tuple. A tuple is promoted to a singletonic search state by the
operator d e: for t ∈ DW , let dte = ({tX})X∈W ∈ SW . This notation is extended
to a set of tuples: for E ⊆ DW , let dEe = {dte | t ∈ E} ⊆ SW . Conversely, a
search state is converted into the set of tuples it represents by taking its cartesian
product Π : for s ∈ SW , Πs = ΠX∈W sX ⊆ DW . We denote by SingW the set
dDW e of singletonic search states. By definition, dDW e ⊆ SW .

A consistency is generally described by a property Cons ⊆ S which holds for
certain search states and is classically modeled by the common greatest fixpoint
of a set of operators associated to the constraints. By extension, in this paper,
we call consistency for a constraint c an operator on SW having some properties

84

which are introduced in the rest of this section. Let f be an operator on SW .
We denote by Fix(f) the set of fixpoints of f which define the set of consistent

states according to f .
For W ⊆ W ′ ⊆ V , an operator f on SW can be extended to f ′ on SW ′ by

taking: ∀s ∈ SW ′ , f ′(s) = s′ with ∀X ∈ W ′\W, s′X = sX and ∀X ∈ W, s′X =
f(s|W)X . Then s ∈ Fix(f ′) ⇔ s|W ∈ Fix(f). This extension is useful for the
operator to be combined with others at the level of a CSP.

In order for an operator to be related to a constraint, we need to ensure that
it is contracting and that no solution tuple could be rejected anywhere in the
search space. An operator having such property is called a preconsistency:

Definition 2 (Preconsistency). An operator f : SW → SW is a preconsisten-
cy for c = (W,T) if:

– f is monotonic, i.e. ∀s, s′ ∈ SW , s ⊆ s′ ⇒ f(s) ⊆ f(s′).
– f is contracting, i.e. ∀s ∈ SW , f(s) ⊆ s.

– f is correct, i.e. ∀s ∈ SW , Πs ∩ sol(c) ⊆ Πf(s) ∩ sol(c).

In the last property, the second inclusion is also called correctness of the oper-
ator with respect to the constraint; it means that if a state contains a solution
tuple, this one will not be eliminated by consistency. Since a preconsistency is
also contracting, this inclusion is actually also an equality. This notion of pre-
consistency is interesting in the context of CSP resolution. These operators can
be included in chaotic iteration, because of their properties.

An operator on SW is associated to a constraint c = (W,T) if its singletonic
fixpoints represent the constraint’s solution tuples T :

Definition 3 (Associated Operator). An operator f : SW → SW is associ-
ated to a constraint c if Fix(f) ∩ SingW = dsol(c)e

However, nothing is said about its behavior on non-singletonic states. This prop-
erty is also called singleton completeness. Note that a preconsistency is not au-
tomatically associated to its constraint since the set of its singletonic fixpoints
may be larger. When it coincides, we call such an operator a consistency:

Definition 4 (Consistency). An operator f is a consistency for c if it is as-

sociated to c and it is a preconsistency for c.

Note that a consistency can be viewed as an extension to SW of the satisfiability
test made on singletonic states. Consistency operators can be easily scheduled
by a chaotic iteration algorithm [1]. By the singleton completeness property,
the consistency check for a candidate tuple can be done by the propagation
mechanism itself. Let C = {c1, . . . , cn} be a CSP and F = {f1, . . . , fn} be a set
of consistencies on S associated respectively to {c1, . . . , cn}. If all constraints are
not defined on the same set of variables, it is always possible to use the extension
of the operators on the union of all variables which appear in the constraints. The
common closure of the operators of F can be computed by a chaotic iteration
[1]. It follows from the main confluence theorem of chaotic iterations that a
consistency can be constituted by combining the mutual strengths of several

85

operators. Since we have Fix(F) =
⋂

f∈F Fix(f) and since each consistency
does preserve the tuples of its associated constraint, the computed closure of all
operators associated to the CSP C does not reject a tuple of c1 on . . . on cn for
any search state s ∈ S because of an operator of F .

Proposition 5 (Composition). The composition of two preconsistencies for

a constraint c via chaotic iteration is still a preconsistency for c. We call ◦ this

composition.

The proof is straightforward by [1]. The same property holds for consistencies
instead of preconsistencies. Let us now define some consistencies associated to a
constraint c:

– IDc is a family of contracting operators such that any idc ∈ IDc verify: ∀s ∈
SW \SingW , idc(s) = s and ∀s ∈ SingW , s ∈ dsol(c)e ⇔ idc(s) = s. In particular,
on non-solution singletonic states, idc reduces at least one variable’s domain to ∅.
The non-uniqueness of idc comes from the fact that all search states s such that
Πs = ∅ represent the empty set of solution for a constraint. In the following, we
denote by idc any member of IDc.

– acc is the well-known arc-consistency operator defined by ∀s ∈ SW , acc(s) =
((sol(c) ∩Πs)X)X∈W .

We now suppose that each variable domain DX is equipped with a total
ordering ≤. The notation [a..b] is used for the classical notion of interval {e ∈
DX | a ≤ e ≤ b}. We call IntX the interval lattice built on DX and for W ⊆ V ,
IntW = ΠX∈W IntX . For A ⊆ DX , we denote by [A] the set [min(A)..max(A)].
We extend this notation for any search state: ∀s ∈ SW , [s] = ΠX∈W [sX]. Bound-
consistency consists in contracting only the bounds of a variable’s domain, rep-
resented as an interval:

– bcc : is the bound-consistency operator defined by bcc(s) = [((sol(c)∩Πs)X)X∈W].

3 Delaying “big” operators

Powerful consistencies are not always the best choice. It is sometimes more in-
teresting to find the optimal ratio between the advantage of pruning and the
computational cost needed to enforce it. We consider a constraint, defined in
extension by the set of its solutions. By using machine learning techniques, we
construct a set of operators. The closure of these operators by chaotic iteration
defines a consistency for given constraint. The used techniques may be clustering
[6], genetic algorithms [5] or other optimisation algorithms. In [5], new consisten-
cies for a given constraint are obtained by approximation (in the sense of function
approximation) of the bound-consistency. At first, a fixed form of expression for
operator is chosen, and some coefficients of this expression are computed by a
genetic algorithm, in order to mimic the behaviour of the bound-consistency.
In [6], solutions of the given constraint are mapped in a multi-dimensional nu-
merical space. Then, by using a clustering algorithm we split this space in some
blocks. Finally, we compute a consistency by considering these blocks of solutions
instead of each solution separately. In this paper we use an another approach,

86

inspired by the pruning of decision trees. In any case, resulting consistencies are
weaker than arc-consistency, and often well adapted for numerous constraints
and CSPs.

In the beginning, we express the computation of arc-consistency with a set
of special elementary reduction functions. Then we weaken the arc-consistency.
It is done by delaying too expensive functions until instantiation of all variables.
So the reduction power decreases, but the computation becomes quicker. By the
choice of the cost threshold, we define a sequence of comparable consistencies.

Preliminaries. Let us recall the definition of arc-consistency from section 2:
∀s ∈ SW , acc(s) = ((sol(c) ∩Πs)X)X∈W .

Definition 6 (Support). Let c = (W,T) be a constraint. Let X ∈ W and

a ∈ DX . We call support of “X = a” a tuple t ∈ sol(c) such that tX = a.

We call TX=a ⊆ sol(c) the set of all supports of X = a. A value a has to be
maintained in the current domain of X only if we have at least one t ∈ TX=a

that all projections on Y ∈ W\{X} are included in sY .

Definition 7 (Supported value). Let c = (W,T) be a constraint, X ∈ W

and a ∈ DX . We call SuppX=a(s) the following property:
∨

t∈TX=a
(
∧

Y ∈W\{X}

tY ∈ sY). X = a is supported if SuppX=a(s) = true.

If X = a is not supported, a does not participate to any solution of the CSP
and therefore can be eliminated. With this notion, we define a set of functions
which return the values which have to be eliminated. Each value in the initial
domain of each variable has its own elementary reduction function. If a value
must be eliminated, its function returns this value as a singleton, and the empty
set otherwise.

Definition 8 (Elementary reduction function). For all X ∈ W and for all

a ∈ DX , we define a function rX=a : SW −→ P(DX) by

∀s ∈ SW , rX=a(s) =

{

{a}, if ¬SuppX=a(s)
∅, else.

Now arc-consistency can be defined using elementary reduction functions as
follows: ∀s ∈ SW , acc(s) = (sX\

⋃

a∈DX
rX=a(s))X∈W .

Weakening arc-consistency. We want a consistency quicker then arc-consistency,
even if it is less powerful. Now we split arc-consistency into two operators:

Definition 9 (Operator Small). Let c be a constraint, and n an integer. The

operator Smallc(n) : SW −→ SW is:

∀s ∈ SW , Smallc(n)(s) = (sX\
⋃

a∈DX , |TX=a|≤n

rX=a(s))X∈W .

87

Definition 10 (Operator Big). Let c be a constraint and n an integer. The

operator Bigc(n) : SW −→ SW is:

∀s ∈ SW , Bigc(n)(s) =

{

(sX\
⋃

a∈DX , |TX=a|>n rX=a(s))X∈W , if s ∈ SingW

s, else.

Note that Bigc(n) does not reduce non-singletonic states. This operator is useful
only to reject non-solution tuples.

Proposition 11. For all integer n, Smallc(n) is a preconsistency for c.

Proof. First, we show that Smallc(n) is monotonic. Let s and s′ in SW such that
s ⊆ s′. Then, ∀X ∈ W , ∀a ∈ DX , SuppX=a(s) ⇒ SuppX=a(s′). From which it
follows that ∀X ∈ W , ∀a ∈ DX , ¬SuppX=a(s′) ⇒ ¬SuppX=a(s). In the case of
s′, there are less values to eliminate than in the case of s. So Smallc(n)(s) ⊆
Smallc(n)(s′). The operator Smallc(n) is monotonic.

Smallc(n) is contracting by construction. It it also correct by construction: it
eliminates less values than arc-consistency. Hence Smallc(n) is a preconsistency.

The operator Bigc(n) is also a preconsistency, the proof is similar to Smallc(n).

Proposition 12. Let c = (W,T) a constraint and n an integer. The composi-

tion Smallc(n) ◦ Bigc(n) is a consistency for c .

Proof. According to the proposition 5, Smallc(n) ◦ Bigc(n) is a preconsistency.
But ∀s ∈ SingW , Smallc(n) ◦ Bigc(n)(s) = acc(s), so Smallc(n) ◦ Bigc(n) is
associated to c. Therefore Smallc(n) ◦ Bigc(n) is a consistency for c.

Elementary reduction functions of Bigc(n) are not fired on the non-singletonic
states. If the threshold n is not too big, the set of elementary reduction functions
of Bigc(n) is not empty. In that case, consistency Smallc(n) ◦ Bigc(n) is weaker
than arc-consistency, but it can be computed quickly, since that we have less
functions to evaluate. If n is big enough, we have the same reduction power and
the computational cost than arc-consistency.

Implementation. A system generating the operators Smallc(n) and Bigc(n) has
been implemented. The language used to express the operators is the indexical
language of GNU-Prolog [3]. An indexical operator is written “X in r” where X

is the name of a variable, and r is the range of possible values for X and which may
depend on other variables’ current domains. If we call x the current domain of
X, the indexical X in r can be read declaratively as the second-order constraint
x ⊆ r or operationally as the operator x 7→ x ∩ r. For a given constraint and a
threshold, our system returns two sets of |W | indexical operators, i.e. one for each
variable. The first set defines the Bigc(n) operator, and the second Smallc(n).
In total, we have 2 ∗ |W | indexical operators for a constraint c = (W,T). The
closure by chaotic iteration of all 2∗|W | operators is equivalent to the consistency
Smallc(n) ◦ Bigc(n). The indexical operators for Bigc(n) are delayed with the
special trigger val which delays the operator until the variable is instantiated.
This is why these operators are not iterated on non-singletonic search states.

Example 13. Let c(X,Y,Z) be a constraint. DX = DY = {0, 1} and DZ = {0, 1, 2}.

88

c :

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

1 1 2

0 1 2

The sets of supports for Z are:
TZ=0 = {(0, 0, 0), (0, 1, 0), (1, 0, 0)}
TZ=1 = {(1, 1, 1)}
TZ=2 = {(1, 1, 2), (0, 1, 2)}

So, for all s ∈ S{X,Y,Z}, we have:

SuppZ=0
(s) = (0 ∈ sX ∧ 0 ∈ sY) ∨ (0 ∈ sX ∧ 1 ∈ sY) ∨ (1 ∈ sX ∧ 0 ∈ sY)

SuppZ=1
(s) = 1 ∈ sX ∧ 1 ∈ sY

SuppZ=2
(s) = (1 ∈ sX ∧ 1 ∈ sY) ∨ (0 ∈ sX ∧ 1 ∈ sY).

For the variable Z, we can make two indexical operators following the definition of
Smallc and Bigc. Let set the threshold to 2. The operators for Z are:

Smallc(2)Z : sZ −→ sZ\(rZ=1(s) ∪ rZ=2(s))
Bigc(2)Z : sZ −→ sZ\rZ=0(s)

The operator Bigc(2)Z is delayed because its reduction power is small (only one value
can be eliminated), and the effort to compute rZ=0(s) is contingently high. This oper-
ator is fired only if s ∈ Sing{X,Y,Z}.

4 Example

Our method exploits some form of regularity in the cloud of constraint solu-
tions. We suppose that all domains are provided with a total ordering. Hence
we can map all the solution tuples in a |W |-dimensioned numerical space. Let
c = (W,T) be a constraint, let X ∈ W and a ∈ DX . The size of the body of the
elementary reduction function rX=a is proportional to the number of solutions
in the hyperplane orthogonal to the axis of X and which pass by X = a. If
there are many solutions of c in this hyperplane, it is probable that a will not be
eliminated from the domain of X. Moreover, the test is expensive to compute.
So, the computation is delayed.

This distribution occurs, for example, in the case of the constraints wordn(X1,
X2, .., Xn). For n = 3, the constraint word3(X,Y, Z) means that XY Z is a 3-
letters English word. We consider that domains are ordered by lexicographic
ordering. Figure 1 illustrates projections of word3(X,Y, Z) on different planes.
When using UNIX dictionary /usr/dict/word, this constraint has 576 solutions.
The constraints word4(X,Y, Z, U) (with 2236 solutions) and word5(X,Y, Z, U, V)
(with 4176 solutions) have the same regularity.

The CSP we use consists in finding a solution for crossword grids of different
sizes. The CSP is composed only by a set of constraints wordn. The domain of
all variables is {a, .., z}. An example of a 7x7 grid and its model is presented
in figure 2 and table 1. Only the first solution is computed. Some benchmarks
are presented in the tables 2, 3, 4. The full reduction power of arc-consistency is
obtained from the following thresholds: 8 for word2, 130 for word3, 500 for word4,
1200 for word5. It means that with these thresholds (and higher), the Bigc(n)

89

Fig. 1. Projections of word3(X, Y, Z) on the planes XY , Y Z, XZ

Fig. 2. A 7x7 grid

operator is empty. The fd relation time is the computation time with the built-
in GNU-Prolog predicate implementing arc-consistency for a constraint given by
the table of its solutions. These new consistencies show an interesting speed-
ups, from 1.68 to 4.8. But optimal thresholds are found empirically, and they
are different from one grid to another. Thus, this method can be considered only
as an additional tool in the resolving environnement. The main contribution of
this approach is to show the interest of using constraint regularities to construct
efficient operators.

5 Conclusion

In this paper, we propose a new method which allows to build a full range of con-
sistencies weaker but quicker than arc-consistency. In this approach, we exploit
a form of regularity in the constraint solutions to construct a set of operators.
The operators which are too expensive to compute are delayed, so their closure

90

X1,1 X1,2 ¤ X1,4 X1,5 X1,6 X1,7

X2,1 ¤ X2,3 X2,4 X2,5 ¤ X2,7

X3,1 X3,2 X3,3 ¤ X3,5 X3,6 X3,7

X4,1 X4,2 X4,3 ¤ ¤ X4,6 ¤

¤ X5,2 X5,3 X5,4 X5,5 ¤ X5,7

X6,1 X6,2 X6,3 ¤ X6,5 X6,6 X6,7

X7,1 X7,2 ¤ X7,4 X7,5 X7,6 X7,7

Table 1. A model for 7x7 grid

Threshold for Time

word2 word3 word4 word5

3 70 240 510 45ms
8 30 50 10 280ms
1 5 300 10 11ms
3 6 400 10 16ms
1 5 200 10 120ms

fd relation 53ms
Table 2. Some results for 7x7 grid

Threshold for Time

word2 word3 word4 word5

3 70 240 310 380ms
3 30 80 200 >15min
3 70 240 410 58ms
3 70 260 410 76ms
3 65 240 410 78ms

fd relation 102ms
Table 3. Some results for 10x10 grid

Threshold for Time

word2 word3 word4 word5

1 5 50 310 1h
3 130 500 600 193ms
3 50 240 510 6490ms
3 5 240 310 5490ms
3 70 260 510 160ms
3 100 240 510 160ms
3 130 300 510 170ms
1 70 240 510 150ms

fd relation 252ms
Table 4. Some results for 15x15 grid

91

of by a chaotic iteration defines a new consistency, weaker but quicker than
arc-consistency. The interest of this method is illustrated on crossword CSPs.

Acknowledgements. I would like to thank Abdel Ali Ed-Dbali for his help in testing

crossword CSP, and also the rest of the Solar Team.

References

1. K. R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1-2):179–210, 1999.

2. Thi-Bich-Hanh Dao, Arnaud Lallouet, Andrei Legtchenko, and Lionel Martin.
Indexical-based solver learning. In Pascal van Hentenryck, editor, International

Conference on Principles and Practice of Constraint Programming, volume 2470 of
LNCS, pages 541–555, Ithaca, NY, USA, Sept. 7 - 13 2002. Springer.

3. Daniel Diaz and Philippe Codognet. Design and implementation of the Gnu-Prolog
system. Journal of Functional and Logic Programming, 2001(6), 2001.

4. Arnaud Lallouet, Thi-Bich-Hanh Dao, and AbdelAli Ed-Dbali. Language, defini-
tion and optimal computation of CSP approximations. In Susan Haller and Ingrid
Russell, editors, Flairs’03, International Florida Artificial Intelligence Conference,
St Augustine, FL, USA, 2003. AAAI Press.

5. Arnaud Lallouet, Thi-Bich-Hanh Dao, Andrëı Legtchenko, and AbdelAli Ed-Dbali.
Finite domain constraint solver learning. In Georg Gottlob, editor, International

Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003. AAAI Press.
poster.

6. Arnaud Lallouet, Andrëı Legtchenko, Thi-Bich-Hanh Dao, and AbdelAli Ed-Dbali.
Intermediate (learned) consistencies. In Francesca Rossi, editor, International Con-

ference on Principles and Practice of Constraint Programming, LNCS, Kinsale,
County Cork, Ireland, 2003. Springer. Poster.

7. Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

92

Pure Prolog Execution in 21 Rules

M. Kulaš

FernUniversität Hagen, FB Informatik, D-58084 Hagen, Germany
marija.kulas@fernuni-hagen.de

Abstract. A simple mathematical definition of the 4-port model for pure
Prolog is given. The model combines the intuition of ports with a compact
representation of execution state. Forward and backward derivation steps
are possible. The model satisfies a modularity claim, making it suitable for
formal reasoning.

1 Introduction

In order to formally handle (specify and prove) some properties of Prolog execu-
tion, we needed above all a definition of a port. A port is perhaps the single most
popular notion in Prolog debugging, but theoretically it appears still rather elusive.
The notion stems from the seminal article of L. Byrd [Byr80] which identifies four
different types of control flow in a Prolog execution, as movements in and out of
procedure boxes via the four ports of these boxes:

– call, entering the procedure in order to solve a goal,
– exit, leaving the procedure after a success, i. e. a solution for the goal is found,
– fail, leaving the procedure after the failure, i. e. there are no (more) solutions,
– redo, re-entering the procedure, i. e. another solution is sought for.

In this work, we present a formal definition of ports, which is a calculus of execution
states, and hence provide a formal model of pure Prolog execution, S:PP. Our
approach is to define ports by virtue of their effect, as port transitions. A port
transition relates two events. An event is a state in the execution of a given query
Q with respect to a given Prolog program Π. There are two restrictions we make:

1. the program Π has to be pure
2. the program Π shall first be transformed into a canonical form.

The first restriction concerns only the presentation in this paper, since our model
has been prototypically extended to cover the control flow of full Standard Prolog,
as given in [DEDC96]. The canonical form we use is the common single-clause rep-
resentation. This representation is arguably ‘near enough’ to the original program,
the only differences concern the head-unification (which is now delegated to the
body) and the choices (which are now uniformly expressed as disjunction).

2 Preliminaries and the main idea

First we define the canonical form, into which the original program has to be trans-
formed. Such a syntactic form appears as an intermediate stage in defining the
Clark’s completion of a logic program, and is used in logic program analysis. How-
ever, we are not aware of any consensus upon the name for this form. Some of the
names in the literature are single-clausal form [Lin95] and normalisation of a logic
program [KL02]. Here we use the name canonical form, partly on the grounds of
our imposing a transformation on if-then as well (this additional transformation is
of no interest in the present paper, which has to do only with pure Prolog, but we
state it for completeness).

93

Definition 1 (canonical form of a predicate) We say that a predicate P/n is
in the canonical form, if its definition consists of a single clause P (X1, ..., Xn) :−
B;Bs. Here B is a ”canonical body”, of the form X1=T1, . . . , Xn=Tn, G, Gs, and
P (X1, ..., Xn) is a ”canonical head”, i. e. X1, ..., Xn are distinct variables not appear-
ing in G ,Gs,T1 , ...,Tn . Further, Bs is a disjunction of canonical bodies (possibly
empty), Gs is a conjunction of goals (possibly empty), and G is a goal (for facts:
true). Additionally, each if-then goal A → B must be part of an if-then-else (like
A → B ; fail). ¥

Example 1 (canonical form) For the following program

q(a,b).
q(Z,c) :− r(Z).
r(c).

we obtain as canonical form

q(X,Y) :− X=a, Y=b, true; X=Z, Y=c, r(Z).
r(X) :− X=c, true. o

Having each predicate represented as one clause, and bearing in mind the box
metaphor above, we identified some elementary execution steps. For simplicity we
first disregard variables.

The following table should give some intuition about the idea. The symbols α,
β in this table serve to identify the appropriate redo-transition, depending on the
exit-transition. Transitions are deterministic, since the rules do not overlap.

Term Port transitions in the context of Term

H :−B call H _ call B exit B _ exit H fail B _ fail H redo H _ redo B

A,B call A,B _ call A exit A _ call B fail A _ fail A,B redo A,B _ redo B

exit B _ exit A,B fail B _ redo A

A;B call A;B _ call A exit A _
αexit A;B fail A _ call B αredo A;B _ redo A

exit B _
βexit A;B fail B _ fail A;B βredo A;B _ redo B

true call true _ exit true redo true _ fail true

fail call fail _ fail fail

Table 1. The idea of port transitions

Remark 1 (general goals) Observe that we extend the notion of a port, ini-
tially conceived for predicates, to general goals. The shifting of attention from pred-
icates to goals is the key idea of this approach. ¤

Notation 1 (distinguishing meta-level from object-level) In the follow-
ing we show object-level terms (i. e. actual Prolog terms) in sans serif, like true.
Meta-level terms (i. e. anything else in the calculus) will be shown in italics, like
call ,Σ, or in blackboard font, like , . ¤

Each transition pertains to a certain context, as indicated in Table 1. In the next
step towards the new definition of ports we shall make this dependency explicit, by
adding a parameter to each event.

Example 2 (good, bad and main) Relative to the program

94

main :− good, bad.
good.

there are the following execution steps for main:

call main _

call (good, bad) _

call good _

call true _

exit true _

exit good _

call bad _

fail bad _

redo good _

redo true _

fail true _

fail good _

fail (good, bad) _

fail main

The indentations should suggest the context of the transitions, which is not very
satisfying, since we want our representation to be entirely symbolic, and therefore
visual aspects may not be part of the definition. So we provide the context infor-
mation within the calculus, by means of a stack of ancestors, or A-stack. Hereby
we define the immediate ancestor (the parent) of a goal to be the context of the
transition. On some reflection, this is not enough. In case of a redo of an atomary
goal, like redo true above, we need to know how the goal was resolved, in order to
see the remaining alternatives. Since it is possible, in full Prolog, that a predicate
definition changes between an exit and a redo, simply accessing the program would
not guarantee the retrieval of the definition effective at the time of call. For this
reason we memorize, at an exit of an atomary goal, the effectively used definition
(more about this on page 6). Also, on exit from a disjunction, some kind of mem-
oing of the used disjunct is necessary. So we tried combining the memoing (both
kinds of memos: used definitions and used disjuncts) with the administration of
variable bindings, into one stack of bets, or B-stack. One claim of this paper is that
an A-stack and a B-stack are sufficient to represent the execution of pure Prolog. As
an illustration of the two-stack idea, let us show the above derivation in complete
detail. In Appendix B an example with variables is given. Each stack is enclosed in
parentheses, • separates the elements, and nil marks the bottom of a stack.

call main , {top}, {nil}
_ call (good, bad) , {main •nil}, {nil}
_ call good , {1/good, bad •main • nil}, {nil}
_ call true , {good • 1/good, bad •main •nil}, {nil}
_ exit true , {good • 1/good, bad •main •nil}, {nil}
_ exit good , {1/good, bad •main •nil}, {BY (true, good) •nil}
_ call bad , {2/good, bad •main • nil}, {BY (true, good) •nil}
_ fail bad , {2/good, bad •main •nil}, {BY (true, good) •nil}
_ redo good , {1/good, bad •main •nil}, {BY (true, good) •nil}
_ redo true , {good • 1/good, bad •main •nil}, {nil}
_ fail true , {good • 1/good, bad •main •nil}, {nil}
_ fail good , {1/good, bad •main • nil}, {nil}
_ fail (good, bad) , {main • nil}, {nil}
_ fail main , {nil}, {nil}

o

95

3 The calculus S:PP

We consider pure Prolog programs as given in Fig. 1, syntax domain ”program”,
under restriction that every ”definition” has to be in the canonical form.

Definition 2 (event) An event is a quadruple (Port ,Goal ,A-stack ,B -stack), as
given by the grammar in Fig. 1, syntax domain ”event”. ¥

Intuitively, an event is a state of Prolog execution, determined by four parameters:

– port
– current goal
– history of current goal (stack of generalized ancestors, for short: A-stack)
– current environment (stack of generalized bindings, bets, for short: B-stack)

Definition 3 (transition rule) Let Π be a program. Port transition rules wrt Π
are listed in Fig. 2. ¥

event ::= port goal 〈 stack of bets

stack of ancestors
〉

event ::= port goal , {stack of ancestors}, {stack of bets} % inline

definition ::= atom :− goal
program ::= {definition.}+

port ::= call | exit | fail | redo
goal ::= true | fail | atom | term=term | goal;goal | goal,goal
ancestor ::= true | fail | atom | term=term | tag/goal;goal | tag/goal,goal
tag ::= 1 | 2
memo ::= BY (goal, atom) | OR(goal, (tag/goal;goal))
bet ::= mgu | memo
stack of Xs ::= nil | X • stack of Xs

Variables
, : stack of ancestors, U : ancestor
, : stack of bets, Σ : bet

σ : substitution
A, B , C , G , H : goal
GA : atom
T : term

Semantic functions
T1 = T2 := T1 and T2 are identical
σ(T) = application of σ upon T
mgu(T1 ,T2) = mgu of T1 and T2

substOf() = current substitution = composition of all mgus from

substOf(nil)(T) := T

substOf(Σ •)(T) :=

{

Σ(substOf()(T)), if Σ is an mgu
substOf()(T), if Σ is a memo

Syntactic domains that we do not redefine, but take in their usual sense:
term (taken in the Prolog sense, as a superset of goal);
atom (atomary goal in logic programming);
substitution, mgu.

Fig. 1. Language of events

96

Conjunction

call A,B 〈 〉 _ call A 〈
1/A,B • 〉 (S:conj:1)

exit A′ 〈
1/A,B • 〉 _ call B ′′ 〈

2/A,B • 〉, with B ′′ := substOf()(B) (S:conj:2)

fail A′ 〈
1/A,B • 〉 _ fail A,B 〈 〉 (S:conj:3)

exit B ′ 〈
2/A,B • 〉 _ exit A,B 〈 〉 (S:conj:4)

fail B ′ 〈
2/A,B • 〉 _ redo A 〈

1/A,B • 〉 (S:conj:5)

redo A,B 〈 〉 _ redo B 〈
2/A,B • 〉 (S:conj:6)

Disjunction

call A;B 〈 〉 _ call A 〈
1/A;B • 〉 (S:disj:1)

fail A 〈
1/A;B • 〉 _ call B 〈

2/A;B • 〉 (S:disj:2)

fail B 〈
2/A;B • 〉 _ fail A;B 〈 〉 (S:disj:3)

exit A 〈
1/A;B • 〉 _ exit A;B 〈OR(A,(1/A;B)) • 〉 (S:disj:4)

exit B 〈
2/A;B • 〉 _ exit A;B 〈OR(B,(2/A;B)) • 〉 (S:disj:5)

redo A;B 〈OR(C ,(N/A;B)) • 〉 _ redo C 〈
N/A;B • 〉 (S:disj:6)

True

call true 〈 〉 _ exit true 〈 〉 (S:true:1)

redo true 〈 〉 _ fail true 〈 〉 (S:true:2)

Fail

call fail 〈 〉 _ fail fail 〈 〉 (S:fail)

Explicit unification

call T1=T2 〈 〉 _

{

exit T1=T2 〈
σ • 〉, if mgu(T1 ,T2) = σ

fail T1=T2 〈 〉, otherwise
(S:unif:1)

redo T1=T2 〈
σ • 〉 _ fail T1=T2 〈 〉 (S:unif:2)

User-defined atomary goal GA

call GA 〈 〉 _











call σ(B) 〈
GA • 〉, if H :− B is a fresh renaming of a

clause in Π, and mgu(GA,H) = σ, and σ(GA) = GA

fail GA 〈 〉, otherwise

(S:atom:1)

exit B 〈
GA • 〉 _ exit GA 〈BY (B,GA) • 〉 (S:atom:2)

fail B 〈
GA • 〉 _ fail GA 〈 〉 (S:atom:3)

redo GA 〈
BY (B,G′

A) •
〉 _ redo B 〈

G′

A
• 〉 (S:atom:4)

Fig. 2. Operational semantics S:PP of pure Prolog
97

3.1 Remarks on the calculus

About event:

– Current goal is a generalization of selected literal : rather than focusing upon
single literals, we focus upon goals.

– Ancestor of a goal is defined in a disambiguating manner, via tags.
– The notion of environment is generalized, to contain following bets:

1. variable bindings,
2. choices taken (OR-branches),
3. used predicate definitions.

Environment is represented by one stack, storing each bet as soon as it is com-
puted. For an event to represent the state of pure Prolog execution, suffices here
one environment and one ancestor stack.

About transitions:

– Port transition relation is functional. The same holds for its converse, if re-
stricted on legal events, i. e. events that can be reached from an initial event of
the form call G 〈nil

nil
〉.

– This uniqueness of legal derivations enables forward and backward derivation
steps, in the spirit of the Byrd’s article.

– Modularity of derivation: The execution of a goal can be abstracted like for

example call G 〈 〉
∗
_ exit G 〈 + 〉. Notice the same A-stack.

Remark 2 (atomary goal) By atom or atomary goal we denote only user-defined
predications. So true, fail or T1=T2 shall not be considered atoms. ¤

Remark 3 (mgu) The most general unifiers σ shall be chosen to be idempotent,
i. e. σ(σ(T)) = σ(T). ¤

Remark 4 (tags) The names A′ or B ′ of (S:conj:2)–(S:conj:5) should only suggest
that the argument is related to A or B , but the actual retrieval is determined by the
tags 1 and 2, saying that respectively the first or the second conjunct are currently
being tried. For example, the rule (S:conj:1) states that the call of A,B leads to
the call of A with immediate ancestor 1/A,B . This kind of add-on mechanism
is necessary to be able to correctly handle a query like A,A where retrieval by
unification would get stuck on the first conjunct. ¤

Remark 5 (canonical form) Note the requirement σ(GA) = GA in (S:atom:1).
Since the clauses are in canonical form, unifying the head of a clause with a goal
could do no more than rename the goal. Since we do not need a renaming of the
goal, we may fix the mgu to just operate on the clause. ¤

Remark 6 (logical update view) Observe how (S:atom:2) and (S:atom:4) serve
to implement the logical update view of Lindholm and O’Keefe [LO87], saying that
the definition of a predicate shall be fixed at the time of its call. This is further
explained in the following remark. ¤

Remark 7 (”lazy” binding) Although we memorize the used predicate defini-
tion on exit, the definition will be unaffected by exit bindings, because bindings
are applied lazily : Instead of ”eagerly” applying any bindings as they occur (e. g. in
T1=T2 , in resolution or in read), we chose to do this only in conjunction (in rule

98

(S:conj:2)) and nowhere else. Due to the rules (S:conj:1) and (S:conj:4), the exit
bindings shall not affect the predicate definition like e. g. p(X) :− q(X), r(X).

Also, lazy bindings enable less ‘jumpy’ trace. A jumpy trace can be illustrated
by the following exit event (assuming we applied bindings eagerly):

exit append([O],B, [O|B]) , {2/([I|B] = [I|B]), append([],B,B) • },

The problem consists in exiting the goal append([],B,B) via append([O],B, [O|B]),
the latter of course being no instance of the former. By means of lazy binding,
we avoid the jumpiness, and at the same time make memoing definitions on exit
possible. To ensure that the trace of a query execution shows the correct bindings,
an event shall be printed only after the current substitution has been applied to it.

A perhaps more important collateral advantage of lazy binding is that a suc-
cessful derivation (see Definition 11) can always be abstracted as follows:

call Goal
∗
_ exit Goal

even if Goal happened to get further instantiated in the course of this derivation.
The instantiation will be reflected in the B-stack but not in the goal itself. ¤

4 Modelling Prolog execution

Definition 4 (port transition relation, converse) Let Π be a program. Port
transition relation _ wrt Π is defined in Fig. 2. The converse relation shall be
denoted by ^ . If E1 _ E, we say that E1 leads to E. An event E can be entered,
if some event leads to it. An event E can be left, if it leads to some event. ¥

Lemma 1 The relation _ is functional, i. e. for each event E there can be at most
one event E1 such that E _ E1. ¥

Proof: The premisses of the transition rules are mutually disjunct, i. e. there are
no critical pairs. ¤

Example 3 (converse relation) The converse of the port transition relation is
not functional, since there may be more than one event leading to the same event:

call T1=T2 〈
nil
nil
〉 _ fail T1=T2 〈

nil
nil
〉

redo T1=T2 〈
σ •nil
nil

〉 _ fail T1=T2 〈
nil
nil
〉

We could have prevented the ambiguous situation above and made converse relation
functional as well, by giving natural conditions on redo-transitions for atomary goal
and unification. However, further down it will be shown that, for events that are
legal, the converse relation is functional anyway. o

Definition 5 (derivation) Let Π be a program. Let E0, E be events. A Π-

derivation of E from E0, written as E0
∗
_ E, is a path from E0 to E in the

port transition relation wrt Π. We say that E can be reached from E0. ¥

Definition 6 (initial event, top-level goal) An initial event is any event of the
form call Q 〈nil

nil
〉, where Q is a goal. The goal Q of an initial event is called a

top-level goal, or a query. ¥

99

Definition 7 (legal derivation, legal event, execution) Let Π be a program.
If there is a goal Q such that

call Q 〈nil
nil
〉

∗
_ E0

∗
_ E

is a Π-derivation, then we say that E0
∗
_ E is a legal Π-derivation, E is a legal

Π-event, and call Q 〈nil
nil
〉

∗
_ E0 is a Π-execution of the query Q . ¥

Definition 8 (final event) A legal event E is a final event wrt program Π, if
there is no transition E _ E1 wrt Π. ¥

Definition 9 (parent of goal) If E = Port G 〈 〉 is an event, and = P • ,
then we say that P is the parent of G . ¥

Notation 2 (selector tags) Function Sel(U) is defined as follows:

Sel((1/A,B)) := A, Sel((2/A,B)) := B

and analogously for disjunction. ¤

Definition 10 (push/pop event) Let E be an event with the port Port. If Port
is one of call , redo, then E is a push event. If Port is one of exit , fail , then E is a
pop event. ¥

Lemma 2 (final event) If E is a legal pop event, and its A-stack is not empty,
then ∃E1 : E _ E1 ¥

Proof (sketch): According to the rules (see also Appendix A), the possibilities
to leave an exit event are:

exit A′ 〈
1/A,B • 〉 _ call B ′′ 〈

2/A,B • 〉, with B ′′ := substOf()(B)

exit B ′ 〈
2/A,B • 〉 _ exit A,B 〈 〉

exit A 〈
1/A;B • 〉 _ exit A;B 〈OR(A,(1/A;B)) • 〉

exit B 〈
2/A;B • 〉 _ exit A;B 〈OR(B,(2/A;B)) • 〉

exit B 〈
GA • 〉 _ exit GA 〈BY (B,GA) • 〉

These rules state that it is always possible to leave an exit event exit G 〈 〉, save for
the following two restrictions: The parent goal may not be true, fail or a unification;
and if the parent goal P is a disjunction, then there has to hold

G = Sel(P) (1)

i. e. it is not possible to leave an event exit A′ 〈
1/A;B • 〉 if A′ 6= A (and similarly

for the second disjunct). The first restriction is void, since a parent cannot be true,
fail or a unification anyway, according to the rules. It remains to show that the
second restriction is also void, i. e. a legal exit event has necessarily the property
(1). Looking at the rules for entering an exit event, we note that the goal part of
an exit event either comes from the A-stack, or is true or T1=T2 . The latter two
possibilities we may exclude, because exit true 〈

1/A;B • 〉 can only be derived from

call true 〈
1/A;B • 〉, which cannot be reached if true 6= A. Similarly for unification.

100

So the goal part of a legal exit event must come from the A-stack. The elements
of the A-stack originate from call/redo events, and they have the property (1).
In conclusion, we can always leave a legal exit event with a nonempty A-stack.
Similarly for a fail event. ¤

Proposition 1 (uniqueness) If E is a legal event, then E can have only one legal
predecessor, and only one successor. In case E is non-initial, there is exactly one
legal predecessor. In case E is non-final, there is exactly one successor. ¥

Proof: The successor part follows from the functionality of _ . Looking at the
rules, we note that only two kinds of events may have more than one predecessor:
fail GA 〈 〉 and fail T1=T2 〈 〉. Let fail T1=T2 〈 〉 be a legal event. Its predecessor

may have been call T1=T2 〈 〉, on the condition that T1 and T2 have no mgu (rule

(S:unif:1)), or it could have been redo T1=T2 〈
σ • 〉 (rule (S:unif:2)). In the latter

case, redo T1=T2 〈
σ • 〉 must be a legal event, so the B-stack σ • had to be

derived. The only rule able to derive such a B-stack is (S:unif:1), on the condition
that the previous event was call T1=T2 〈 〉 and mgu(T1 ,T2) = σ. Hence, there

can be only one legal predecessor of fail T1=T2 〈 〉, depending solely on T1 and

T2 . By a similar argument we can prove that fail GA 〈 〉 can have only one legal
predecessor. This concludes the proof of functionality of the converse relation, if
restricted to the set of legal events. ¤

Notation 3 (impossible event) As a notational convenience, all the events which
are not final and do not lead to any further events by means of transitions with
respect to the given program, are said to lead to the impossible event, written as
⊥. Analogously for events that are not initial events and cannot be entered. In
particular, redo fail _ ⊥ and exit fail ^ ⊥ with respect to any program. Some
impossible events are: call G 〈σ •nil

nil
〉, redo G 〈

nil
〉 (cannot be entered, non-initial),

and redo p 〈nil 〉 (cannot be left, non-final). ¤

Lemma 3 (non-legal event) If E
∗
_ ⊥, then E is not legal. If E

∗
^ ⊥, then E

is not legal. ¥

Proof: Let E ^ E1. If E is legal, then, because of the uniqueness of the transition,
E1 has to be legal as well. ¤

Lemma 4 (call is up-to-date) For a legal call event call G 〈 〉 holds that G =
substOf()(G), meaning that the substitutions from the B-stack are already applied
upon the goal to be called. In other words, the goal of any legal call event is up-to-
date relative to the current substitution. ¥

Notice that this property holds only for call events.

Notation 4 (stack concatenation) Concatenation of stacks we denote by +.
Concatenating to both stacks of an event we denote by ‡: If E = Port G 〈 〉, then

E ‡ 〈 〉 := Port G 〈 +
+ 〉. ¤

Proposition 2 (modularity of derivation) Let Π be a program. Let Pop be
one of exit , fail . If

call G 〈nil
nil
〉 _ E1 _ ... _ En _ Pop G 〈

nil
〉

101

is a legal Π-derivation, then for every A-stack and for every B-stack such that
call G 〈 〉 is a legal event, holds:

call G 〈 〉 _ E1 ‡ 〈 〉 _ ... _ En ‡ 〈 〉 _ Pop G 〈 + 〉

is also a legal Π-derivation. ¥

Proof: Observe that our rules (with the exception of (S:conj:2)) refer only to the
existence of the top element of some stack, never to the emptiness of a stack. Since
the top element of a stack S cannot change after appending another stack to S, it
is possible to emulate each of the original derivation steps using the ‘new’ stacks.

It remains to consider the rule (S:conj:2), which applies the whole current substi-
tution upon the second conjunct. First note that any variables in a legal derivation
stem either from the top-level goal or are fresh. According to the Lemma 4, a call
event is always up-to-date, i. e. the current substitution has already been applied to
the goal. The most general unifiers may be chosen to be idempotent, so a multiple
application of a substitution amounts to a single application. Hence, if call G 〈 〉
is a legal event, the substitution of cannot affect any variables of the original
derivation. ¤

5 Applications

5.1 Specifying program properties

Uniqueness and modularity of legal port derivations allow us to succinctly define
some traditional notions.

Definition 11 (termination, success, failure) A goal G is said to terminate
wrt program Π, if there is a Π-derivation

call G 〈nil
nil
〉

∗
_ Pop G 〈

nil
〉

where Pop is one of exit , fail . In case of exit , the derivation is successful, otherwise
it is failed. ¥

In a failed derivation, = nil .

Definition 12 (computed answer) In a successful derivation

call G 〈nil
nil
〉

∗
_ exit G 〈

nil
〉

is substOf(), restricted upon the variables of G , called the computed answer sub-
stitution for G . ¥

5.2 Proving program properties

Uniqueness of legal derivation steps enables forward and backward derivation steps,
in the spirit of the Byrd’s article. Push events (call, redo) are more amenable to
forward steps, and pop events (exit, fail) are more amenable to backward steps. We
illustrate this by a small example.

Lemma 5 If the events on the left-hand sides are legal, the following are legal
derivations (for appropriate ,):

exit A;B , fail 〈 〉 ^ exit A 〈
1/A;B,fail • 〉 (2)

redo A;B , fail 〈 〉 _ redo A 〈
1/A;B,fail • 〉 (3)

¥

102

Proof: The first statement claims: If exit A;B , fail 〈 〉 is legal, then it was reached
via exit A. Without inspecting , in general it is not known whether a disjunc-
tion succeeded via its first, or via its second member. But in this particular dis-
junction, the second member cannot succeed: Assume there are some , with
exit A;B , fail 〈 〉 ^ exit B , fail 〈 〉. According to the rules:

exit B , fail 〈 〉 ^ exit fail 〈
2/B,fail • 〉 ^ ⊥

So according to Lemma 3, exit B , fail 〈 〉 is not a legal event, which proves (2).
Similarly, the non-legal derivation redo B , fail _ redo fail _ ⊥ proves (3). ¤

Modularity of legal derivations enables abstracting the execution of a goal, like
in the following example.

Example 4 (modularity) Assume that a goal A succeeds, i. e. call A 〈 nil
nil
〉

∗
_

exit A 〈
nil
〉. Then we have the following legal derivation:

call A,B 〈nil
nil
〉 _ call A 〈 nil

1/A,B •nil
〉, by (S:conj:1)

∗
_ exit A 〈 •nil

1/A,B •nil
〉, by modularity and success of A

_ call B ′ 〈 •nil
2/A,B •nil

〉, by (S:conj:2), where B ′ = substOf()(B)

If A fails, then we have:

call A,B 〈nil
nil
〉 _ call A 〈 nil

1/A,B •nil
〉, by (S:conj:1)

∗
_ fail A 〈 nil

1/A,B •nil
〉, by modularity and failure of A

_ fail A,B 〈nil
nil
〉, by (S:conj:3) o

6 Conclusions and outlook

In this paper we give a simple mathematical definition S:PP of the 4-port model of
pure Prolog. Some potential for formal verification of pure Prolog has been outlined.
There are two interesting directions for future work in this area:

(1) formal specification of the control flow of full Standard Prolog (currently we
have a prototype for this, within the 4-port model)

(2) formal specification and proof of some non-trivial program properties, like ade-
quacy and non-interference of a practical program transformation.

7 Related work

Concerning attempts to formally define the 4-port model, we are aware of only few
previous works. One is a graph-based model of Tobermann and Beckstein [TB93],
who formalize the graph traversal idea of Byrd, defining the notion of a trace (of
a given query with respect to a given program), as a path in a trace graph. The
ports are quite lucidly defined as hierarchical nodes of such a graph. However,
even for a simple recursive program and a ground query, with a finite SLD-tree,
the corresponding trace graph is infinite, which limits its applicability. Another
model of Byrd box is a continuation-based approach of Jahier, Ducassé and Ridoux
[JDR00]. There is also a stack-based attempt in [Kul00], but although it provides

103

for some parametrizing, it suffers essentially the same problem as the continuation-
based approach, and also the prototypical implementation of the tracer given in
[Byr80], taken as a specification of Prolog execution: In these three attempts, a
port is represented by some semantic action (e. g. writing of a message), instead of
a formal method. Therefore it is not clear how to use any of these models to prove
some port-related assertions.

In contrast to the few specifications of the Byrd box, there are many more gen-
eral models of pure (or even full) Prolog execution. Due to space limitations we
mention here only some models, directly relevant to S:PP, and for a more compre-
hensive discussion see e. g. [KB01]. Comparable to our work are the stack-based
approaches. Stärk gives in [Stä98], as a side issue, a simple operational semantics of
pure logic programming. A state of execution is a stack of frame stacks, where each
frame consists of a goal (ancestor) and an environment. In comparison, our state of
execution consists of exactly one environment and one ancestor stack. The seminal
paper of Jones and Mycroft [JM84] was the first to present a stack-based model of
execution, applicable to pure Prolog with cut added. It uses a sequence of frames.
In these stack-based approaches (including our previous attempt [KB01]), there is
no modularity, i. e. it is not possible to abstract the execution of a subgoal.

Acknowledgments

Many thanks for helpful comments are due to anonymous referees.

References

[Byr80] Lawrence Byrd. Understanding the control flow of Prolog programs. In S. A.
Tärnlund, editor, Proc. of the 1980 Logic Programming Workshop, pages 127–
138, Debrecen, Hungary, 1980. Also as D. A. I. Research Paper No. 151.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard (Reference
Manual). Springer-Verlag, 1996.

[JDR00] E. Jahier, M. Ducassé, and O. Ridoux. Specifying Byrd’s box model with a
continuation semantics. In Proc. of the WLPE’99, Las Cruces, NM, volume 30
of ENTCS. Elsevier, 2000. http://www.elsevier.nl/locate/entcs/volume30.html.

[JM84] N. D. Jones and A. Mycroft. Stepwise development of operational and deno-
tational semantics for Prolog. In Proc. of the 1st Int. Symposium on Logic
Programming (SLP’84), pages 281–288, Atlantic City, 1984.

[KB01] M. Kulaš and C. Beierle. Defining Standard Prolog in rewriting logic. In
K. Futatsugi, editor, Proc. of the 3rd Int. Workshop on Rewriting Logic and its
Applications (WRLA 2000), Kanazawa, volume 36 of ENTCS. Elsevier, 2001.
http://www.elsevier.nl/locate/entcs/volume36.html.

[KL02] A. King and L. Lu. A backward analysis for constraint logic programs. Theory
and Practice of Logic Programming, 2(4):517–547, 2002.

[Kul00] M. Kulaš. A rewriting Prolog semantics. In M. Leuschel, A. Podelski, R. Ra-
makrishnan C. and U. Ultes-Nitsche, editors, Proc. of the CL 2000 Workshop
on Verification and Computational Logic (VCL 2000), London, 2000.

[Lin95] T. Lindgren. Control flow analysis of Prolog (extended remix). Technical Report
112, Uppsala University, 1995. http://www.csd.uu.se/papers/reports.html.

[LO87] T. Lindholm and R. A. O’Keefe. Efficient implementation of a defensible se-
mantics for dynamic Prolog code. In Proc. of the 4th Int. Conference on Logic
Programming (ICLP’87), pages 21–39, Melbourne, 1987.

[Stä98] Robert F. Stärk. The theoretical foundations of LPTP (a logic program theorem
prover). J. of Logic Programming, 36(3):241–269, 1998. Source distribution
http://www.inf.ethz.ch/˜staerk/lptp.html.

[TB93] G. Tobermann and C. Beckstein. What’s in a trace: The box model revisited.
In Proc. of the 1st Int. Workshop on Automated and Algorithmic Debugging
(AADEBUG’93), Linköping, volume 749 of LNCS. Springer-Verlag, 1993.

104

A Leaving events

Leaving a call event

call A,B 〈 〉 _ call A 〈
1/A,B • 〉 (S:conj:1)

call A;B 〈 〉 _ call A 〈
1/A;B • 〉 (S:disj:1)

call true 〈 〉 _ exit true 〈 〉 (S:true:1)

call fail 〈 〉 _ fail fail 〈 〉 (S:fail)

call T1=T2 〈 〉 _

{

exit T1=T2 〈
σ • 〉, if mgu(T1 ,T2) = σ

fail T1=T2 〈 〉, otherwise
(S:unif:1)

call GA 〈 〉 _











call σ(B) 〈
GA • 〉, if H :− B is a fresh renaming of a

clause in Π, and mgu(GA,H) = σ, and σ(GA) = GA

fail GA 〈 〉, otherwise

(S:atom:1)

Leaving a redo event

redo A,B 〈 〉 _ redo B 〈
2/A,B • 〉 (S:conj:6)

redo A;B 〈OR(C ,(N/A;B)) • 〉 _ redo C 〈
N/A;B • 〉 (S:disj:6)

redo true 〈 〉 _ fail true 〈 〉 (S:true:2)

redo T1=T2 〈
σ • 〉 _ fail T1=T2 〈 〉 (S:unif:2)

redo GA 〈
BY (B,G′

A) •
〉 _ redo B 〈

G′

A
• 〉 (S:atom:4)

Leaving an exit event

exit A′ 〈
1/A,B • 〉 _ call B ′′ 〈

2/A,B • 〉, with B ′′ := substOf()(B) (S:conj:2)

exit B ′ 〈
2/A,B • 〉 _ exit A,B 〈 〉 (S:conj:4)

exit A 〈
1/A;B • 〉 _ exit A;B 〈OR(A,(1/A;B)) • 〉 (S:disj:4)

exit B 〈
2/A;B • 〉 _ exit A;B 〈OR(B,(2/A;B)) • 〉 (S:disj:5)

exit B 〈
GA • 〉 _ exit GA 〈BY (B,GA) • 〉 (S:atom:2)

Leaving a fail event

fail A′ 〈
1/A,B • 〉 _ fail A,B 〈 〉 (S:conj:3)

fail B ′ 〈
2/A,B • 〉 _ redo A 〈

1/A,B • 〉 (S:conj:5)

fail A 〈
1/A;B • 〉 _ call B 〈

2/A;B • 〉 (S:disj:2)

fail B 〈
2/A;B • 〉 _ fail A;B 〈 〉 (S:disj:3)

fail B 〈
GA • 〉 _ fail GA 〈 〉 (S:atom:3)

105

B An example with variables

Assume the following program Π:

post(X,Y) :− one(X,Y), two(X,Y).
one(X,˙) :− X=1.
two(˙,Y) :− Y=a; Y=b.

Table 2 below shows the complete Π-execution of the goal post(X,Y), fail in the model S:PP. Highlighted are the A-stacks and the mgus. Notice the
”lazy” binding of variables in the current goal.

call (post(X, Y), fail) , {nil} , {nil}

_ call post(X, Y) , {1/post(X, Y), fail •nil} , {nil}

_ call (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ call one(X, Y) , {1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ call X=1 , {one(X, Y) • 1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ exit X=1 , {one(X, Y) • 1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , { [X/1] •nil}

_ exit one(X, Y) , {1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ call two(1, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ call (Y=a; Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ call Y=a , {(1/(Y=a); Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit Y=a , {(1/(Y=a); Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , { [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit (Y=a; Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit two(1, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit post(X, Y) , {1/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ call fail , {2/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ fail fail , {2/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo post(X, Y) , {1/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo two(X, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

106

_ redo (Y=a; Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {OR(Y=a, (1/(Y=a); Y=b)) • [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo Y=a , {(1/(Y=a); Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , { [Y/a] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ fail Y=a , {(1/(Y=a); Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ call Y=b , {(2/(Y=a); Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit Y=b , {(2/(Y=a); Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , { [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit (Y=a; Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit two(1, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ exit post(X, Y) , {1/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ call fail , {2/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ fail fail , {2/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo post(X, Y) , {1/post(X, Y), fail •nil} , {BY ((one(X, Y), two(X, Y)), post(X, Y)) •BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo two(X, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY ((Y=a; Y=b), two(1, Y)) •OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo (Y=a; Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {OR(Y=b, (2/(Y=a); Y=b)) • [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo Y=b , {(2/(Y=a); Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , { [Y/b] •BY (X=1, one(X, Y)) • [X/1] •nil}

_ fail Y=b , {(2/(Y=a); Y=b) • two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ fail (Y=a; Y=b) , {two(1, Y) • 2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ fail two(1, Y) , {2/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo one(X, Y) , {1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {BY (X=1, one(X, Y)) • [X/1] •nil}

_ redo X=1 , {one(X, Y) • 1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , { [X/1] •nil}

_ fail X=1 , {one(X, Y) • 1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ fail one(X, Y) , {1/one(X, Y), two(X, Y) • post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ fail (one(X, Y), two(X, Y)) , {post(X, Y) • 1/post(X, Y), fail •nil} , {nil}

_ fail post(X, Y) , {1/post(X, Y), fail •nil} , {nil}

_ fail (post(X, Y), fail) , {nil} , {nil}

Table 2. Execution of a query in S:PP

107

	Contents
	Preface
	MultiCPL'03
	1 Declarative Laziness in a Concurrent Constraint Language Alfred Spiessens, Raphaël Collet, and Peter Van Roy
	2 Implementing a Distributed Shortest Path Propagator with Message Passing Luis Quesada, Stefano Gualandi, and Peter Van Roy
	3 Game-based CSP James Little, Eugene Freuder, and Paidi Creed
	4 Implementing Constraint Imperative Languages with Higher-order Functions Martin Grabmüller
	5 Constraint Imperative Programming with C.3ex++ Olaf Krzikalla
	6 firstcs -- A Pure Java Constraint Programming Engine Matthias Hoche, Henry Müller, Hans Schlenker, and Armin Wolf

	RCoRP'03
	7 Delaying ``big'' operators in order to construct some new consistencies Andreï Legtchenko
	8 Pure Prolog Execution in 21 Rules Marija Kulaš

