Single-domain MoS₂: from single-layer growth to the formation of first bi-layer seeds

<u>Moritz Ewert</u>^{1,2,3}, Lars Buß^{1,2}, Francesca Genuzio⁴, Tevfik Onur Menteş⁴, Andrea Locatelli⁴, Jens Falta^{2,3}, and Jan Ingo Flege^{1,2,3}

¹Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus- Senftenberg, Germany ²Institute of Solid State Physics, University of Bremen, Germany

³MAPEX Center for Materials and Processes, University of Bremen, Germany

⁴Elettra–Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy

Email: mewert@b-tu.de

Single-layer molybdenum disulfide (MoS₂) is a heavily investigated transition metal dichalcogenide owing to its direct band gap, rendering it very promising for novel optical applications. Consequently, the electronic properties of single-layer MoS_2 have been studied experimentally with several surface science methods. A well-known, prototypical model system is MoS_2 on Au(111). Here, we present real-time observations of MoS₂ growth on Au(111) at elevated temperature using in-situ low-energy electron microscopy (LEEM). Our continuous growth method leads to the formation of micron-sized single-layer MoS₂ islands. Employing two distinctly different deposition rates and carefully selected growth temperatures, we are able to tune the growth mechanism of the MoS₂ islands from a balanced distribution of the two expected mirror domains towards a singledomain distribution. The single-domain character of these islands is confirmed by dark-field imaging and micro-diffraction (µLEED), the former revealing a relative surface coverage of 90:10 of the mirror domains [1]. Intriguingly, selected-area angle-resolved photoelectron spectroscopy (µARPES) data of these mirror domains not only underline their three-fold symmetry, but also indicate the presence of MoS₂ bilayer regions. Using X-ray photoemission electron microscopy (XPEEM) and intensity-voltage (I(V)) LEEM, we identify the bilayer nucleation areas at nearly full surface coverage and propose a model pathway for their formation [2].

Figure 1. XPEEM data from Au4 $f_{7/2}$ (a) and S2p_{3/2} (b) core-level photoelectrons (hv \approx 250 eV).

Acknowledgement

We gratefully acknowledge support by the Graduate Research School of the Brandenburg University of Technology and the Central Research Fund of the University of Bremen.

References

[1] M Ewert, L Buß, JV Lauritsen, J Falta and JI Flege, submitted to ACS Appl. Nanomaterials.

[2] M Ewert, L Buß, N Braud, AK Kundu, PM Sheverdyaeva, P Moras, F Genuzio, TO Menteş, A Locatelli, J Falta and JI Flege, *Front. Phys.* 9, 654845 (2021).