
In-situ growth characterization of 2D heterostructures: MoSe₂ on intercalated graphene/Ru(0001)

Lars Buβ¹, Nicolas Braud², Moritz Ewert¹, Matteo Jugovac³, Tevfik Onur Menteş³, Andrea Locatelli³, Jens Falta², Jan Ingo Flege¹

¹Applied Science and Semiconductor Spectroscopy, BTU Cottbus-Senftenberg, Cottbus, Germany ²Institute for Solid State Physics, University of Bremen, Bremen, Germany ³Elettra-Sincrotrone Trieste S.C.p.A, Bazovizza, Trieste, Italy Email: lars.buss@b-tu.de

The combination of graphene with other two-dimensional materials in vertically stacked 2d heterostructures gives rise to the possibility of altering the electronic properties of both materials in the attempt of tailoring new structures for the application in electronics, catalysis, or sensors. Despite the great interest, most of the investigated 2d heterostructures were realized by mechanical exfoliation and chemical vapor deposition in the millibar range, and true *in-situ* characterization of the growth process is rarely found in the literature. On *in-situ* prepared samples, Dau et al. [1] have shown that a single layer of MoSe₂ grown on few-layer graphene is effectively n-doped and a bandgap of 250meV is opened at the Dirac Point of graphene. To understand the growth process and its significance in terms of electronic properties, here, we have investigated the growth of singlelayer MoSe₂ on single-layer graphene on Ru(0001) via real-time in-situ LEEM and µLEED measurements. The graphene is grown by deposition of carbon from an ethylene precursor at elevated temperatures. After the preparation of graphene, MoSe₂ has been prepared via codeposition of Mo and Se at 250°C as shown in Figure 1a). When only partially covering the Ru(0001) surface with graphene, intercalation of selenium atoms through the edges of the graphene can be observed, which leads to a decoupling of the graphene and the substrate and appears to enhance the subsequent growth of MoSe₂ on the graphene. Rotational ordering of the MoSe₂ is achieved by annealing at elevated temperatures, which is strongly enhanced by the pronounced mobility of single-domain MoSe₂ islands that align with the high symmetry orientations of the underlying graphene (cf. Figure 1b), indicating a non-negligible interaction between the two vander-Waals materials. XPEEM and µARPES (cf. Figure 1c) prove the monolayer nature of the asgrown MoSe₂ as well as the free-standing character of the Se-intercalated graphene underneath. Interestingly, the charge-transfer doping between the graphene and the intercalant is effectively reversed by the charge transfer between the graphene and the MoSe₂, leading to a virtually undoped, freestanding graphene inside the selenium-MoSe₂ sandwich.

Figure 1. (a) BF-LEEM image of MoSe2/Gr/Ru(0001). The lens-shaped graphene island appears dark while the MoSe₂ is visible as bright spots inside the island. (b) μ LEED pattern obtained on the graphene island. The reflections of the respective materials are marked. (b) μ ARPES of MoSe2/Gr/Ru(0001) obtained on the graphene island.

References

[1] M. Dau, M. Gay, et al., ACS NANO 12, 2319 (2018)