Contribution submission to the conference Regensburg 2025

Structural and chemical analysis of coexisting hexagoal and monoclinic phases of samarium oxide on Cu(111) — BJÖRN RIEDEL, LARS BUSS, RAQUEL SANCHEZ-BARQUILLA, and JAN INGO FLEGE — Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Germany

The absence of in-depth spectroscopic and structural studies on model systems leads to a knowledge gap in understanding how the structure of samaria influences its chemical behavior. A multi-method approach has been employed to investigate the Cu(111)-supported Sm_2O_3 surface with high structural and chemical sensitivity by using low-energy electron microscopy (LEEM) in combination with X-ray absorption photoemission electron microscopy (XAS-PEEM) and other complementary methods such as micro-spot low-energy electron diffraction (μLEED) and X-ray photoelectron spectroscopy (XPS). Our measurements show the phase coexistence of small hexagonal $A-Sm_2O_3(0001)$ islands and monoclinic $B-Sm_2O_3(100)$ rectangular-shaped islands with different rotated rectangular domains. Furthermore, the redox properties of both Sm_2O_3 phases were studied by exposing the system to reducing (H_2) and oxidizing (CO_2) conditions, indicating a facedependent reduction and oxidation behavior. Moreover, the monoclinic $Sm_2O_3(100)$ islands appear less stable as they change to the hexagonal phase during annealing. These results indicate a highly dynamic system that can easily be adjusted by adapting the growth conditions, such as growth temperature and oxygen partial pressure.

Part:	0
Туре:	Talk
Topic:	Heterogeneous catalysis
Keywords:	Samaria; LEEM; XAS-PEEM; structure sensitivity
Email:	bjoern.riedel@b-tu.de