Contribution submission to the conference Regensburg 2025

XPS study of redox mechanism in $Na_{2.5-x}Fe_{1.75}(SO_4)_3$ cathode material for high-voltage sodium-ion batteries — •NEAMA IMAM¹, KARSTEN HENKEL¹, ANNA MILEWSKA², JANINA MOLENDA², EHRENFRIED ZSCHECH¹, and JAN INGO FLEGE¹ — ¹Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Germany — ²AGH University of Krakow, Faculty of Energy and Fuels, Krakow, Poland

A multiplet splitting model based on the original work by Gupta and Sen has been used to track the redox mechanism and electronic structure of Na_{2.5-x}Fe_{1.75}(SO₄)₃, a high-performance cathode material for sodium-ion batteries (SIBs). This high-purity, off-stoichiometric openchannel cathode material with a tailored sodium-ion distribution, synthesized using an optimized solid-state route, demonstrates a high operating voltage of ~3.8 V, surpassing the values reported for other cathode materials in the literature. X-ray photoelectron spectroscopy (XPS) was employed to analyze the evolution of the material's electronic structure at various charging potentials. Fe2p_{3/2} spectra decomposition using the multiplet splitting model revealed the gradual oxidation of Fe²⁺ to Fe³⁺ during battery charging while transitioning from its pristine state (x = 0) with the presence of only Fe²⁺ at the cathode surface to the highest sodium de-intercalation level (x = 1.61). This result is consistent with the electrochemical analysis.

Part:	СРР
Туре:	Vortrag;Talk
Topic:	Energy Storage and Batteries
Keywords:	sodium-ion batteries; polyionic cathode;
	XPS; multiplet splitting model
Email:	imamneam@b-tu.de