Contribution submission to the conference Regensburg 2025

Oxide growth and oxide/metal interaction in $\text{CeO}_x/\text{Ni(111)}$ — •DOMINIC GUTTMANN, RAQUEL SÁNCHEZ-BARQUILLA, CARLOS MORALES, and JAN INGO FLEGE — Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03046, Germany

Ni/ceria catalysts exhibit a high activity and selectivity for CO_2 methanation, making them very promising candidates for applications within a sustainable economy. The redox properties of cerium oxide allow it to readily switch between Ce^{4+} and Ce^{3+} states, facilitating CO_2 activation and conversion. We have studied the so-called strong metal-metal oxide interactions in the inverse catalyst configuration $\text{CeO}_x/\text{Ni}(111)$ prepared by reactive molecular beam epitaxy in an oxygen atmosphere. Under specific growth conditions, the CeO_x (111)-oriented islands of different heights preferentially align in registry with the Ni(111) surface or are rotated azimuthally by $\pm 10^{\circ}$, as observed by low-energy electron diffraction. Analysis by X-ray photoelectron spectroscopy reveals that during growth, partial oxidation of the Ni(111) surface leads to the formation of a NiO interface layer between the CeO_x islands and Ni substrate, resulting in a complex $CeO_x(111)/NiO(111)/Ni(111)$ system with significant oxide-metal interactions. Finally, when we expose the system to H_2 , O_2 , and CO_2 atmospheres, we observe a complex behavior of the cerium and nickel oxidation states, which correlate with morphological changes in the oxide islands.

Part:	0
Туре:	Vortrag;Talk
Topic:	Heterogeneous catalysis
Keywords:	CeO2; Ni(111); model catalyst; XPS;
	LEED
Email:	dominic.guttmann@b-tu.de