Contribution submission to the conference Regensburg 2025

Hexagons on Rectangles: Epitaxial Graphene on Ru(1010) — LARS BUSS¹, GIOVANNI ZAMBORLINI², CATHY SULAIMAN¹, MORITZ EWERT¹, MIRKO CINCHETTI², JENS FALTA³, and JAN INGO FLEGE¹ — ¹Applied Physics and Semiconductor Spectroscopy, BTU Cottbus-Senftenberg, Germany — ²Department of Physics, TU Dortmund University, Germany — ³Institute of Solid State Physics, University of Bremen, Germany

The miniaturization of integrated electronics drives the demand for barrierless interconnects, with graphene-ruthenium structures emerging as promising candidates. We present an in situ study of the growth and electronic properties of graphene on rectangular $Ru(10\overline{1}0)$ grown by high-temperature carbon segregation. Using low-energy electron microscopy (LEEM), it is shown that graphene grows preferentially along the $[1\overline{2}10]$ direction, forming micrometer-sized rectangular islands. Microspot low-energy electron diffraction (µLEED) reveals two predominant graphene orientations, rotated by 0° (R0) and 30° (R30), with indications for the formation of graphene nanoribbons in bilayer graphene/ $Ru(10\overline{1}0)$. Microspot angle-resolved photoemission spectroscopy (μ ARPES) shows that the Dirac cones remain intact in bilayer graphene with reduced n-type doping compared to graphene/Ru(0001), indicating a weaker interaction with the Ru($10\overline{1}0$) surface. These results highlight the influence of substrate symmetry and interactions on graphene properties and provide insights for engineering graphene beyond hexagonal substrates.

Part: 0

Type: Poster

Topic: Graphene: Growth, structure and

substrate interaction

Keywords: Graphene; LEEM; ARPES; Ruthenium;

Nanoribbons

Email: lars.buss@b-tu.de