Contribution submission to the conference Berlin 2024

Atomic layer deposition of cerium oxide monitored by operando ellipsometry and in-situ X-ray photoelectron spectroscopy — \bullet RUDI TSCHAMMER¹, YULIIA KOSTO¹, CARLOS MORALES¹, MARCEL SCHMICKLER², KARSTEN HENKEL¹, ANJANA DEVI², and JAN INGO FLEGE¹ — ¹Applied Physics and Semiconductor Spectroscopy, BTU Cottbus-Senftenberg, Cottbus, Germany — ²Inorganic Materials Chemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany

Atomic layer deposition (ALD) has been used extensively to grow homogeneous films with excellent coverage and atomic-scale thickness control for a variety of applications. However, remaining challenges include the investigation of novel precursor-oxidant combinations for low-temperature deposition as well as unraveling the complex interplay between substrate and coating for ultrathin films. In this work, we present a detailed investigation of ultrathin cerium oxide films grown using the novel $Ce(dpdmg)_3$ precursor with H_2O and O_2 . Following a surface science-based approach, we have combined operando spectroscopic ellipsometry and in-situ X-ray photoelectron spectroscopy to allow rapid process optimization and determination of the complex relation between oxide stoichiometry, film thickness and ALD growth parameters, revealing a distinct dependence of initial Ce^{3+} content on the film thickness and choice of oxidant. This offers the possibility of adjusting the oxide properties to application requirements e.g. in gas sensing by choosing a suitable precursor-oxidant combination.

Part:	0
Туре:	Vortrag;Talk
Topic:	Oxide and insulator surfaces: Structure,
	epitaxy and growth
Keywords:	cerium oxide; ALD; XPS; spectroscopic
	ellipsometry
Email:	tscharud@b-tu.de