Contribution submission to the conference Berlin 2024

Bare and Pd-doped ceria thin films prepared by ALD and EBE for hydrogen detection — •YULIIA KOSTO¹, PAULINA KAPUSCIK², RUDI TSCHAMMER¹, DOMINIC GUTTMANN¹, EWA MANKOWSKA², PETER MATVIJA³, CARLOS MORALES¹, MICHAL MAZUR², KARSTEN HENKEL¹, IVA MATOLINOVA³, JAROSLAW DOMARADZKI², and JAN INGO FLEGE¹ — ¹BTU Cottbus-Senftenberg, Appl Phys & Semicond Spect, Cottbus, Germany — ²Wroclaw Univ Sci & Technol, Fac Elect Photon & Microsyst, Wroclaw, Poland — ³Charles Univ, Dept Surface & Plasma Sci, Prague, Czech

The need to store and use hydrogen safely as part of green economy based on renewable energy evokes a necessity to reliably detect it at ambient conditions. The majority of currently used sensors are working at elevated temperatures (200-500 °C). In this work, we demonstrate that ceria films deposited on a commercial electrode by atomic layer deposition (ALD) and electron beam evaporation (EBE) electrically respond to hydrogen (from 20 to 500 ppm) at much lower temperatures (50-200 °C). The results reveal that <1.5 nm thin Pd adlayer increases the electrical response by several orders of magnitude for both ceria films. The NAP-XPS study under changing oxidative/reductive atmospheres sheds light on the mechanism of Pd-CeOx thermal activation and the role of the deposition technique in the reactivity of the oxide.

Part:	0
Туре:	Vortrag;Talk
Topic:	Oxides and insulators: Adsorption and
	reaction of small molecules
Keywords:	ceria; thin film; hydrogen detection;
	sensor; XPS
Email:	kosto@b-tu.de