Contribution submission to the conference Berlin 2024

Oxide formation and oxide/metal interaction in $\text{CeO}_x/\text{Ni(111)}$ — •DOMINIC GUTTMANN, BJÖRN RIEDEL, RAQUEL SÁNCHEZ-BARQUILLA, CARLOS MORALES, and JAN INGO FLEGE — Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03046, Germany

Ni/ceria catalysts exhibit a high activity for methane to methanol conversion, making them very promising for applications within a sustainable economy. Possibly, their activity may be strongly enhanced due to the facile exchange between Ce^{4+} and Ce^{3+} states, with the latter likely responsible for activating O-H and C-H bonds. Here, we aim to unravel the complex metal-oxide interactions in the inverse $CeO_x/Ni(111)$ system under oxidizing and reducing environments. Using low-energy electron diffraction (LEED) we find that the $CeO_x(111)$ grown by reactive molecular beam epitaxy preferentially aligns with the main directions of the Ni(111) substrate or is azimuthally rotated by $\pm 10^{\circ}$. By using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), we find that less NiO is formed during deposition of CeO_x than when it is held without ceria at the same conditions (O_2 partial pressure and temperature). Finally, we observe a complex behavior of the cerium and nickel oxidation states when exposing the system to O_2 or H_2 atmospheres.

Part:	0
Туре:	Poster
Topic:	Heterogeneous catalysis
Keywords:	Inverse model catalyst; Ceria; XPS; LEED
Email:	dominic.guttmann@b-tu.de