Unraveling the interface effects of atomic layer deposited ceria on metal oxide substrates

<u>Carlos Morales</u>^{1*}, Rudi Tschammer¹, Emilia Pożarowska¹, Yuliia Kosto¹, Malgorzata Kot¹, Carlos Alvarado², Christian Wenger², I. J. Villar-Garcia³, V. Pérez-Dieste³, K. Henkel¹, Jan Ingo Flege¹

¹ Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology, Konrad-Zuse-Strasse, 1, D-03046 Cottbus, Germany

² IHP - Leibniz-Institut für innovative Mikroelektronik, IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

³ NAPP Station, CIRCE Beamline, ALBA synchrotron, Cerdanyola del Valles

08290, Spain

*carlos.moralessanchez@b-tu.de

Keywords: ceria, ALD, XPS, sensor, hydrogen

In the last decades, atomic layer deposition (ALD) has gained prominence in the materials and surface science communities owing to its high potential for integration as a scalable process in microelectronics. ALD's largest strengths are its well-controlled layer-by-layer deposition and growth conformity on 3D structures. Yet, the ALD technique is also well known to lead to amorphous and defective, non-stoichiometric thin films, resulting in modified materials properties that may even preferentially be used in certain applications. Interestingly, initial in situ X-ray photoemission spectroscopy (XPS) measurements of ceria ALD-deposits on Al_2O_3/Si , sapphire, and SiO_2 substrates confirm a Ce^{3+}/Ce^{4+} mixture dependent on the substrate interaction, deposit thickness, and morphology. Using near-ambient pressure XPS, we have significantly reduced ultrathin (< 10 nm) ceria films grown by ALD by exposing them to different O_2/H_2 partial pressures at moderate temperatures (< 525K). Notably, the total amount of reduction to Ce^{3+} is found to depend on the deposit thickness and initial ceria/substrate interaction. Furthermore, the intrinsic defects related to the ALD method seem to play a critical role in the reversible reduction at room temperature.

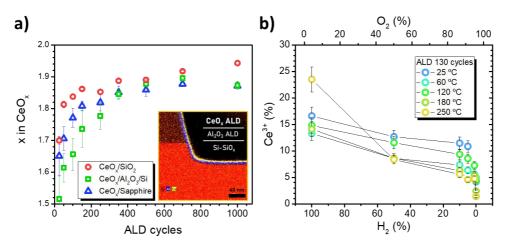


Figure a) Ce^{3+}/Ce^{4+} ratio as a function of the total number of ALD cycles and substrate; insert, transmission electron microscopy (TEM) cross-section image of the ALD-ceria ultrathin deposit. b) percentage of Ce^{3+} states as a function of H_2/O_2 mixture for different sample temperatures.

