CO₂ methanation over Ni catalysts supported on CeO₂ and CeSmO_x: the influence of adding Sm

Sichen Liu^a, Fabian Rachow^a, Evgenia Charlafti^a, Raquel Sánchez-Barquilla^a, Luisa María Gómez-Sainero^b, Vicente Cortés Corberán^c, Jan Ingo Flege^a

 ^a Fachgebiet Angewandte Physik und Halbleiterspektroskopie, Brandenburgische Technische Universität Cottbus-Senftenberg, K.-Zuse-Straße 1, 03046 Cottbus, Germany
^bDepartamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, Campus de Cantoblanco, 28049 Madrid, Spain
^cInstituto de Catálisis y Petroleoquímica, CSIC, Calle Marie-Curie 2, 28049 Madrid, Spain

The methanation of CO_2 is an attractive process, which can be operated at mild conditions to obtain CH₄ as a useful synthetic fuel [1]. In comparison to noble metals, Ni as a catalyst seems more appropriate for industrial applications due to its lower price and its high activity [2]. Moreover, the use of CeO₂ as catalytic support has drawn much attention in recent years since it could provide strong metal-support interactions with high dispersion of active centers, and its high basicity could promote the adsorption and activation of CO_2 [2]. Moreover, the addition of Sm_2O_3 into CeO₂ could promote its activity in the methanation of CO_2 [2]. Hence, CeO₂ and Sm-added Ce₂SmO_x are studied as supports of Ni-based catalysts in this work.

The Ce₂SmO_x was prepared through the coprecipitation method with a Ce/Sm atomic proportion of 2:1 using $(NH_4)_2Ce(NO_3)_6$, Sm $(NO_3)_3$ · 6H₂O and urea as precipitant. Accordingly, a CeO₂ reference sample was prepared by precipitation of $(NH_4)_2Ce(NO_3)_6$. A nickel loading of 20 wt.% Ni was realized by the incipient wetness impregnation method using Ni $(NO_3)_2$ · 6H₂O. The reaction was performed in a continuous fixed-bed tubular reactor employing 0.5 g catalyst at atmospheric pressure with a total flow of 50 ml/min (H₂/CO₂ molar = 4) in 250 °C – 400 °C. The products were analyzed through NDIR and FTIR spectrometry. The fresh and used catalysts were analyzed by ICP, BET, XRD, XPS, and TEM.

The experimental results show that the optimal working temperature for both tested catalysts should be 350 °C, at which a CO₂ conversion of 88% and a CH₄ yield of 80% are reached. When increasing to 400 °C, the CO₂ conversion begins to decrease in both catalysts, according to the gas-phase equilibrium of the reaction. Interestingly, at the lowest working temperature (250 °C), the Ni/Ce₂SmO_x shows both higher CO₂ conversion (~ 72%) and CH₄ yield (~ 68%) than Ni/CeO₂ (~ 63% and ~ 55%, respectively). The better performance of Ni/Ce₂SmO_x at low temperature may be attributed to a higher concentration of oxygen vacancies that could promote the adsorption and activation of CO₂, whereas its smaller and better dispersed Ni nanoparticles (14.40 nm Ni/Ce₂SmO_x; 20.84 nm Ni/CeO₂) could also contribute to a higher catalytic activity [2].

Keywords: CO₂, methanation, CeO₂, Ce₂SmO_x, coprecipitation

References

[1] S. Musab Ahmed, (2024), Ni-based catalysts for CO_2 methanation: Exploring the support role in structure-activity relationships, ChemSusChem, e202400310.

[2] G.I. Siakavelas, (2021), Highly selective and stable nickel catalysts supported on ceria promoted with Sm_2O_3 , Pr_2O_3 and MgO for the CO_2 methanation reaction, Applied Catalysis B: Environmental 282, 119562.