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Abstract. In natural language, and in some knowledge representation
systems, such as extended logic programs, there are two kinds of nega-
tion: a weak negation expressing non-truth, and a strong negation ex-
pressing explicit falsity. In this paper I argue that, like in several basic
computational languages, such as OCL and SQL, two kinds of negation
are also needed in the Semantic Web.

1 Introduction

In [Wag91], I have argued that a database, as a knowledge representation system,
needs two kinds of negation to be able to deal with partial information. The
present paper is an attempt to make the same point for the Semantic Web.

Computational forms of negation are used in imperative programming lan-
guages (such as Java), in database query languages (such as SQL), in modeling
languages (such as UML/OCL), in production rule systems (such as CLIPS
and Jess) and in logic programming languages (such as Prolog). In imperative
programming languages, negation may occur in the condition expression of a
conditional branching statement. In database query languages, negation may
occur in at least two forms: as a not operator in selection conditions, and in
the form of the relational algebra difference operator (corresponding to the SQL
EXCEPT operator). In modeling languages, negation occurs in constraint state-
ments. E.g., in OCL, there are several forms of negation: in addition to the not
operator in selection conditions also the reject and the isEmpty operators are
used to express a negation. In production rule systems, and in logic program-
ming languages, a negation operator not typically occurs only in the condition
part of a rule with the operational semantics of negation-as-failure which can
be understood as classical negation under the preferential semantics of stable
models.

We show in section 2 that negation in all these computational systems is, from
a logical point of view, not a clean concept, but combines classical (Boolean)
negation with negation-as-failure and the strong negation of three-valued logic
(also called Kleene negation). In any case, however, it seems to be essential for
all major computational systems to provide different forms of negation. Conse-
quently, we may conclude (by common sense induction) that the Semantic Web
also needs these different forms of negation.
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In natural language, there are (at least) two kinds of negation: a weak nega-
tion expressing non-truth (in the sense of “she doesn’t like snow” or “he doesn’t
trust you”), and a strong negation expressing explicit falsity (in the sense of
“she dislikes snow” or “he distrusts you”). Notice that the classical logic law of
the excluded middle holds only for the weak negation (either “she likes snow” or
“she doesn’t like snow”), but not for the strong negation: it does not hold that
“he trusts you” or “he distrusts you”; he may be neutral and neither trust nor
distrust you.

A number of knowledge representation formalisms and systems, discussed in
section 4, follow this distinction between weak and strong negation in natural
language. However, many of them do not come with a model-theoretic semantics
in the style of classical logic. Instead, an inference operation, that may be viewed
as a kind of proof-theoretic semantics, is proposed.

Classical (two-valued) logic cannot account for two kinds of negation because
two-valued (Boolean) truth functions do not allow to define more than one nega-
tion. The simplest generalization of classical logic that is able to account for two
kinds of negation is partial logic giving up the classical bivalence principle and
subsuming a number of 3-valued and 4-valued logics. For instance, in 3-valued
logic with truth values {f, u, t} standing for false, undetermined (also called un-
known or undefined) and true, weak negation (denoted by∼) and strong negation
(denoted by ¬) have the following truth tables:

p ∼p
t f
u t
f t

p ¬p
t f
u u
f t

Notice the difference between weak and strong negation in 3-valued logic: if a
sentence evaluates to u in a model, then its weak negation evaluates to t, while
its strong negation evaluates to u in this model. Partial logics allow for truth-
value gaps created by partial predicates to which the law of the excluded middle
does not apply.

However, even in classical logic, where all predicates are total, we may dis-
tinguish between predicates that are completely represented in a database (or
knowledge base) and those that are not. The classification if a predicate is com-
pletely represented or not is up to the owner of the database: the owner must
know for which predicates she has complete information and for which she does
not. Clearly, in the case of a completely represented predicate, negation-as-failure
amounts to classical negation, and the underlying completeness assumption is
also called Closed-World Assumption. In the case of an incompletely represented
predicate, negation-as-failure only reflects non-provability, but does not allow to
infer the classical negation. Unfortunately, neither CLIPS/Jess nor Prolog sup-
port this distinction between ‘closed’ and ‘open’ predicates.

Open (incompletely represented total) predicates must not be confused with
partial predicates that have truth-value gaps. The law of the excluded middle,
p ∨ ¬p, applies to open predicates but not to partial predicates.



For being able to make all these distinctions and to understand their logical
semantics, we have to choose partial logic as the underlying logical framework.
Partial logic allows to formally distinguish between falsity and non-truth by
means of strong and weak negation. In the case of a total predicate, such as
being an odd number, both negations collapse:

∼odd(x) iff ¬odd(x),

or in other words, the non-truth of the atomic sentence odd(x) amounts to
its falsity. In the case of a partial predicate, such as likes, we only have the
relationship that the strong negation implies the weak negation:

∼likes(she,snow) if ¬likes(she,snow),

but not conversely. Also, while the double negation form ’¬ ∼’ collapses (ac-
cording to partial logic, see [Wag98]), the double negation form ’∼ ¬’ does not
collapse: not disliking snow does not amount to liking snow. Classical logic can
be viewed as the degenerate case of partial logic when all predicates are total.

2 Negative Information, Closed Predicates and Two
Kinds of Negation in the Semantic Web

We claim that, like in the cases of UML/OCL, SQL and extended logic programs,
also for the Semantic Web one needs two kinds of negation. This applies in
particular to RDF/RDFS, OWL and RuleML.

2.1 Expressing Negative Information in RDF

The FIPA RDF Content Language Specification (see www.fipa.org) that specifies
how RDF can be used as a message content language in the communication acts
of FIPA-compliant agents proposes a method how to express negated RDF facts
to ‘express belief or disbelief of a statement’. For this purpose an RDF state-
ment (expressed as a ‘subject-predicate-object’ triple corresponding to objectID-
attribute-value) is annotated by a truth value true or false in a <fipa:belief>
element as in the following example:

<fipa:Proposition>

<rdf:subject>RDF Semantics</rdf:subject>

<rdf:predicate rdf:resource="http://description.org/schema#author"/>

<rdf:object>Ora Lassila</rdf:object/>

<fipa:belief>false</fipa:belief>

</fipa:Proposition>

This example expresses the negated sentence

Ora Lassila is not the author of ‘RDF Semantics’.

It shows that there is a need to extend the current syntax of RDF, so as to be
able to express negative information.



2.2 Closed Predicates and Negation-as-Failure in RDF/S

As opposed to the predicate ‘is the author of’, there are also predicates for which
there is no need to express negative information because the available positive
information about them is complete and, consequently, the negative information
is simply the complement of the positive information.

For instance, the W3C has complete information about all official W3C doc-
uments and their normative status (http://www.w3.org/TR/ is the official list
of W3C publications); consequently, the predicate is an official W3C document
should be declared as closed in the W3C knowledge base (making a ‘local’ com-
pleteness assumption).1 This consideration calls for a suitable extension of RDFS
in order to allow making such declarations for specific predicates.

For sentences formed with closed predicates it is natural to use negation-as-
failure for establishing their falsity (anything not listed on that page cannot be
a W3C recommendation). So, a query language for RDF should include some
form of negation-as-failure.

2.3 Default Rules in RuleML and N3

The RuleML standardization initiative has been started in August 2000 with the
goal of establishing an open, vendor neutral XML-based rule language standard.
The official website of the RuleML initiative is www.ruleml.org.

The current ‘official’ version of RuleML (in July 2003) has the version number
0.84. In [BTW01], the rationale behind RuleML 0.8 and some future extensions
of it is discussed, while [Wag02] provides a general discussion of the issues of
rule markup languages.

An example of a derivation rule involving strong negation (for making sure
that something is definitely not the case) and negation-as-failure (for expressing
a default condition) is the following:

A car is available for rental if it is not assigned to any rental order, does
not require service and is not scheduled for a maintenance check.

This rule could be marked up in RuleML as shown in Figure 1. Strong nega-
tion is expressed by <neg> while negation-as-failure is expressed by <naf>. Notice
that it is important to apply <neg>, and not <naf>, to requiresService in or-
der to make sure, by requiring explicit negative information, that the car in
question does not require service (the car rental company may be liable for any
consequences/damages caused by a failure of this check).

However, the last condition of the rule, expressed with <naf>, is a default
condition requiring only that there is no information about any assignment of
the car in question.

In N3, one can test for what a formula does not say, with log:notIncludes.
In the following example (taken from [BL]), we have a rule stating that if the
specification for a car doesn’t say what color it is, then it is black:
1 This example is due to Sandro Hawke, see [DDM].



this log:forAll :car. { :car.auto:specification log:notIncludes {:car
auto:color []}}
=> {:car auto:color auto:black}.

In this rule, the log:notIncludes operator expresses a negation-as-failure in
a similar way as the isEmpty operator of OCL and the IS NULL operator of SQL.

3 Negations in UML/OCL, SQL, CLIPS/Jess and Prolog

UML/OCL, SQL, CLIPS/Jess and Prolog may be viewed as the paradigm-
setting languages for modeling, databases, production rules and (logical) deriva-
tion rules. We discuss each of them in some more detail.

3.1 Negation in UML/OCL

The Unified Modeling Language (UML) may be viewed as the paradigm-setting
language for software and information systems modeling. In the UML, nega-
tion occurs in Object Constraint Language (OCL) statements. There are several
forms of negation in OCL: in addition to the not operator in selection conditions
also the reject and the isEmpty operators are used to express a negation. OCL
allows partially defined expressions and is based on a 3-valued logic where the
third truth value, denoted by ⊥, is called undefined.

The above rule for rental cars defines the derived Boolean-valued attribute
isAvailable of the class RentalCar by means of an association isAssignedTo
between cars and rental orders and the stored Boolean-valued attributes requiresService
and isSchedForMaint. All these concepts are shown in the UML class diagram
in Figure 2. Notice that requiresService is defined as an optional attribute
(that need not always have a value). This reflects the fact that whenever a rental
car is returned by a customer, it is not known if it requires service until its tech-
nical state is checked. Only then this attribute obtains a value true or false.2

As opposed to requiresService, isSchedForMaint is defined as a mandatory
attribute that must always have a value, reflecting the fact that the car rental
company always knows if a car is or is not scheduled for a maintenance check.

Since the Object Constraint Language (OCL) of UML does not allow to
define derivation rules, we have to express the definition of the derived attribute
isAvailable by means of an OCL invariant statement:

context RentalCar inv:
RentalOrder->isEmpty
and not requiresService
and not isSchedForMaint

implies isAvailable

2 Notice that optional, i.e. partial, attributes in the UML correspond to SQL table
columns admitting null values.



This integrity constraint states that for a specific rental car whenever there
is no rental order associated with it, and it does not require service and is not
scheduled for maintenance, then it has to be available for a new rental. It involves
three forms of negation:

1. the first one, RentalOrder->isEmpty, expresses the negation-as-failure there
is no information that the car is assigned to any rental order ;

2. the second one, not requiresService, is strong negation; and
3. the third one, not isSchedForMaint, is classical negation.

We discuss each of them in more detail.

The not Operator The negation in not isSchedForMaint is classical nega-
tion, since isSchedForMaint is defined as a mandatory Boolean-valued at-
tribute. However, the negation in not requiresService is strong negation,
since requiresService is defined as an optional Boolean-valued attribute
such that the truth value of the corresponding statement is unknown whenever
the value of this attribute is NULL. Thus, viewing Boolean-valued attributes as
predicates, we may say that UML allows for both (closed) total and partial predi-
cates, such that not denotes classical (Boolean) negation when applied to a total
predicate and strong (Kleene) negation when applied to a partial predicate.

The isEmpty Operator The negation that is implicitly expressed by Rental-
Order->isEmpty is negation-as-failure, since it evaluates to true whenever there
is no information about any associated rental order. Notice, however, that having
no information about any associated rental order does logically not imply that
there is no associated rental order. Only in conjunction with a completeness
assumption (either for the entire database or at least for the predicate concerned)
can we draw this conclusion.

In summary, we have three kinds of negation in OCL: classical negation,
strong negation and negation-as-failure.

3.2 Negation in SQL

In SQL, negation may occur in various forms: as a NOT operator or as an IS

NULL operator in selection conditions, or in the form of the EXCEPT table
operator (corresponding to the relational algebra difference operator). SQL may
be viewed as the paradigm-setting language for databases. It supports null values
and incomplete predicates (whose truth-value may be unknown), and is based
on a 3-valued logic with the truth values true, unknown and false, where NOT

corresponds to strong negation [MS02].
The following SQL table definition implements the class RentalCar from the

UML class diagram of Figure 2.



CREATE TABLE RentalCar(
CarID CHAR(20) NOT NULL,
requiresService BOOLEAN,
isSchedForMaint BOOLEAN NOT NULL,
isAvailable BOOLEAN,
isAssignedTo INTEGER REFERENCES RentalOrder
)

Notice that isSchedForMaint is defined as a mandatory (‘not null’) Boolean-
valued column, whereas requiresService is defined as an optional Boolean-
valued column and isAssignedTo as an optional reference to a rental order.
Table 1 contains a sample population of the RentalCar table.

CarID requiresService isSchedForMaint isAvailable isAssignedTo

23010 false false false 1032779

23011 false false true NULL

23785 NULL false NULL NULL

30180 true true false NULL
Table 1. A sample population of the RentalCar table.

In SQL databases, a view defines a derived table by means of a query. For
instance, the derived table of available cars is defined as the view

CREATE VIEW AvailableCar( CarID)
SELECT CarID FROM RentalCar
WHERE isAssignedTo IS NULL
AND NOT requiresService
AND NOT isSchedForMaint

The SELECT statement in this view contains three negations:

1. the first one, isAssignedTo IS NULL, expresses the negation-as-failure stating
that there is no information that the car is assigned to any rental order ;

2. the second one, NOT requiresService, is strong negation; and
3. the third one, NOT isSchedForMaint, is classical negation.

We discuss each of them in more detail.

The not Operator When applied to a complete predicate, SQL’s not expresses
classical negation, but when applied to an incomplete predicate, it expresses
strong negation because SQL evaluates logical expressions using 3-valued truth
functions, including the truth table for ¬ presented in the introduction.

When we ask the query ‘which cars do not require service?’ against the
database state shown in Table 1, using the SQL statement



SELECT CarID FROM RentalCar
WHERE NOT requiresService

we actually use strong negation because requiresService is an incomplete
predicate (admitting NULL values). Thus, the resulting answer set would be
{23010, 23011}. That SQL’s not behaves like strong negation when applied to
an incomplete predicate can be demonstrated by asking the query ‘which cars
require service or do not require service?’ :

SELECT CarID FROM RentalCar
WHERE requiresService OR NOT requiresService

leading to the result set {23010, 23011, 30180}. If not would be classical nega-
tion in this query, then, according to the law of the excluded middle, the answer
should be the set of all cars from table RentalCar, that is {23010, 23011, 23785, 30180}.
However, SQL’s answer set includes only those cars for which the requiresService
attribute has the value true or false, but not those for which it is NULL.

The IS NULL Operator When we ask, however, ‘which cars are not assigned
to any rental order?’ using the SQL statement

SELECT CarID FROM RentalCar
WHERE isAssignedTo IS NULL

leading to the result set {23011, 23785, 30180}, we use negation-as-failure because
without a completeness assumption, the isAssignedTo IS NULL condition does
not imply that there is really no associated rental order, but only that there is
no information about anyone.

The EXCEPT Operator Also, SQL’s EXCEPT operator corresponds to Prolog’s
negation-as-failure not : a Prolog query expression ”give me all objects x such
that ’p(x) and not q(x)’” corresponds to the SQL expression ’P EXCEPT Q’
where P and Q denote the tables that represent the extensions of the predicates
p and q.

3.3 Negation in CLIPS/Jess and Prolog

CLIPS/Jess and Prolog may be viewed as the paradigm-setting languages for
production rules and (computational logic) derivation rules. Both languages have
been quite successful in the Artificial Intelligence research community and have
been used for many AI software projects. However, both languages also have dif-
ficulties to reach out into, and integrate with, mainstream computer science and
live rather in a niche. Moreover, while Prolog has a strong theoretical foundation
(in computational logic), CLIPS/Jess and the entire production rule paradigm
lack any such foundation and do not have a formal semantics. This problem
is partly due to the fact that in production rules, the semantic categories of



events and conditions in the left-hand-side, and of actions and effects in the
right-hand-side, of a rule are mixed up.

While derivation rules have an if-Condition-then-Conclusion format, produc-
tion rules have an if-Condition-then-Action format. To determine which rules are
applicable in a given system state, conditions are evaluated against a fact base
that is typically maintained in main memory.

In Prolog, the rule for available cars is defined by means of the following two
rules:

availableCar(X) :-

rentalCar(X),

not requiresService(X),

not isSchedForMaint(X),

not isAssignedToSomeRental(X).

isAssignedToSomeRental(X) :-

isAssignedTo(X,Y).

The second of these rules is needed to define the auxiliary predicate isAssigned-

ToSomeRental because Prolog does not provide an existential quantifier in rule
conditions for expressing a formula like ¬∃y(p(x, y)). Although they include the
possibility of using the nonmonotonic negation-as-failure operator, Prolog rules
and deductive database rules (including SQL views) have a purely declarative
semantics in terms of their intended models (in the sense of classical logic model
theory). For rules without negation, there is exactly one intended model: the
unique minimal model. The intended models of a set of rules with negation(-as-
failure) are its stable models.

Production rules do not explicitly refer to events, but events can be simulated
by asserting corresponding objects into working memory. A derivation rule can be
simulated by a production rule of the form if-Condition-then-assert-Conclusion
using the special action assert that changes the state of a production rule system
by adding a new fact to the set of available facts.

The production rule system Jess, developed by Ernest Friedman-Hill at San-
dia National Laboratories, is a Java successor of the classical LISP-based pro-
duction rule system CLIPS. Jess supports the development of rule-based systems
which can be tightly coupled to code written in the Java programming language.
As in LISP, all code in Jess (control structures, assignments, procedure calls)
takes the form of a function call. Conditions are formed with conjunction, dis-
junction and negation-as-failure. Actions consist of function calls, including the
assertion of new facts and the retraction of existing facts.

In Jess, the rule for available cars is defined as

(defrule availableCar

(and (RentalCar ?x)

(not (requiresService ?x))

(not (isSchedForMaint ?x))

(not (isAssignedToSomeRental ?x)))

=>

(assert (availableCar ?x))



Both Prolog and Jess allow negation to be used only in the body (or con-
dition) of a rule, and not in its head (in Jess, the head of a rule represents an
action, so negation wouldn’t make sense here, anyway), nor in facts. So, unlike
in SQL, where a Boolean-valued attribute can have the value false as distinct
from NULL corresponding to unknown, there is no possibility to represent and
process explicit negative information. For instance, the negative fact that the
car with CarID=23010 does not require service, expressed by the attribute-value
pair 23010.requiresService=false in Table 1, cannot be represented in Jess and
Prolog. In both languages, not expresses negation-as-failure implementing clas-
sical negation in the case of complete predicates subject to a completeness (or
‘Closed-World’) assumption .

This shortcoming has led to the extension of normal logic programs by adding
a negation for expressing explicit negative information, as proposed indepen-
dently in [GL90,GL91], and in [PW90,Wag91].

4 Two Kinds of Negation in Knowledge Representation

A number of knowledge representation formalisms and systems follow the dis-
tinction between weak and strong negation in natural language which is also
implicit in SQL. We mention just two of them:

– Logic programs with two kinds of negation (called extended logic programs
in [GL90]).

– The IBM business rule system CommonRules (described in [Gro97,GLC99])
that is based on the formalism of extended logic programs.

Using two kinds of negation in derivation rules has been proposed indepen-
dently in [GL90] and [Wag91]. Unfortunately, and confusingly, several different
names and several different semantics have been proposed by different authors
for these two negations. Strong negation has been called ‘classical negation’
and ‘explicit negation’, while negation-as-failure has been renamed into ‘implicit
negation’ and ‘default negation’. In particular, the name ‘classical negation’ is
confusing because (the real) classical negation satisfies the law of the excluded
middle while the ‘classical negation’ in extended logic programs does not. Appar-
ently, the reason for choosing the name ‘classical negation’ is of a psychological
nature: one would like to have classical negation, or at least some approximation
of it. But that’s exactly what partial logic is able to offer: for complete predicates,
both strong negation and weak negation collapse into classical negation.

Unlike for logical theories in standard logics, the semantics of knowledge
bases in knowledge representation formalisms is not based on all models of a
knowledge base but solely on the set of all intended models. E.g., for relational
databases the intended models are the ‘minimal’ ones in the intuitive sense of
minimal information content. However, a satisfactory definition of minimally
informative models is not possible in classical logic, but only in partial logics.
Among all partial models of a KB the minimal ones are those that make a
minimal number of atomic sentences true or false. This definition does not work



for classical models where a sentence is false iff it is not true. So, classical models
allow only an asymmetric definition of minimality: one may define that among
all classical models of a KB the minimal ones are those that make a minimal
number of atomic sentences true. However, this definition does not adequately
capture the intuitive notion of minimal information content, since both the truth
and the falsity of a sentence should count as information.

For a KB consisting of derivation rules with negation-as-failure, minimal
model semantics is not adequate, because it does not account for the directedness
of such rules. This is easy to see. Consider the knowledge base {p← not q}. This
KB has two minimal models: {p} and {q}, but only {p} is an intended model.

The model-theoretic semantics of derivation rules with negation-as-failure
(e.g. in normal and extended logic programs) is based on the concept of stable
(generated) classical models (see [GL88,HW97]). Under the preferential seman-
tics of stable (generated) models, classical negation corresponds to negation-
as-failure, or, in other words, negation-as-failure implements classical negation
under the preferential semantics of stable (generated) models.

There is a kind of proof-theoretic semantics for normal logic programs, called
wellfounded semantics, originally proposed by [vG88]. It should be rather con-
sidered an inference operation (or a proof theory) which is sound but incomplete
with respect to stable model semantics.

The model-theoretic semantics of derivation rules with negation-as-failure
and strong negation (e.g. in extended logic programs) is based on the concept of
stable generated partial models (see [HJW99]). Under the preferential semantics
of stable generated partial models, weak negation corresponds to negation-as-
failure, or, in other words, negation-as-failure implements weak negation when
applied to an incomplete predicate, and it implements classical negation when
applied to a complete predicate.

Another model-theoretic semantics for extended logic programs, which is
elegant but more complicated (since based on possible worlds), is the equilibrium
semantics of [Pea99]. Other proposed semantics, such as the answer set semantics
of [GL90,GL91] or the WFSX semantics of [PA92], are not model-theoretic and
less general (they do not allow for arbitrary formulas in the body and head of a
rule).

In the next section, we present the logical formalism needed to explain two
kinds of negation.

5 Partial Logics with Two Kinds of Negation and Two
Kinds of Predicates

This section is based on [HJW99,Wag98].



A function-free3 partial logic signature σ = 〈Pred ,TPred ,Const〉 consists
of a set of predicate symbols Pred, the designation of a set of total predicate
symbols TPred ⊆ Pred , and a set of constant symbols Const.

5.1 Partial Models

We restrict our considerations to Herbrand interpretations since they capture the
Unique Name Assumption which is fundamental in the semantics of databases
and logic programming.

Definition 1 (Interpretation) Let σ = 〈Pred ,TPred ,Const〉 be a signa-
ture. A partial Herbrand σ-interpretation I consists of:

1. A set UI , called universe or domain of I, which is equal to the set of constant
symbols, UI = Const;

2. an assignment I(c) = c to every constant symbol c ∈ Const;
3. an assignment of a pair of relations It(p), If (p) to every predicate symbol

p ∈ Pred such that
It(p) ∪ If (p) ⊆ U

a(p)
I ,

and in the special case of a total predicate p ∈ TPred,

It(p) ∪ If (p) = U
a(p)
I ,

where a(p) denotes the arity of p.

In the sequel we also simply say ‘interpretation’ (‘satisfaction’, ‘model’, ‘entail-
ment’) instead of ‘partial Herbrand interpretation’ (‘partial Herbrand satisfac-
tion’, ‘partial Herbrand model’, ‘partial Herbrand entailment’).

The class of all σ-interpretations is denoted by I4(σ). We define the classes
of coherent, of total, and of total coherent (or 2-valued) interpretations by

Ic(σ) = {I ∈ I4(σ) | It(p) ∩ If (p) = ∅ for all p ∈ Pred}
It(σ) = {I ∈ I4(σ) | It(p) ∪ If (p) = U

a(p)
I for all p ∈ Pred}

I2(σ) = Ic(σ) ∩ It(σ)

The model relation |= between a Herbrand interpretation and a sentence is
defined inductively as follows.

Definition 2 (Satisfaction)

I |= p(c1, . . . , cm) ⇐⇒ 〈c1, . . . , cm〉 ∈ It(p)
I |= ¬p(c1, . . . , cm) ⇐⇒ 〈c1, . . . , cm〉 ∈ If (p)

I |= ∼ F ⇐⇒ I 6|= F
I |= F ∧G ⇐⇒ I |= F & I |= G
I |= F ∨G ⇐⇒ I |= F or I |= G
I |= ∃xF (x) ⇐⇒ I |= F (c) for some c ∈ Const
I |= ∀xF (x) ⇐⇒ I |= F (c) for all c ∈ Const

3 For simplicity, we exclude function symbols from the languages under consideration,
i.e. we do not consider functional terms but only variables and constants; signatures
without function symbols lead to a finite Herbrand universe.



All other cases of compound formulas are handled by the following DeMorgan
and double negation rewrite rules:

¬(F ∧G) −→ ¬F ∨ ¬G ¬(F ∨G) −→ ¬F ∧ ¬G
¬∃xF (x) −→ ∀x¬F (x) ¬∀xF (x) −→ ∃x¬F (x)
¬¬F −→ F ¬∼F −→ F

in the sense that for every rewrite rule LHS −→ RHS , we define

I |= LHS ⇐⇒ I |= RHS

Mod∗ denotes the model operator associated with the system 〈L(σ), I∗, |=〉, and
|=∗ denotes the corresponding entailment relation, for ∗ = 4, c, t, 2, i.e.

X |=∗ F iff Mod∗(X) ⊆ Mod∗({F})

Observation 1 If only two-valued models are admitted, weak and strong nega-
tion collapse:

¬F ≡2 ∼F

5.2 Classical Logic as a Special Case of Partial Logic

Obviously, the entailment relation |=2 corresponds to entailment in classical
logic. The most natural way to arrive at classical logic from proper partial logic
is to assume that all predicates are total: TPred = Pred . Under this assumption,
the two entailment relations |=c and |=2 of partial logic collapse.

Claim. If TPred = Pred , then |=c = |=2.

5.3 Total Predicates and the Closed-World Assumption

In general, three kinds of predicates can be distinguished. The first distinction,
proposed in [Koe66], reflects the fact that many predicates (especially in empir-
ical domains) have truth value gaps: neither p(c) nor ¬p(c) has to be the case
for specific instances of such partial predicates, like, e.g., color attributes which
can in some cases not be determined because of vagueness.

Other predicates, e.g. from legal or theoretical domains, are total, and we
then have, for instance, m(S) ∨ ¬m(S) and

prime(277 − 1) ∨ ¬prime(277 − 1)

stating that Sophia is either married or unmarried, and that 277 − 1 is either a
prime or a non-prime number. Only total predicates can be completely repre-
sented in a knowledge base. Therefore, only total predicates can be subject to a
completeness assumption. For simplicity, a predicate is called closed whenever
it is completely represented, otherwise it is called open.

For distinguishing between closed, open total and partial predicates, the
schema of a knowledge base has to specify a set Pred = {p1, . . . , pn} of pred-
icates (or table schemas), a set TPred ⊆ Pred of total predicates, and a set
CPred ⊆ TPred of closed predicates.



Definition 3 (Completeness Assumption) For a knowledge base Y over
a schema specifying a set of closed predicates CPred, we obtain the following
additional inference rule for drawing negative conclusions,

Y ` ¬p(c) if p ∈ CPred & Y ` ∼p(c)

The completeness assumption, in a less general form, was originally proposed
in [Rei78], under the name Closed-World Assumption (CWA). Our form of the
CWA relates explicit with default-implicit falsity, i.e. strong with weak negation.
It states that an atomic sentence formed with a closed predicate is false if it is
false by default, or, in other words, its strong negation holds if its weak nega-
tion does. It can also be expressed by means of the completion Compl(Y ) of a
knowledge base Y with respect to the set of closed predicates CPred:

Compl(Y ) = Upd(Y, {¬p(c) | p ∈ CPred & Y ` ∼p(c)})

A sentence F is inferable from Y if it can be derived from the tertium-non-datur -
closure of Comp(Y ):

Y ` F :⇐⇒ Upd(Compl(Y ), {p(c) ∨ ¬p(c) | p ∈ TPred− CPred}) ` F

Notice that in definite knowledge bases (not admitting disjunctions), it is not
possible to declare total predicates that are open. Therefore, in definite knowl-
edge systems, TPred = CPred.

Observation 2 For a knowledge base Y , it holds that

1. for any total predicate p ∈ TPred, and any constant (tuple) c, the resp.
instance of the tertium non datur holds: Y ` p(c) ∨ ¬p(c);

2. if q ∈ CPred, then Y does not contain any indefinite information about q,
i.e. Y ` q(c), or Y ` ¬q(c).

5.4 Reasoning with Three Kinds of Predicates

Only certain total predicates can be completely represented in a KB. These
closed predicates are subject to the completeness assumption. For example, the
KB of a city may know all residents of the city, i.e. the completeness assumption
holds for resident, but it does not have complete information of every resident
whether (s)he is married or not because (s)he might have married in another city
and this information is not available. Consequently, the completeness assumption
does not apply to married in this KB.

The completeness assumption helps to reduce disjunctive complexity which
is exponential in the number of open total predicates: if n is the number of
unknown ground atoms which can be formed by means of predicates declared as
total but open, then the knowledge base contains 2n possible state descriptions.

We illustrate these distinctions with an example. Let m, r, s, l denote the
predicates married, resident, smoker and is looking at, and let M,P,A stand for
the individuals Mary, Peter and Ann. Let

Y = {{m(M), r(M), s(M), ¬m(A), ¬s(A), l(M,P ), l(P,A)}}



be a knowledge base over a schema declaring the predicates m and r to be total,
and the predicate r to be closed. The interesting queries we can ask Y and the
resp. answers are:

1. Does a married person look at an unmarried one? Yes, but Y does not know
who, either Mary at Peter, or Peter at Ann. Formally, it holds that

Y ` ∃x∃y(l(x, y) ∧m(x) ∧ ¬m(y))

but there is no definite answer to this query, only an indefinite answer may
be obtained:

Ans(Y, l(x, y) ∧ r(x) ∧ ¬r(y)) = {{〈M,P 〉, 〈P,A〉}})

2. Does a resident look at a non-resident ? Yes, Mary at Peter.

Ans(Y, l(x, y) ∧ r(x) ∧ ¬r(y)) = {{〈M,P 〉}}

since Y ` ¬r(P ) if Y ` ∼r(P ).
3. Does a smoker look at a nonsmoker? No. Y is completely ignorant about

Peter being a smoker or not: neither is he a smoker, nor is he a nonsmoker,
nor is he a smoker or nonsmoker (as a partial predicate, s may have a truth
value gap for this instance):

Ans(Y, l(x, y) ∧ s(x) ∧ ¬s(y)) = ∅

6 Adding Two Kinds of Negation to RDF, OWL and
RuleML

It would be plausible to declare the predicate is the author of as open total,
since we cannot assume that the RDF knowledge base in question has complete
information about all authors of all books.

6.1 Closed Predicates and Negation-as-Failure in RDF/S

The predicate is an official W3C document should be declared as closed. This
consideration calls for a suitable extension of RDFS in order to allow making
such declarations for all predicates.

Having negated RDF facts, and open and closed predicates, suggests to use
both strong negation as well as negation-as-failure in RDF queries.

7 Conclusion

Like many other computational systems and formalisms, also the Semantic Web
would benefit from distinguishing between open and closed predicates using both
strong negation and negation-as-failure. We have shown that partial logic is the
logic of these two kinds of negation. Consequently, it would be important to
generalize RDF and OWL from their current classical logic version to a suitable
partial logic version and to combine them with RuleML.
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<imp>

<_head>

<atom>

<_opr>isAvailable</_opr>

<var>Car</var>

</atom>

</_head>

<_body>

<and>

<atom>

<_opr>RentalCar</_opr>

<var>Car</var>

</atom>

<neg>

<atom>

<_opr>requiresService</_opr>

<var>Car</var>

</atom>

</neg>

<naf>

<atom>

<_opr>isSchedForMaint</_opr>

<var>Car</var>

</atom>

</naf>

<naf>

<atom>

<_opr>isAssToRentalOrder</_opr>

<var>Car</var>

</atom>

</naf>

</and>

</_body>

</imp>

Fig. 1. The rule for available cars marked up in RuleML.



RentalCarID[1] : String
requiresService[0..1] : Boolean
isSchedForMaint[1] : Boolean
/isAvailable[1] : Boolean

RentalCar
RentalOrder

1 0..1

isAssignedTo

«invariant»
{ RentalOrder->isEmpty

and not CarPark->isEmpty
and not requiresService

and not isSchedForMaint
implies isAvailable}

CarPark

* 0..1

isParkedOn

Fig. 2. This UML class diagram shows two classes, RentalCar and RentalOrder, and
the functional association isAssignedTo between them. The Boolean-valued attribute
isAvailable is a derived attribute whose definition is expressed by the attached OCL
constraint.


