

SummerSim-SCSC, 2019 July 22-24, Berlin, Germany; ©2019 Society for Modeling & Simulation International (SCS)

TOWARDS A NON-PROPRIETARY MODELING LANGUAGE FOR

PROCESSING NETWORK SIMULATION

Gerd Wagner

Department of Informatics

Brandenburg University of Technology

P. O. Box 101344

03013 Cottbus, Germany

G.Wagner@b-tu.de

ABSTRACT

Processing networks have been investigated in the mathematical theory of queueing and have been the

application focus of most industrial simulation software products, starting with GPSS and SIMAN/Arena.
They allow modeling many forms of discrete processing processes, and are mainly used in simulation

projects for the manufacturing and services industries. However, there is still no proper vendor-neutral

language definition for this paradigm, e.g., in the form of a meta-model defining an abstract syntax for
specifying the structure and dynamics of processing networks. We reconstruct the core of this paradigm in

the form of a UML-based meta-model and show how to map a processing network specified with this meta-

model to an Object Event Simulation model providing its operational semantics.

Keywords: GPSS, SIMAN, Arena, Queuing Networks, Processing Networks

1 INTRODUCTION

The well-known Arena simulation software is the most prominent representative of a Discrete Event
Simulation (DES) paradigm that has been pioneered by GPSS (Gordon 1961) and SIMAN/Arena (Pegden

and Davis 1992) and is often characterized by the narrative of “entities flowing through a system”. This

narrative refers to a (typically stochastic) processing network (PN) where processing objects arrive at an
entry node and are then routed to a series of processing nodes where they are subject to processing activities,

possibly inducing queues (in input/output buffers), requiring resources, and transforming the types of

processing objects, before they depart at an exit node. We call this modeling and simulation paradigm,
which is concerned with modeling the behavior of discrete processing systems (such as manufacturing

plants, hospitals, restaurants, etc.) in the form of processing processes, the PN paradigm.

It is remarkable that the PN paradigm has dominated the discrete event simulation market since the 1990’s

and still flourishes today, mainly in the manufacturing and services industries, often with object-oriented

and “agent-based” extensions. Its dominance has led many simulation experts to view it as a synonym of
DES, which is a conceptual flaw because the concept of DES, even if not precisely defined, is clearly more

general than the PN paradigm, as we argue in Section 3.

The PN paradigm has often been called a “process-oriented” DES approach. But unlike the business process

modeling language BPMN, it is not concerned with a general concept of business process models, but rather
with the special class of processing process models for discrete processing systems, as we discuss in Section

3. A processing process includes the simultaneous handling of several “cases” (processing objects) that

Wagner

may compete for resources or have other interdependencies, while a “business process” in BPM has

traditionally been considered as a case-based process that is isolated from other cases.

Certain classes of processing networks have been investigated in the mathematical theory of queueing,

which aims to understand, analyze, and control congestion in these networks (Harrison 2000, Williams

2016). They have therefore also been called “queuing networks” in the Operations Research literature. The
mathematical models defined in this area are good for stochastic analysis, but they do not provide a

computational specification that can be directly implemented and executed, e.g., with Object-Oriented

Programming, for allowing simulations.

The most important modeling elements of Arena are the “flowchart modules” Create, Process and Dispose
for defining a network of entry, processing and exit nodes, supplemented by Decide for conditional

branching (XOR-splitting) and the “data modules” Entity for defining costing parameters per entity type

and Resource for defining resource pools. There are four additional “flowchart modules”: Separate and

Batch for ungrouping and grouping processing objects (or AND-splitting and merging the corresponding
control flows), Assign for assigning variables and Record for collecting statistics. And there are four

additional “data modules” (Queue, Variable, Schedule and Set). In this paper, we do not consider these

additional modeling elements that do not belong to the core of Arena.

An example of an Arena simulation model using only core (“flowchart”) elements is shown in Figure 1. It
models a Department of Motor Vehicles (DMV) with two consecutive service desks: a reception desk and

a case handling desk. When a customer arrives at the DMV, she first has to queue up at the reception desk

where data for her case is recorded. The customer then goes to the waiting area and waits for being called

by the case handling desk where her case will be processed. After completing the case handling, the

customer leaves the DMV via the exit.

Customer arrival events are modeled with a Create element (with name “DMV Entry”), the two consecutive

service desks are modeled with two Process elements, and the departure of customers is modeled with a

Dispose element (with name “DMV Exit”).

Figure 1: An Arena simulation model of a Department of Motor Vehicles (DMV).

There is no proper vendor-neutral language definition for the PN paradigm, e.g., in the form of a meta-

model. The simulation modeling concepts of the PN paradigm have been adopted by many other simulation

software products, including Simul8, Simio and AnyLogic. However, each product based on this paradigm
uses its own variants of the PN concepts, together with their own proprietary terminology and proprietary

diagram language, as illustrated by Table 1.

Table 1: Proprietary terminologies

Arena Simul8 Simio AnyLogic

Entity Work Item Token Agent

Create Start Point Source Source

Process Queue + Activity Server Service

Dispose End Point Sink Sink

Wagner

Notice especially the strange term “agent” used by AnyLogic instead of the Arena term “entity”, which

stands, e.g., for manufacturing parts in production systems or for patients in hospitals. It’s confusing to call

a manufacturing part, such as a wheel in the production of a car, an “agent”.

As noted by van der Aalst (2014), “the use of proprietary building blocks in tools such as ARENA makes

it hard to interchange simulation models”.

Using an approach that resembles the approach of Inductive Reference Modeling (Martens et al. 2015),
which extracts a common core from individual models, we develop a small core of the PN paradigm in the

form of a UML-based meta-model in four steps:

1. In Section 2, we start by identifying the core elements of Arena and describe them with a language

model in the form of a UML class diagram, shown in Figure 2. In this step, we already rename
certain elements for having self-explaining names and merge certain attributes into functions.

2. Then, in Section 3, we analyze the basic concepts of the Arena language.

3. In Section 4, we rename the core concepts for obtaining a technology-independent and vendor-

neutral terminology. meta-model.
4. Finally, still in Section 4, we make further simplifications by dropping non-essential attributes for

obtaining a small core of the Arena language.

The resulting meta-model, shown in Figure 3, specifies an abstract syntax of a language that defines a small

core subset of the PN paradigm, called Processing Network Language (PNL) 0.1. It has to be iteratively
extended by adding further PN concepts capturing variation points extracted from other relevant examples

of approaches/languages based on the PN paradigm such as Simio and AnyLogic.

In Section 5, we show how to obtain PNL 0.2 from PNL 0.1 by matching the PNL 0.1 metamodel with a

metamodel of a core fragment of AnyLogic for identifying further PNL core elements. In a similar way, we

are going to define PNL 0.3 by matching PNL 0.2 with a core fragment of Simio, and PNL 0.(x+1) by

matching PNL 0.x with a core fragment of yet another language.

The resulting PNL Family is a sequence of growing language versions that approximates the common core

of all variants of processing networks. It can be used as a basis for (a) comparing and evaluating the

simulation languages of, and (b) interchanging simulation models between, different simulation technology

products based on the PN paradigm, such as Simio, AnyLogic, JaamSim, Simul8, ExtendSim, etc.

In Section 7, we report on a JavaScript-based reference implementation of (a fragment of) PNL 0.1.

2 THE BASIC PN CONCEPTS OF ARENA

We restrict our analysis to the core elements of Arena and summarize them in the meta-model shown in

Figure 2 below.

An Arena process simulation model is a directed graph, consisting of one or many Create nodes, zero or

more Process nodes, zero or more Decide nodes and one or many Dispose nodes. Process, Decide and

Dispose nodes can be successor nodes.

A Create node has no predecessor node and exactly one successor node. It repeatedly creates “entities” (of

a certain type) that are routed to a successor node. It simulates a sequence of arrival events where the time

of the first arrival is given (either explicitly or by default) and the time in-between two arrivals is computed

by a recurrence function, which typically implements a random variable.

A Process node has an implicit input buffer where “entities” routed to the node are placed. According to
the Arena documents, a Process node represents an “activity, usually performed by one or more resources

and requiring some time to complete” before the processed “entity” can be routed to a successor node.

Wagner

A Decide node has two or more successor nodes. It allows defining stochastic or conditional branching

logic, routing an “entity” to a successor node chosen from a set of potential successor nodes.

A Dispose node has no successor node. At a Dispose node, “entities are removed from the simulation”.

We reconstruct a core fragment of Arena’s PN modeling language in the form of a meta-model visually

expressed as a UML class diagram in Figure 2.

Such a meta-model defines the abstract syntax of a language. It has to be complemented by a definition of

its semantics, which, in the case of a simulation language, must be operational. An execution semantics for
our meta-model of the PN paradigm can be implemented (e.g., with Java) independently of how the Arena

concepts have been implemented in the Arena software package.

arrivalRecurrence() : Number

name : String
entitiesPerArrival : Integer
maxNmrOfArrivals : Integer
timeOfFirstArrival : Number

Create

delay() : Number

name : String
resourceUsage : ResourceUsageEL
category : ProcessCategoryEL

Process

name : String

Dispose

0..1

1

*

1

SuccessorNode

Value Added
Non-ValueAdded
Transfer
Wait
Other

«enumeration»
ProcessCategoryEL

None
Seize
Seize-Release
Release

«enumeration»
ResourceUsageEL

chooseNext() : Integer

Decide

name : String
capacity : Integer
busyCostsPerHour : Number
idleCostsPerHour : Number
costsPerUse : Number
selectionRule : ResSelTypeEL

ResourceSet

quantity : Integer

ResourceAllocation

*

1

1

*

name : String
holdingCostPerHour : Number
initialValAddCost : Number
initialNonValAddCost : Number
initialWaitingCost : Number
initialTransferCost : Number

EntitType

* 1

*

2..*

Cyclical
Random
PreferredOrder
Specific

«enumeration»
ResSelTypeEL

Figure 2: A meta-model of the core elements of Arena.

Notice that in our meta-model of the Arena core,

1. We use an abstract class, SuccessorNode, for being able to state control flow constraints requiring that
(a) Process, Decide and Dispose nodes are successor nodes, and (b) Create, Process, and Decide nodes

have a successor node.

2. We have renamed several properties of model elements where the original name is not self-explaining:

(a) instead of “First Creation” in Create, we have timeOfFirstArrival,

(b) instead of “Action” in Process, we have resourceUsage, (None, Seize, Seize-Release, Release),

(c) instead of “Allocation” in Process, we have category, (Value Added, etc.).

Wagner

We have specified three functions: arrivalRecurrence(), delay() and chooseNext(), which are intended

to define instance-level functions where the function body is defined per instance, and not per (meta-) class
(notice that this approach extends standard UML semantics). For instance, each Process element in a model

may have its own delay function specifying the duration of an activity, typically in the form of a random

variable.

The function arrivalRecurrence() defined for Create elements subsumes the various options (like

random, constant or expression) supported by Arena for specifying the recurrence of arrival events.

Likewise, the function delay() defined for Process elements subsumes the various options (like constant,
expression, normal, uniform, etc.) supported by Arena for specifying the delay or duration of a processing

activity.

An instance of ResourceAllocation essentially is a combination of a resource type and a quantity, which

is the minimum information needed for defining a resource allocation in a Process element.

The function chooseNext() defined for Decide elements subsumes the options supported by Arena (of

specifying either conditions or probabilities).

3 ANALYSIS

In the following subsections, we express a number of observations about the Arena core concepts described

above.

3.1 Arena does not support a general concept of entities or objects

Despite the fact that “entities” are a core element of Arena’s PN modeling approach, there is no general
concept of entity types (or object types) in the sense of Object-Oriented (OO) modeling and programming

in Arena. Arena’s concept of entity types only allows defining a name and several costing parameter values

for an entity type, but it does not support user-defined attributes or inheritance between entity types.

It is also not possible in Arena to define an entity type, create a pool of instances of this entity type, e.g.,
each with specific property values, and then iteratively select one of them and introduce it to a processing

network simulation run at an entry node.

This shortcoming of Arena has been remedied by object-oriented PN simulation tools, such as Simio and

AnyLogic.

3.2 Arena does not support a general concept of events

Arena does not allow users to define their own types of events like different types of failures of a

workstation or critical patient health condition events during an operation. Rather, only certain types of

events can be defined implicitly:

When a Create element is placed in an Arena model, this implies a hidden definition of an arrival event
type. When the model is run, the Arena execution engine creates internal arrival events at each Create

element. Likewise, Dispose elements define implicit departure event types.

Each Process element in a model defines an implicit activity type, which is resolved into two implicit event

types start activity and end activity.

An execution semantics for the PN paradigm can be defined on the basis of the discrete event scheduling

approach using the four implicit Arena core event type categories Arrival, Start-Activity, End-Activity and
Departure. This is indicated by Pegden (2010), when he says that all discrete event simulation platforms

implement their internal logic using the event worldview, regardless of the worldview they present to the

user. The event worldview is characterized by viewing a system process as a series of instantaneous events

Wagner

that change the state of the system over time and create follow-up events, such that a model needs to define

the types of events in the system and model the state changes that take place, and the follow-up events that

occur, when events of those types happen.

3.3 The Arena “flowchart modules” are semantically overloaded

As already explained above, the “flowchart modules” Create, Process and Dispose are semantically

overloaded. They define both an object and an associated event type:

1. A Create node represents a place or organizational unit where “entities” (of a certain type) arrive, that

is, where “entity” arrival events (of a certain type) occur. Thus, it defines (1) an object (the place or
organizational unit), (2) an object type (the type of “entities”) and (3) an (arrival) event type.

2. A Process node represents a non-movable resource (such as a processing machine or service point) where

“entities” have to queue up in an input buffer before they are subject to processing (or service) activities

of a certain type, possibly involving the use of further resources. An activity is a complex event that at
least consists of a pair of a start and an end event. Thus, a Process node defines a resource object with

an input buffer, and an activity type.

3. A Dispose node represents a place or organizational unit where “entity” departure events (of a certain

type) occur. Thus, it defines both an object (the place or organizational unit) and an event type.

While the semantic overloading of the “flowchart modules” creates ambiguities that may be confusing for

users, it also leads to a concise simulation language that increases the usability of the approach.

3.4 Not all DES models are PN models

The class of DES models is larger than the class of PN models because not all discrete dynamic systems

are processing systems. For instance, a public transport system is not a processing system, but it can be

captured with some form of DES modeling. Likewise an economy is a discrete dynamic system, but not a

processing system. While certain forms of DES allow modeling an economy in a natural way (e.g., an
Object Event Simulation model of an economy can be run from https://sim4edu.com/sims/20), an economy

cannot be modeled as a PN in a natural way.

4 CONSOLIDATING THE ARENA CORE META-MODEL

For obtaining a small core of a general PN modeling language from the Arena core language captured in

the meta-model shown in Figure 2 above, we make the following simplifications:

 We do not consider resource usage across several Process nodes where one node may seize a resource

that is only released later by a successor node. So, we only have two kinds of resource usage: either no

resource or a certain quantity of resources from a resource pool is used (seized at the beginning of the

processing activity and released at its end). Consequently, we drop the resourceUsage attribute and
express these two cases by either not having, or having, a resource allocation.

 We do not consider the calculation of cost-based performance indicators and drop the costing

parameters of the Resource and Entity “data modules” as well as the costing-related category attribute
of Process nodes. Since this simplification leaves the Entity “data module” with only one attribute, the

entity type name, it can be dropped altogether.

For obtaining a coherent and vendor-neutral terminology, we use our own names for the Arena modeling

elements listed in Table 2.

Since an important design goal for PNL is using OO modeling as a foundation, both processing objects and

resources should be objects that instantiate an object type, which may be part of a type hierarchy in the

sense of OO modeling. Consequently, in PNL, (1) a processing object (“entity”) is an instance of the output
object type of the entry node where the processing object was created or has entered the system, and (2) a

resource pool contains resource objects that are instances of a particular object type. This conceptualization

https://sim4edu.com/sims/20

Wagner

allows that the same object (say, a person) may play a resource role (e.g., Surgeon) and be a processing

object (a patient), albeit not at the same time, which is not possible to model in Arena.

Table 2: Proprietary terminologies

Arena PNL

Entity Processing Object

Create Entry Node

Process Processing Node

Dispose Exit Node

Decide XOR-Gateway

Resource Resource Pool

entitiesPerArrival objectsPerArrival

The simplifications, renaming and OO approach described above lead to the meta-model defining our first

version of a PN modeling language shown in Figure 3 below.

Figure 3: A meta-model for PNL 0.1

In general, in a simulation run, the arrival events occurring at an entry node may introduce processing

objects in one of two ways: (1) they are associated with pre-existing objects (e.g., from an object pool), or,
otherwise, (2) they trigger the creation of new processing objects, either as instances of the entry node’s

output type, if there is one, or, otherwise, as instances of a built-in default output type. While in PNL 0.1,

Wagner

as in Arena, only the second method is supported, the first method will be added in PNL 0.2 for matching

the corresponding feature of AnyLogic..

A processing node may have any number of resource allocations consisting of a (reference to a) resource

pool and a quantity, such as {[resPool:”doctors”, quantity:2], [resPool:”nurses”, quantity:3]} for a hospital

operating room modeled as a processing node.

The Arena model of a DMV shown in Figure 1 above can be expressed as an exemplar model of the PNL
0.1 meta-model. The elements of an exemplar model are instances of elements of the exemplified model.

Since in this case the exemplified model is a meta-model defining both meta-classes, such as ObjectType,

and basic classes, such as ProcessingNode, the exemplar model shown in Figure 4 contains both basic

classes, such as Customer, and instances of basic classes, such as receptionDesk.

Notice that a model expressed with PNL 0.1 only defines object types (as the types of resources and

processing objects), but no explicit event types, reflecting the situation in Arena, which does not allow

defining event types.

dmvEntry: EntryNode

name: "DMV entry"
timeOfFirstArrival: 0.0
successorNode: ReceptionDesk

arrivalRecurrence: Exp(0.5)

receptionDesk: ProcessingNode

name: "reception desk"
successorNode: CaseHandling

duration: Exp(0.2)

caseHandlingDesk: ProcessingNode

name: "case handling desk"
successorNode: DMVExit

duration: Exp(0.4)

dmvExit: ExitNode

name: "DMV exit"

successorNode

successorNode
successorNode

Customer : ObjectType

outputType

1

*

Figure 4: A PNL exemplar model defining the DMV model of Figure 1.

5 MATCHING THE CORE MODELING ELEMENTS OF ANYLOGIC

As can be seen from the AnyLogic core metamodel shown in Figure 5, the overlap between AnyLogic core

modeling elements and PNL 0.1, modulo name choices, is pretty large. For instance, a Source corresponds
to an EntryNode, and the attribute Source::agentsPerArrival corresponds to EntryNode::objectsPerArrival.

In addition to these one-to-one correspondences, the AnyLogic core metamodel defines a few elements that

have to be added to PNL 0.1:

1. AnyLogic’s Enter element allows introducing pre-existing objects as processing objects to a PN. In
PNL 0.2, this feature is accommodated by adding to the PNL class EntryNode (1) an optional property

objectPool that references an object pool, and (2) an operation push for pushing processing objects to

the successor node.

2. AnyLogic’s Service::queueCapacity attribute is added to the PNL class ProcessingNode. This requires
to add the value blocked to the enumeration of processing node status values because it creates the

possibility that a processing node gets blocked when its queueCapacity has been reached.

3. For accommodating AnyLogic’s Event element, a new class EventType is added to PNL 0.1 with

suitable subclasses such as ExogenousEventType and TimeEventType.

Wagner

interarrivalTime() : Number

name[1] : String
startTime[1] : Number
agentsPerArrival[0..1] : Integer = 1
maxArrivals[0..1] : Integer

Source

duration() : Number

name : String
queueCapacity : Integer

Service

name : String

Sink

0..1

1

* 1

SuccessorNode

chooseSuccessorNode() : Integer

conditionIsProbabilistic : Boolean

SelectOutput

name : String
capacity : Integer

ResourcePool

quantity : Integer

ResourceAllocation

*

1

1

*

name

AgentType

resourceType1

*

outputType

0..1

*

*

2..*

inputType

0..1

*

take()

Enter

outputType 0..1

*

0..1

1

onEvent()

triggerType : TriggerTypeEL

Event

Timeout
Rate
Condition

«enumeration»
TriggerTypeEL

Figure 5: A meta-model for a core fragment of AnyLogic

6 EXECUTION SEMANTICS

By mapping models expressed with PNL to Object Event Simulation (OES) models, the operational

semantics defined for OES models in (Wagner 2017a) provides an execution semantics for PN simulation

models. The mapping is based on the well-known pattern that an activity corresponds to a pair of coupled

events: an activity start event and a succeeding activity end event.

In Table 3, we illustrate the main principles of the mapping of a PNL model to an OES model with our

example presented in Figure 4 above.

Object Event Modeling and Simulation (OEM&S) (Wagner 2018) represents a general Discrete Event

Simulation approach based on object-oriented modeling and event scheduling. In OEM&S, object types

and event types are modeled as special categories of classes in a UML Class Diagram. Random variables
are modeled as a special category of class-level operations constrained to comply with a specific probability

distribution such that they can be implemented as static methods of a class. Queues are not modeled as

objects, but rather as ordered association ends, which can be implemented as collection-valued reference
properties. Finally, event rules, which include event routines, are modeled both as BPMN/DPMN process

diagrams and in pseudo-code such that they can be implemented in the form of special onEvent methods of

event classes.

Wagner

Table 3: Mapping PNL model elements to OES model elements

PNL model element OES model element(s)

dmvEntry: EntryNode

name: "dmvEntry"
timeOfFirstArrival: 0.0
successorNode: receptionDesk

arrivalRecurrence: Exp(0.5)

An entry node is mapped to (1) an object of type

oes.EntryNode, and (2) an initial event of type oes.Arrival:

Object{ type: oes.EntryNode, name:”dmvEntry”,

 successorNode: receptionDesk}

Event{ type: oes.Arrival, entryNode: dmvEntry, occTime: 0.0}

When the simulator processes such an arrival event, it creates

an object of type oes.ProcessingObject, pushes it to the input

buffer of the successor node, schedules an oes.Processing-
ActivityStart event for the successor node and schedules the

next such arrival event using the arrivalRecurrence function.

receptionDesk: ProcessingNode

name: "receptionDesk"
successorNode: caseHandlingDesk

duration: Exp(0.2)

A processing node is mapped to a corresponding object:

Object{ type: oes.ProcessingNode, name:”receptionDesk”,

 successorNode: caseHandlingDesk}

When the simulator processes an oes.ProcessingActivityStart

event at a processing node, it schedules an oes.Processing-
ActivityEnd event with a delay given by the duration function.

When the simulator processes an oes.ProcessingActivityEnd

event at an intermediate processing node, it pushes the
processing object to the input buffer of the successor processing

node and schedules an oes.ProcessingActivityStart event for

that node.

caseHandlingDesk: ProcessingNode

name: "caseHandlingDesk"
successorNode: dmvExit

duration: Exp(0.4)

Object{ type: ProcessingNode, name:”caseHandlingDesk”,

 successorNode: dmvExit}

When the simulator processes an oes.ProcessingActivityEnd
event at the processing node ”caseHandlingDesk”, it pushes the

processing object to the input buffer of the successor

node ”dmvExit” and schedules an oes.Departure event.

dmvExit: ExitNode

name: "dmvExit"

Object{ type: oes.ExitNode, name:”dmvExit”}

7 IMPLEMENTING PNL 0.1 MODELS WITH OESJS

PNL can be implemented as an extension of the JavaScript-based Object Event Simulation framework

OESjs, which is presented in (Wagner 2017b) and available online from https://sim4edu.com.

As an illustrative example, we present the code of the DMV model shown in Figure 1, Figure 4 and Table

1 above. The example is available, and can be run, online from https://sim4edu.com/sims/11.

On top of the OESjs framework, the JavaScript code for this example consists of a simulation scenario that

defines an initial state consisting of the four PN nodes that have been discussed above:

Wagner

sim.scenario.initialState.objects = {

 "1": {typeName: "eNTRYnODE", name:"dmvEntry",

 successorNode: 2,

 arrivalRecurrence: function () {

 return rand.exponential(0.5);}

 },

 "2": {typeName: "pROCESSINGnODE", name:"receptionDesk",

 successorNode: 3,

 randomDuration: function () {

 return rand.exponential(0.2);}

 },

 "3": {typeName: "pROCESSINGnODE", name:"caseHandlingDesk",

 successorNode: 4,

 randomDuration: function () {

 return rand.exponential(0.4);}

 },

 "4": {typeName: "eXITnODE", name:"dmvExit"}

};

Notice how the arrivalRecurrence() function is defined as an instance-level function of the entry node
object. Likewise, for all the processing node objects, randomDuration() functions are defined as instance-

level functions.

8 TOWARDS PNL 1.0

We plan to incrementally extend PNL 0.2 for obtaining PNL 1.0 by adding

1. core modeling elements from Simio such that PNL gets aligned with it;

2. further, more advanced, modeling elements from Arena, Simio and AnyLogic, such as resource

selection rules, task priorities, output buffers, batching, failures/repairs and processing activity
variants (all defined in processing nodes), failures/repairs of resources (defined in resource object

types);

3. modeling elements for accommodating the PN concepts of Queueing Theory.

8.1 Accommodating the PN concepts of Queueing Theory

In the mathematical theory of queueing, which dates back to the 1950’s, the term “processing network” has
been used only in more recent years, e.g., by Harrison (2000) writing about “open processing networks” or

Williams (2016) writing about “stochastic processing networks”, as a generalization of the term “queueing

network”.

Williams (2016) characterizes (stochastic) processing networks by three key components: (a) the buffers
(“classes”) for storing waiting processing objects (“jobs”), (b) the processing resources (“servers”), and (c)

the processing activities, stating that “an activity consumes from certain classes, produces for certain

(possibly different) classes, and uses certain servers in the process”.

This means that a processing node may have multiple input buffers (with various pull policies) and multiple

output buffers such that its processing activity may process multiple input objects of different types,
possibly concurrently, allocating multiple resources playing different roles (with various allocation

policies), and create multiple output objects of different types.

Williams points out that most PNs cannot be analyzed exactly, but only with the help of approximate

models, such as fluid models and diffusion models (Williams 2016).

Wagner

9 CONCLUSIONS

We have presented a meta-model obtained from analyzing the Arena simulation language defined by its

“flowchart modules” and “data modules”. This meta-model defines a Processing Network Language (PNL)

the goal of which is to capture the Processing Network (PN) simulation paradigm. We have implemented

a core fragment of it in the OESjs simulation framework (available from https://sim4edu.com) and used it

in teaching the concepts of the PN paradigm.

After completing PNL 1.0, we plan to analyze other simulation software products by determining the

degree, with which they match PNL. We expect that this approach will allow to assess if PNL 1.0 can

already be used as a basis for evaluating the completeness of simulation software products and as a format
that allows interchanging simulation models between different tools based on the PN paradigm, or if it

needs to be further extended. The evolving family of PNL versions will be available online at

https://sim4edu.com/reading/PNL.

REFERENCES

van der Aalst, W.M.P. 2014. “Business process simulation survival guide”. In: J. vom Brocke and M.
Rosemann (eds), Handbook on business process management, vol 1, 2nd edn. Springer, Heidelberg, pp

337–370.

Gordon, G. 1961. “A general purpose systems simulation program”. In Proceedings of the Eastern Joint

Computer Conference, Washington, D.C.

Harrison, J. M. 2000. “Brownian models of open processing networks: canonical representation of

workload”. Annals of Applied Probability, 10(1):75–103.

Martens, A., P. Fettke, and P. Loos. 2015. “Inductive Development of Reference Process Models Based on
Factor Analysis”. In: Thomas. O. and F. Teuteberg (Eds.): Proceedings of 12th International

Conference Wirtschaftsinformatik (WI 2015), Osnabrück, S. 438-452.

Pegden, C.D. and D.A. Davis. 1992. “Arena: a SIMAN/Cinema-based hierarchical modeling system”. In

Proceedings of the 24th Winter Simulation Conference (WSC '92). ACM, New York, NY, USA, 390–

399.

Pegden, C.D. 2010. “Advanced Tutorial: Overview of Simulation World Views.” In Proceedings of the

2010 Winter Simulation Conference, edited by B. Johansson et al, 643−651. Piscataway, NJ: IEEE.

Wagner, G. 2017a. “An Abstract State Machine Semantics for Discrete Event Simulation”. In Proceedings

of the 2017 Winter Simulation Conference. Piscataway, NJ: IEEE.

Wagner, G. 2017b. “Sim4edu.com – Web-Based Simulation for Education”. Proceedings of the 2017

Winter Simulation Conference. Piscataway, NJ: IEEE.

Wagner, G. 2018. “Information and Process Modeling for Simulation – Part I: Objects and Events”. Journal

of Simulation Engineering, vol. 1, https://articles.jsime.org/1/1.

Williams, R.J. 2016. “Stochastic Processing Networks”. Annual Review of Statistics and Its Application

3:1, 323–345.

AUTHOR BIOGRAPHY

GERD WAGNER is Professor of Internet Technology at the Dept. of Informatics, Brandenburg University

of Technology, Germany, and Adjunct Associate Professor at the Dept. of Modeling, Simulation and
Visualization Engineering, Old Dominion University, Norfolk, VA, USA. His research interests include

modeling and simulation, foundational ontologies and web engineering. In recent years, he has been

focusing his research on the development of a general discrete event modeling and simulation framework,
called Object Event Modeling & Simulation (OEM&S), which has been implemented by the OESjs

framework available on https://sim4edu.com. His email address is G.Wagner@b-tu.de.

https://sim4edu.com/reading/PNL
https://articles.jsime.org/1/1
mailto:G.Wagner@b-tu.de

