
On the Computability and Complexity Issues of

Extended RDF

Anastasia Analyti1, Grigoris Antoniou1,2,
Carlos Viegas Damásio3, and Gerd Wagner4

1 Institute of Computer Science, FORTH-ICS, Greece
2 Department of Computer Science, University of Crete, Greece

3 CENTRIA, Departamento de Informatica, Faculdade de Ciencias e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

4 Inst. of Informatics, Brandenburg Univ. of Technology at Cottbus, Germany
{analyti, antoniou}@ics.forth.gr, cd@di.fct.unl.pt,

G.Wagner@tu-cottbus.de

Abstract. ERDF stable model semantics is a recently proposed seman-
tics for ERDF ontologies and a faithful extension of RDFS semantics
on RDF graphs. In this paper, we elaborate on the computability and
complexity issues of the ERDF stable model semantics. We show that de-
cidability under this semantics cannot be achieved, unless ERDF ontolo-
gies of restricted syntax are considered. Therefore, we propose a slightly
modified semantics for ERDF ontologies, called ERDF #n-stable model
semantics. We show that entailment under this semantics is in general de-
cidable and it also extends RDFS entailment. An equivalence statement
between the two semantics and various complexity results are provided.
Keywords: Extended RDF ontologies, Semantic Web, negation, rules,
complexity.

1 Introduction

Rules constitute the next layer over the ontology languages of the Semantic
Web, allowing arbitrary interaction of variables in the head and body of the
rules. Berners-Lee [3] identifies the following fundamental theoretical problems:
negation and contradictions, open-world versus closed-world assumptions, and
rule systems for the Semantic Web. In [1], the Semantic Web language RDFS [8]
is extended to accommodate the two negations of Partial Logic [9], namely weak
negation ∼ (expressing negation-as-failure or non-truth) and strong negation ¬
(expressing explicit negative information or falsity), as well as derivation rules.
The new language is called Extended RDF (ERDF). In [1], the stable model
semantics of ERDF ontologies is developed, based on Partial Logic, extending
the model-theoretic semantics of RDFS [8].

ERDF enables the combination of closed-world (non-monotonic) and open-
world (monotonic) reasoning, in the same framework, through the presence of
weak negation (in the body of the rules) and the new metaclasses erdf :TotalClass
and erdf :TotalProperty , respectively. In particular, relating strong and weak

negation at the interpretation level, ERDF distinguishes two categories of prop-
erties and classes. Partial properties are properties p that may have truth-value
gaps, that is p(x, y) is possibly neither true nor false. Total properties are proper-
ties p that satisfy totalness, that is p(x, y) is either true or false. Partial and total
classes c are defined similarly, by replacing p(x, y) by rdf :type(x, c). ERDF also
distinguishes between properties (and classes) that are completely represented
in a knowledge base and those that are not. Clearly, in the case of a completely
represented (closed) property p, entailment of ∼p(x, y) allows to derive ¬p(x, y),
and the underlying completeness assumption has also been called Closed-World
Assumption (CWA) in the AI literature.

Such a completeness assumption for closing a partial property p by default
may be expressed in ERDF by means of the rule ¬p(?x, ?y) ← ∼p(?x, ?y) and
for a partial class c, by means of the rule ¬rdf :type(?x, c) ← ∼rdf :type(?x, c).
These derivation rules are called default closure rules. In the case of a total
property p, default closure rules are not applicable. This is because, some of
the considered interpretations will satisfy p(x, y) and the rest ¬p(x, y)5, pre-
venting the preferential entailment of ∼p(x, y). Thus, on total properties, an
Open-World Assumption (OWA) applies. Similarly to first-order-logic, in order
to infer negated statements about total properties, explicit negative information
has to be supplied, along with ordinary (positive) information.

Intuitively, an ERDF ontology is the combination of (i) an ERDF graph G

containing (implicitly existentially quantified) positive and negative information,
and (ii) an ERDF program P containing derivation rules, with possibly all con-
nectives ∼, ¬, ⊃, ∧, ∨, ∀, ∃ in the body of a rule, and strong negation ¬ in the
head of a rule.

Example 1. We want to select wines for a dinner such that for each adult guest
that (we know that) likes wine, there is on the table exactly one wine that
he/she likes. Further, we want guests who are neither adults nor children to
be served Coca-Cola. Additionally, we want adult guests, for whom we do not
know if they like wine, also to be served Coca-Cola. Assume that in contrast
to a child, we cannot decide if guest is an adult or not. For this drink selec-
tion problem, we use the classes: (i) ex:Guest, whose instances are the persons
that will be invited to the dinner, (ii) ex:Wine, whose instances are wines, (iii)
ex:SelectedWine whose instances the wines chosen to be served, (iv) ex:Adult ,
whose instances are persons, 18 years of age or older, and (v) ex:Child , whose
instances are persons, 10 years of age or younger. Additionally, we use the prop-
erties: (i) ex:likes(X, Y) indicating that we know that person X likes wine Y ,
and (ii) ex:serveSoftDrink(X ,Y) indicating that person X will be served soft
drink Y . An ERDF program P that describes this drink selection problem is the
following6,7:

id(?x, ?x) ← true.

rdf :type(?y,SelectedWine)← rdf :type(?x, Guest), rdf :type(?x, Adult),
rdf :type(?y,Wine), likes(?x, ?y),

5 On total properties p, the Law of Excluded Middle p(x, y)∨¬p(x, y) applies.
6 To improve readability, we ignore the example namespace ex:.
7 Commas “,” in the body of the rules indicate conjunction ∧.

∀?z (rdf :type(?z ,SelectedWine),∼id(?y , ?z) ⊃ ∼likes(?x , ?z)).
rdf :type(Adult , erdf :TotalClass) ← true.

¬rdf :type(?x ,Child) ← ∼rdf :type(?x ,Child).
serveSoftDrink(?x ,Coca-Cola) ← rdf :type(?x ,Guest),¬rdf :type(?x ,Adult),

¬rdf :type(?x ,Child).
serveSoftDrink(?x ,Coca-Cola) ← rdf :type(?x ,Guest), rdf :type(?x ,Adult),

∀?y (rdf :type(?y ,Wine) ⊃ ∼likes(?x , ?y)).

Consider now the ERDF graph G, containing the factual information: G =

{rdf :type(Carlos, Guest), rdf :type(Gerd, Guest), rdf :type(Anne, Guest),

rdf :type(Riesling, Wine), rdf :type(Retsina, Wine), likes(Gerd, Riesling), likes(Gerd,

Retsina), likes(Carlos, Retsina), rdf :type(Gerd, Adult), rdf :type(Carlos, Adult)}.
Then, O = 〈G,P 〉 is an ERDF ontology. Note that Adult is declared in P

as total class8. Thus, on this class the OWA applies and case-based reasoning
on the truth value of rdf :type(Anne, Adult) is performed. On the other hand,
likes(X, Y) is a partial property and Child is a partial class. In particular, on
Child a CWA applies, expressed by a default closure rule. 2

In [1], it is shown that stable model entailment conservatively extends RDFS
entailment from RDF graphs to ERDF ontologies. Unfortunately, satisfiability
and entailment under the ERDF stable model semantics are in general unde-
cidable. In this work, we further elaborate on the undecidability result of the
ERDF stable model semantics. We show that decidability cannot be achieved
under this semantics, unless ERDF ontologies of restricted syntax are consid-
ered. This is due to the fact that the RDF vocabulary is infinite. Therefore,
to achieve decidability of reasoning in the general case, we propose a modified
semantics, called ERDF #n-stable model semantics (for n ∈ IN). The new se-
mantics also extends RDFS entailment from RDF graphs to ERDF ontologies.
Moreover, if O is a simple ERDF ontology (i.e., the bodies of the rules of O

contain only the logical factors ∼, ¬, ∧) then query answering under the ERDF
#n-stable model semantics (for n ∈ IN) reduces to query answering under the
answer set semantics [7]. An equivalence statement between the ERDF stable
and #n-stable model semantics is provided. Moreover, we provide complexity
results for (i) the ERDF #n-stable model semantics on simple ERDF ontologies
and objective ERDF ontologies (i.e., ERDF ontologies whose rules contain only
the logical factors ¬, ∧) and (ii) the ERDF stable model semantics on objective
ERDF ontologies.

The rest of the paper is organized as follows: Section 2 reviews the stable
model semantics of ERDF ontologies. In Section 3, we propose the #n-stable
model semantics of ERDF ontologies that extends RDFS entailment on RDF
graphs and guarantees decidability of reasoning. Additionally, we provide an
equivalence statement between the ERDF #n-stable and stable model semantics.
Section 4 provides various complexity results for ERDF #n-stable and stable
model semantics. Finally, Section 4 concludes the paper and reviews related
work.
8 Of course, this declaration could had been included (equivalently) in G, instead of

P .

2 Stable Model Semantics of ERDF Ontologies

In this Section, we briefly review the stable model semantics of ERDF ontologies.
Details and examples can be found in [1].

A (Web) vocabulary V is a set of URI references and/or literals (plain or
typed). We denote the set of all URI references by URI, the set of all plain
literals by PL, the set of all typed literals by T L, and the set of all literals by
LIT . We consider a set Var of variable symbols, such that the sets Var , URI,
LIT are pairwise disjoint. In our examples, variable symbols are prefixed by
“?”.

Let V be a vocabulary. An ERDF triple over V is an expression of the form
p(s, o) or ¬p(s, o), where s, o ∈ V ∪Var are called subject and object, respectively,
and p ∈ V ∩URI is called property. An ERDF graph G is a set of ERDF triples
over some vocabulary V . We denote the variables appearing in G by Var(G),
and the set of URI references and literals appearing in G by VG.

Let V be a vocabulary. We denote by L(V) the smallest set that contains
the ERDF triples over V and is closed with respect to the following conditions:
if F,G ∈ L(V) then {∼F, F∧G, F∨G, F ⊃ G, ∃xF, ∀xF} ⊆ L(V), where
x ∈ Var . An ERDF formula over V is an element of L(V). We denote the set
of variables appearing in F by Var(F), and the set of free variables appearing
in F by FVar(F). Moreover, we denote the set of URI references and literals
appearing in F by VF .

Intuitively, an ERDF graph G represents an existentially quantified conjunc-
tion of ERDF triples. Specifically, let G = {t1, ..., tm} be an ERDF graph, and
let Var(G) = {x1, ..., xk}. Then, G represents the ERDF formula formula(G) =
∃?x1, ...,∃?xk t1 ∧ ... ∧ tm. Existentially quantified variables in ERDF graphs
are handled by skolemization. Let G be an ERDF graph. The skolemization
function of G is an 1:1 mapping skG : Var(G) → URI, where for each x ∈
Var(G), skG(x) is an artificial URI, denoted by G:x. The skolemization of G,
denoted by sk(G), is the ground ERDF graph derived from G after replacing
each x ∈ Var(G) by skG(x).

An ERDF rule r over a vocabulary V is an expression of the form: Concl(r)←
Cond(r), where Cond(r) ∈ L(V) ∪ {true} and Concl(r) is an ERDF triple or
false. We denote the set of variables and the set of free variables of r by Var(r)
and FVar(r)9, respectively. An ERDF program P is a set of ERDF rules. We
denote the set of URI references and literals appearing in P by VP .

An ERDF ontology is a pair O = 〈G,P 〉, where G is an ERDF graph and P

is an ERDF program.
A partial interpretation is an extension of a simple interpretation of RDF

semantics [8], where each property is associated not only with a truth extension
but also with a falsity extension.

Definition 1 (Partial interpretation). A partial interpretation I of a vocab-
ulary V consists of:

9 FVar(r) = FVar(F) ∪ FVar(G).

– A non-empty set of resources ResI , a set of properties PropI , and a set of literal
values LV I ⊆ ResI , which contains V ∩ PL.

– A vocabulary interpretation mapping: IV : V ∩ URI → ResI ∪ PropI .
– A property-truth extension mapping10: PT I : PropI → P(ResI ×ResI).
– A property-falsity extension mapping: PF I : PropI → P(ResI ×ResI).
– A mapping ILI : V ∩ T L → ResI .

We define the mapping: I : V → ResI ∪PropI , called denotation, such that: (i)

I(x) = IV (x), ∀x ∈ V ∩ URI, (ii) I(x) = x, ∀ x ∈ V ∩ PL, and (iii) I(x) = ILI(x),

∀ x ∈ V ∩ T L. 2

A partial interpretation I of a vocabulary V is coherent iff for all x ∈ PropI ,

PT I(x) ∩ PF I(x) = ∅.
Let I be a partial interpretation of a vocabulary V and let v be a partial

function v : Var → ResI (called valuation). If x ∈ Var , we define [I + v](x) =
v(x). If x ∈ V , we define [I + v](x) = I(x).

Definition 2. (Satisfaction of an ERDF formula w.r.t. a partial in-
terpretation and a valuation) Let F,G be ERDF formulas and let I be
a partial interpretation of a vocabulary V . Additionally, let v be a mapping
v : Var(F)→ ResI .

– If F = p(s, o) then I, v |= F iff p ∈ V ∩ URI, s, o ∈ V ∪ Var , I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PT I(I(p)).

– If F = ¬p(s, o) then I, v |= F iff p ∈ V ∩URI, s, o ∈ V ∪Var , I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PF I(I(p)).

– If F = ∼G then I, v |= F iff VG ⊆ V and I, v 6|= G.
– If F = F1∧F2 then I, v |= F iff I, v |= F1 and I, v |= F2.
– If F = F1∨F2 then I, v |= F iff I, v |= F1 or I, v |= F2.
– If F = F1 ⊃ F2 then I, v |= F iff I, v |= ∼F1∨F2.
– If F = ∃x G then I, v |= F iff there exists mapping u : Var(G)→ ResI such that

u(y) = v(y), ∀y ∈ Var(G)− {x}, and I, u |= G.
– If F = ∀x G then I, v |= F iff for all mappings u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G)− {x}, it holds I, u |= G. 2

Let F be an ERDF formula, let G be an ERDF graph, and let I be a partial
interpretation of a vocabulary V . We define: I |= F iff for each mapping v :
Var(F) → ResI , it holds that I, v |= F . Additionally, we define: I |= G iff
I |= formula(G).

We assume that for every partial interpretation I, it holds that I |= true and
I 6|= false.

The vocabulary of RDF, VRDF , is a set of URI references in the rdf : names-
pace [8]. The vocabulary of RDFS, VRDFS , is a set of URI references in the rdfs:
namespace [8]. The vocabulary of ERDF is defined as VERDF = {erdf :TotalClass,
erdf :TotalProperty}. Intuitively, instances of the metaclass erdf :TotalClass are
classes c that satisfy totalness, meaning that each resource x belongs either to
the truth or falsity extension of c (i.e., the statement “x is of type c” is either

10 The notation P(S), where S is a set, denotes the powerset of S.

true or explicitly false). Similarly, instances of the metaclass erdf :TotalProperty
are properties p that satisfy totalness, meaning that each pair of resources 〈x, y〉
belongs either to the truth or falsity extension of p (i.e., the statement “〈x, y〉
satisfies property p” is either true or explicitly false).

Definition 3 (ERDF interpretation). An ERDF interpretation I of a vocab-
ulary V is a coherent, partial interpretation of V ∪VRDF ∪VRDFS ∪VERDF , ex-
tended by the new ontological categories ClsI ⊆ ResI for classes, TClsI ⊆ ClsI

for total classes, and TPropI ⊆ PropI for total properties, as well as the class-
truth extension mapping CT I : ClsI → P(ResI), and the class-falsity extension
mapping CF I : ClsI → P(ResI), such that:

1. x ∈ CT I(y) iff 〈x, y〉 ∈ PT I(I(rdf :type)), and
x ∈ CF I(y) iff 〈x, y〉 ∈ PF I(I(rdf :type)).

2. The ontological categories are defined as follows:
PropI = CT I(I(rdf :Property)) ClsI = CT I(I(rdfs:Class))
ResI = CT I(I(rdfs:Resource)) LV I = CT I(I(rdfs:Literal))
TClsI = CT I(I(erdf :TotalClass)) TPropI = CT I(I(erdf :TotalProperty)).

3. If 〈x, y〉 ∈ PT I(I(rdfs:domain)) and 〈z, w〉 ∈ PT I(x) then z ∈ CT I(y).
4. If 〈x, y〉 ∈ PT I(I(rdfs:range)) and 〈z, w〉 ∈ PT I(x) then w ∈ CT I(y).
5. If x ∈ ClsI then 〈x, I(rdfs:Resource)〉 ∈ PT I(I(rdfs:subClassOf)).
6. If 〈x, y〉 ∈ PT I(I(rdfs:subClassOf)) then

x, y ∈ ClsI , CT I(x) ⊆ CT I(y), and CF I(y) ⊆ CF I(x).
7. PT I(I(rdfs:subClassOf)) is a reflexive and transitive relation on ClsI .
8. If 〈x, y〉 ∈ PT I(I(rdfs:subPropertyOf)) then

x, y ∈ PropI , PT I(x) ⊆ PT I(y), and PF I(y) ⊆ PF I(x).
9. PT I(I(rdfs:subPropertyOf)) is a reflexive and transitive relation on PropI .

10. If x ∈ CT I(I(rdfs:Datatype)) then
〈x, I(rdfs:Literal)〉 ∈ PT I(I(rdfs:subClassOf)).

11. If x ∈ CT I(I(rdfs:ContainerMembershipProperty)) then
〈x, I(rdfs:member)〉 ∈ PT I(I(rdfs:subPropertyOf)).

12. If x ∈ TClsI then CT I(x) ∪ CF I(x) = ResI .
13. If x ∈ TPropI then PT I(x) ∪ PF I(x) = ResI ×ResI .
14. If “s”̂ r̂df :XMLLiteral ∈ V and s is a well-typed XML literal string, then

ILI(“s”̂ r̂df :XMLLiteral) is the XML value of s, and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CT I(I(rdf :XMLLiteral)).

15. If “s”̂ r̂df :XMLLiteral ∈ V and s is an ill-typed XML literal string then
ILI(“s”̂ r̂df :XMLLiteral) ∈ ResI − LV I , and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CF I(I(rdfs:Literal)).

16. I satisfies the RDF and RDFS axiomatic triples [8], respectively.
17. I satisfies the following triples, called ERDF axiomatic triples:

rdfs:subClassOf (erdf :TotalClass, rdfs:Class).
rdfs:subClassOf (erdf :TotalProperty , rdfs:Class). 2

The vocabulary of an ERDF ontology O is defined as VO = Vsk(G) ∪ VP ∪
VRDF ∪VRDFS ∪VERDF . Additionally, we denote by ResH

O the union of VO and
the set of XML values of the well-typed XML literals in VO minus the well-typed
XML literals.

Definition 4 (Herbrand interpretation of an ERDF ontology). Let O =
〈G,P 〉 be an ERDF ontology and let I be an ERDF interpretation of VO. We say
that I is a Herbrand interpretation of O iff: (i) ResI = ResH

O , (ii) IV (x) = x, for
all x ∈ VO ∩URI, (iii) ILI(x) = x, if x is a typed literal in VO other than a well-
typed XML literal, and ILI(x) is the XML value of x, if x is a well-typed XML
literal in VO. We denote the set of Herbrand interpretations of O by IH(O). 2

Let O = 〈G,P 〉 be an ERDF ontology and let I, J ∈ IH(O). We say that J

extends I, denoted by I ≤ J , iff PropI ⊆ PropJ , and ∀ p ∈ PropI , PT I(p) ⊆
PTJ(p) and PF I(p) ⊆ PF J(p).

Let V be a vocabulary and let r be an ERDF rule. We denote by [r]V the
set of rules that result from r if we replace each variable x ∈ FVar(r) by v(x),
for all mappings v : FVar(r) → V . Let P be an ERDF program. We define
[P]V =

⋃
r∈P [r]V .

Below, we define the stable models of an ERDF ontology, based on the co-
herent stable models of Partial Logic [9].

Definition 5 (ERDF stable model). Let O = 〈G,P 〉 be an ERDF ontology
and let M ∈ IH(O). We say that M is an (ERDF) stable model of O iff there is a
chain of Herbrand interpretations of O, I0 ≤ ... ≤ Ik+1 such that Ik = Ik+1 = M

and:

1. I0 ∈ minimal({I ∈ IH(O) | I |= sk(G)}).

2. For successor ordinals α with 0 < α ≤ k + 1:
Iα ∈ minimal({I ∈ IH(O) | I ≥ Iα−1 and I |= Concl(r), ∀ r ∈ P[Iα−1,M]}), where

P[Iα−1,M] = {r ∈ [P]VO
| I |= Cond(r), ∀I ∈ IH(O) s.t. Iα−1 ≤ I ≤M}.

The set of stable models of O is denoted byMst(O). 2

Note that I0 is a minimal Herbrand interpretation of O = 〈G,P 〉 that satisfies
sk(G), while Herbrand interpretations I1, ..., Ik+1 correspond to a stratified se-
quence of rule applications, where all applied rules remain applicable throughout
the generation of stable model M .

Let O = 〈G,P 〉 be an ERDF ontology and let F be an ERDF formula or
ERDF graph. We say that O entails F under the (ERDF) stable model semantics,
denoted by O |=st F , iff for all M ∈Mst(O), M |= F .

Example 2. Consider the ERDF ontology O of Example 1. Then, O has two sta-
ble models M1, M2, where M1 |= ¬rdf :type(Anne, Adult) and M2 |= rdf :type(
Anne, Adult)11. For both M ∈ {M1,M2}, it holds M |= serveSoftDrink(Anne,

Coca-Cola). This is because, if Anne is not an adult then, since she is not a
child, it is decided to drink Coca-Cola. If Anne is an adult then, since it is not
known if she likes wine, it is also decided to drink Coca-Cola. Thus, it holds
O |=st serveSoftDrink(Anne, Coca-Cola). Additionally, for both M ∈ {M1,

M2}, it holds M |= rdf :type(Retsina, SelectedWine) ∧ ∼rdf :type(Riesling ,

SelectedWine). This is because (i) both Gerd and Carlos like Retsina and (ii)

11 Note that ex :Adult is a total class and that we do not know if Anne is an adult.

Carlos likes only Retsina. Thus, it holds O |=st rdf :type(Retsina, SelectedWine)
∧ ∼rdf :type(Riesling , SelectedWine). 2

In [1], it is shown that stable model entailment conservatively extends RDFS
entailment from RDF graphs to ERDF ontologies.

Proposition 1. Let G,G′ be RDF graphs such that VG ∩ VERDF = ∅, VG′ ∩
VERDF = ∅, and VG′∩skG(Var(G)) = ∅. It holds: G |=RDFS G′ iff 〈G, ∅〉 |=st G′.

3 Undecidability of ERDF Stable Model Semantics leads

to #n-Stable Model Semantics

Unfortunately, satisfiability and entailment under the ERDF stable model se-
mantics are in general undecidable [1]. The proof of undecidability exploits a
reduction from the unbounded tiling problem, whose existence of a solution is
known to be undecidable [2]. Note that since each constraint false ← F that
appears in an ERDF ontology O can be replaced by the rule ¬t ← F , where t

is an RDF, RDFS, or ERDF axiomatic triple, the presence of constraints in O

does not affect decidability.

Definition 6 (Simple, Objective ERDF ontology). An ERDF formula F

is called simple if it has the form t1∧...∧tk∧∼tk+1∧...∧∼tm, where each ti, i =
1, ...,m, is an ERDF triple. An ERDF program P is called simple if for all r ∈ P ,
Cond(r) is a simple ERDF formula or true. An ERDF ontology O = 〈G,P 〉 is
called simple, if P is a simple ERDF program. A simple ERDF ontology O (resp.
ERDF program P) is called objective, if no weak negation appears in O (resp.
P). 2

Reduction in [1] shows that ERDF stable model satisfiability and entailment
remain undecidable, even if (i) O = 〈G,P 〉 is a simple ERDF ontology, (ii) the
terms erdf :TotalClass and erdf :TotalProperty do not appear in O (i.e., (VG ∪
VP) ∩ VERDF = ∅), and (iii) the entailed formula has the form ∃x̄ F , where F

is a simple ERDF formula and x̄ are the variables appearing in F . Moreover,
we can prove by a reduction from the unbounded tiling problem [2] that even
if O = 〈G,P 〉 is an objective ERDF ontology, entailment of a general ERDF
formula F under the ERDF stable model semantics is still undecidable.

Let O be a general ERDF ontology. The source of undecidability of the
ERDF stable model semantics of O is the fact that VRDF is infinite. Thus, the
vocabulary of O is also infinite (note that {rdf : i | i ≥ 1} ⊆ VRDF ⊆ VO).
In this Section, we slightly modify the definition of the ERDF stable model
semantics, based on a redefinition of the vocabulary of an ERDF ontology, which
now becomes finite. We call the modified semantics, the ERDF #n-stable model
semantics (for n ∈ IN).

In order to define the ERDF #n-stable model semantics, we need to modify
several of the definitions on which the ERDF stable model semantics is based.
Specifically:

– We define: V#n
RDF = VRDF − {rdf : i | i > n}.

– An ERDF #n-interpretation is defined exactly as an ERDF interpretation
in Def. 3 except that VRDF is replaced by V#n

RDF and in semantic condition
16, only the RDF and RDFS axiomatic triples that contain URI references
in V#n

RDF are considered.

– Let O = 〈G,P 〉 be an ERDF ontology. We define: V
#n
O = VO − {rdf : i | i >

n}, and Res
H#n

O = ResH
O − {rdf : i | i > n}.

– Let O = 〈G,P 〉 be an ERDF ontology. An #n-Herbrand interpretation I of

O is an ERDF #n-interpretation of V
#n
O such that: (i) ResI = Res

H#n

O , (ii)

IV (x) = x, for all x ∈ V
#n
O ∩ URI, (iii) ILI(x) = x, if x is a typed literal in

V
#n
O other than a well-typed XML literal, and ILI(x) is the XML value of x,

if x is a well-typed XML literal in V
#n
O . We denote the set of #n-Herbrand

interpretations of O by IH#n(O).
– Let O = 〈G,P 〉 be an ERDF ontology. An (ERDF) #n-stable model of O is

defined as a stable model of O in Def. 5, except that IH(O) is replaced by

IH#n(O) and VO is replaced by V
#n
O . The set of #n-stable models of O is

denoted byMst#n(O).

Let O = 〈G,P 〉 be an ERDF ontology and let F be an ERDF formula or
ERDF graph. Let n ∈ IN . We say that O entails F under the (ERDF) #n-stable
model semantics, denoted by O |=st#n F iff for all M ∈Mst#n(O), M |= F .

Let O = 〈G,P 〉 be an ERDF ontology and let F be an ERDF formula. Let
n ∈ IN . The (ERDF) #n-stable answers of F w.r.t. O are defined as follows12:

Ans
st#n

O (F) =

8>><>>: “yes” if FVar(F) = ∅ and ∀M ∈Mst#n(O) : M |= F

“no” if FVar(F) = ∅ and ∃M ∈Mst#n(O) : M 6|= F

{v : FVar(F)→ V
#n

O | ∀M ∈Mst#n(O) : M |= v(F)}
if FVar(F) 6= ∅

Let O = 〈G,P 〉 be an ERDF ontology. We define: (i) nO = 0, if (VG ∪ VP)∩
{rdf : i | i ≥ 1} = ∅, and (ii) nO = max({i ∈ IN | rdf : i ∈ VG ∪ VP }), otherwise.

For example, if O is the ERDF ontology of Example 1 then nO = 0.
Proposition 2 below relates stable model entailment and #n-stable model

entailment. First, we provide a definition. Let F be an ERDF formula. We say
that F is an ERDF d-formula iff (i) F is the disjunction of existentially quantified
conjunctions of ERDF triples, and (ii) FVar(F) = ∅. For example, let F =
(∃?x rdf :type(?x ,Vertex) ∧ rdf :type(?x ,Red)) ∨ (∃?x rdf :type(?x ,Vertex) ∧
¬rdf :type(?x ,Blue)). Then, F is an ERDF d-formula. It is easy to see that if G

is an ERDF graph then formula(G) is an ERDF d-formula.

Proposition 2. Let O = 〈G,P 〉 be an objective ERDF ontology and let n ≥
max(nO, 1). Let F d be an ERDF d-formula s.t. max({i ∈ IN | rdf : i ∈ VFd

}) ≤
n. It holds: O |=st F d iff O |=st#n F d.

12 v(F) results from F after replacing all the free variables x in F by v(x).

Since V
#n
O (for n ∈ IN) is finite, query answering under the ERDF #n-stable

model semantics is decidable. Now, since satisfiability under the ERDF stable
model semantics is in general undecidable, Proposition 2 does not hold in the
case that O = 〈G,P 〉 is a general ERDF ontology. Moreover, Proposition 2 does
not hold in the case that F is a general ERDF formula. For example, consider
the ERDF graph G:

G = {rdf :type(x, c1) | x ∈ {c1, c2, id} ∪ V#0
RDF ∪ VRDFS ∪ VERDF }

Additionally, consider the ERDF program P = {id(?x, ?x) ← true.} and the
ERDF formula F (which is not an ERDF d-formula):

F = ∃?x,∃?y ∼rdf :type(?x, c1) ∧ ∼rdf :type(?y, c1) ∧ ∼id(?x, ?y).

Let O = 〈G,P 〉. It holds, nO = 0. Note that O |=st F , while O 6|=st#1 F .
The following proposition is a direct consequence of Propositions 1 and 2,

and shows that #n-stable model entailment also extends RDFS entailment from
RDF graphs to ERDF ontologies.

Proposition 3. Let G,G′ be RDF graphs such that VG ∩ VERDF = ∅, VG′ ∩
VERDF = ∅, and VG′ ∩ skG(Var(G)) = ∅. Let O = 〈G, ∅〉 and n ≥ max(nO, 1).
If max({i ∈ IN | rdf : i ∈ VG′}) ≤ n then: G |=RDFS G′ iff O |=st#n G′.

4 Complexity Results

In this section, we provide complexity results for (i) the ERDF #n-stable model
semantics on simple and objective ERDF ontologies, and (ii) the ERDF stable
model semantics on objective ERDF ontologies. Additionally, for n ∈ IN , we
show that the #n-stable answers of a simple ERDF formula F w.r.t. a simple
ERDF ontology O = 〈G,P 〉 can be computed through Answer Set Programming

[7] on an extended logic program (ELP) Π
#n
O (not given here due to space

limitations).
Let Π be an extended logic program (ELP) and let F be a query of the form

L1∧...∧Lk∧ ∼Lk+1∧...∧∼Lm, where Li, i = 1, ...,m, is an ELP literal. We will
denote by AnsAS

Π (F) the (skeptical) answers of F w.r.t. Π according to answer
set semantics [7].

Proposition 4. Let O = 〈G,P 〉 be a simple ERDF ontology and let F be a

simple ERDF formula. Let n ∈ IN . It exists an ELP Π
#n
O generated in polyno-

mial time w.r.t. the size of O and n s.t. Ans
st#n

O (F) = AnsAS

Π
#n

O

(F ′), where F ′ is

the query that results after replacing each ERDF triple p(s, o) appearing in F

by the ELP literal Holds(s, p, o).

Based on Proposition 4 and complexity results for answer set semantics (see
[5]), we can state the following Corollary.

Corollary 1. Let O = 〈G,P 〉 be a simple ERDF ontology and let F be an
ERDF formula. Additionally, let v be (i) one of {“yes”, “no”}, if FVar(F) = ∅,

or (ii) a mapping v : FVar(F)→ V
#n
O , if FVar(F) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has an #n-stable model is NP-complete
w.r.t. size of sk(G) ∪ [P]

V
#n

O

.

2. The problem of establishing whether v ∈ Ans
st#n

O (F) is co-NP-complete w.r.t. size
of sk(G) ∪ [P]

V
#n

O

.

Below, we state complexity results for the #n-stable model semantics of ob-
jective ERDF ontologies. We see that even though no weak negation appears
in the rules of objective ERDF ontologies, complexity of reasoning w.r.t. sim-
ple ERDF ontologies remains the same. This is due to the ERDF metaclasses
erdf :TotalClass and erdf :TotalProperty on the instances of which, the OWA
applies.

Proposition 5. Let O = 〈G,P 〉 be an objective ERDF ontology. Let G′ be
an ERDF graph and let F be an ERDF formula. Additionally, let v be (i) one

of {“yes”, “no”}, if FVar(F) = ∅, or (ii) a mapping v : FVar(F) → V
#n
O , if

FVar(F) 6= ∅. Let n ∈ IN .

1. The problem of establishing whether O has an #n-stable model is NP-complete
w.r.t. size of sk(G) ∪ [P]

V
#n

O

.

2. The problems of establishing whether: (i) O |=st#n G′ and (ii) O |=st#n F are
co-NP-complete w.r.t. size of sk(G) ∪ [P]

V
#n

O

.

The hardness part of the above complexity results can be proved by a reduc-
tion from the Graph 3-Colorability problem, which is a classical NP-complete
problem.

Based on Proposition 2 and Proposition 5, it follows:

Corollary 2. Let O = 〈G,P 〉 be an objective ERDF ontology. Let G′ be an
ERDF graph and let F d be an ERDF d-formula s.t. max({i ∈ IN | rdf : i ∈
VX}) ≤ nO, where X ∈ {G′, Fd}.

1. The problem of establishing whether O has a stable model is NP-complete w.r.t.
size of sk(G) ∪ [P]

V
#nO

O

.

2. The problems of establishing whether: (i) O |=st G′ and (ii) O |=st F d are
co-NP-complete w.r.t. size of sk(G) ∪ [P]

V
#nO

O

.

Yet, as mentioned in Section 3, satisfiability and entailment of simple (and of
course, general) ERDF ontologies under the ERDF stable model semantics are
undecidable.

5 Conclusions & Related Work

In this paper, we elaborated on the computability and complexity issues of the
stable model semantics of ERDF ontologies. We show that decidability under
this semantics cannot be achieved, unless ERDF ontologies of restricted syntax
are considered. We propose the #n-stable model semantics of ERDF ontologies

(for n ∈ IN) and show that entailment under this semantics extends RDFS
entailment. Moreover, query answering under the ERDF #n-stable model se-
mantics is decidable. An equivalence statement between the ERDF stable and
#n-stable model semantics, as well as various complexity results are provided.
Future work concerns the implementation of the #n-stable model semantics on
ERDF ontologies, as well as the extension of our complexity results to other
syntax restricted ERDF ontologies and general ERDF ontologies.

Notation 3 (N3) [4] provides a more human readable syntax for RDF and also
extends RDF by adding numerous pre-defined constructs for being able to ex-
press rules conveniently. In particular, N3 contains a built-in (log:notIncludes)
for expressing simple negation-as-failure tests and another built-in
(log:definitiveDocument) for making restricted completeness assumptions.
However, N3 does not provide strong negation and closed-world reasoning is
not fully supported. In [11], RDF graphs are extended with a set of rules R and
R-entailment is defined, extending RDFS entailment. However, in this work,
weak and strong negation are not considered. In [6], RDFS is extended with
rules and/or general axioms, using embeddings in F-Logic [10]. However, such
extensions are not entirely faithful to the model-theoretic semantics of RDF.

References

1. A. Analyti, G. Antoniou, C. V. Damásio, and G. Wagner. Extended RDF as a
Semantic Foundation of Rule Markup Languages. Journal of Artificial Intelligence
Research (JAIR), 32:37–94, 2008.

2. R. Berger. The Undecidability of the Dominoe Problem. Memoirs of the American
Mathematical Society, 66:1–72, 1966.

3. T. Berners-Lee. Design Issues - Architectual and Philosophical Points. Personal
notes, 1998. Available at http://www.w3.org/DesignIssues.

4. T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler. N3Logic: A
Logical Framework For the World Wide Web. Theory and Practice of Logic Pro-
gramming (TPLP), 8(3):249–269, 2008.

5. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001.

6. J. de Bruijn and S. Heymans. RDF and Logic: Reasoning and Extension. In
6th International Workshop on Web Semantics (WebS’07), co-located with DEXA-
2007, pages 460–464, 2007.

7. M. Gelfond and V. Lifschitz. Logic programs with Classical Negation. In 7th
International Conference on Logic Programming, pages 579–597, 1990.

8. P. Hayes. RDF Semantics. W3C Recommendation, 10 February 2004. Available
at http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

9. H. Herre, J. Jaspars, and G. Wagner. Partial Logics with Two Kinds of Negation as
a Foundation of Knowledge-Based Reasoning. In D. M. Gabbay and H. Wansing,
editors, What Is Negation? Kluwer Academic Publishers, 1999.

10. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal of the ACM, 42(4):741–843, 1995.

11. H. J. ter Horst. Combining RDF and Part of OWL with Rules: Semantics, Decid-
ability, Complexity. In 4th International Semantic Web Conference (ISWC-2005),
pages 668–684, November 2005.

