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Abstract. Ontologies and automated reasoning are the building blocks
of the Semantic Web initiative. Derivation rules can be included in an
ontology to define derived concepts based on base concepts. For exam-
ple, rules allow to define the extension of a class or property based on
a complex relation between the extensions of the same or other classes
and properties. On the other hand, the inclusion of negative information
both in the form of negation-as-failure and explicit negative information
is also needed to enable various forms of reasoning. In this paper, we
extend RDF graphs with weak and strong negation, as well as deriva-
tion rules. The ERDF stable model semantics of the extended framework
(Extended RDF) is defined, extending RDF(S) semantics. A distinctive
feature of our theory, which is based on partial logic, is that both truth
and falsity extensions of properties and classes are considered, allowing
for truth value gaps. Our framework supports both closed-world and
open-world reasoning through the explicit representation of the partic-
ular closed-world assumptions and the ERDF ontological categories of
total properties and total classes.

1 Introduction
The idea of the Semantic Web is to describe the meaning of web data in a way
suitable for automated reasoning. This means that descriptive data (meta-data)
in machine readable form are to be stored on the web and used for reasoning.
Due to its distributed and world-wide nature, the Web creates new problems for
knowledge representation research. In [2], the following fundamental theoretical
problems have been identified: negation and contradictions, open-world versus
closed-world assumptions, and rule systems for the Semantic Web. For the time
being, the first two issues have been circumvented by discarding the facilities to
introduce them, namely negation and closed-world assumptions. Though the web
ontology language OWL [13], which is based on description logic (DL), includes a
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form of classical negation through class complements, this form is limited. This
is because, to achieve decidability, classes are formed based on specific class
constructors and negation on properties is not considered. Rules constitute the
next layer over the ontology languages of the Semantic Web and, in contrast to
DL, allow arbitrary interaction of variables in the body of the rules. The widely
recognized need of having rules in the Semantic Web [10, 14] has restarted the
discussion of the fundamentals of closed-world reasoning and the appropriate
mechanisms to implement it in rule systems, such as the computational concept
of negation-as-failure.

The RDF(S) recommendation [6] provides the basic constructs for defining
web ontologies and a solid ground to discuss the above issues. RDF(S) is a
special predicate logical language that is restricted to existentially quantified
conjunctions of atomic formulas, involving binary predicates only. Thus, RDF(S)
does not support negation and rules. In [18], it was argued that a database, as
a knowledge representation system, needs two kinds of negation, namely weak
negation ∼ (expressing negation-as-failure or not-truth) and strong negation ¬
(expressing explicit negative information or falsity) to be able to deal with partial
information. In [19], this point was made for the Semantic Web as a framework
for knowledge representation in general. In the present paper we make the same
point for the Semantic Web language RDF and show how it can be extended to
accommodate the two negations of partial logic [7], as well as derivation rules.
We call the extended language Extended RDF and denote it by ERDF . The
model-theoretic semantics of ERDF, called ERDF stable model semantics, is
developed based on partial logic [7].

In partial logic, relating strong and weak negation at the interpretation level
allows to distinguish four categories of properties and classes. Partial properties
are properties p that may have truth-value gaps and truth-value clashes, that is
p(x, y) is possibly neither true nor false, or both true and false. Total properties
are properties p that satisfy totalness, that is p(x, y) is true or false (but pos-
sibly both). Coherent properties are properties p that satisfy coherence, that is
p(x, y) cannot be both true and false. Classical properties are total and coherent
properties. For classical properties p, the classical logic law applies: p(x, y) is
either true or false. Partial, total, coherent, and classical classes c are defined
similarly, by replacing p(x, y) by rdf :type(x, c).

Partial logic allows also to distinguish between properties (similarly, classes)
that are completely represented in a knowledge base and those that are not.
The classification if a property is completely represented or not is up to the
owner of the knowledge base: the owner must know for which properties there is
complete information and for which there is not. Clearly, in the case of a com-
pletely represented (closed) predicate p, negation-as-failure implies falsity, and
the underlying completeness assumption is also called Closed-World Assumption
(CWA). A CWA for p is represented in our framework through the inclusion of
the derivation rule ¬p(?x, ?y) ← ∼p(?x, ?y) (for a closed class c, the correspond-
ing CWA is ¬rdf :type(?x, c) ← ∼rdf :type(?x, c)). In the case of an incompletely
represented (open) predicate p, negation-as-failure is not applicable and explicit
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negative information has to be supplied along with ordinary (positive) informa-
tion. In particular, the inclusion of the derivation rule ¬p(?x, ?y) ← ∼p(?x, ?y)
will not affect the semantics of p. Unfortunately, neither classical logic nor Pro-
log supports this distinction between “closed” and “open” predicates. Classical
logic supports only open-world reasoning. On the contrary, Prolog supports only
closed-world reasoning, as negation-as-failure is the only negation mechanism
supported. For arguments in favor of the combination of closed and open world
reasoning in the same framework, see [1].

Specifically, in this paper:
1. We extend RDF graphs to ERDF graphs with the inclusion of strong nega-

tion, and then to ERDF ontologies (or ERDF knowledge bases) with the
inclusion of general derivation rules. ERDF graphs allow to express existen-
tial positive and negative information, whereas general derivation rules allow
inferences based on formulas built using the connectives ∼, ¬, ⊃, ∧, ∨ and
the quantifiers ∀, ∃.

2. We extend the vocabulary of RDF(S) with the terms erdf :TotalProperty
and erdf :TotalClass, representing metaclasses of total properties and total
classes, on which the open-world assumption applies.

3. We extend RDFS interpretations to ERDF interpretations including both
truth and falsity extensions for properties and classes. Then, we define co-
herent ERDF interpretations by imposing coherence on all properties. In the
developed model-theoretic semantics of ERDF, we consider only coherent
ERDF interpretations. Thus, total properties and classes become synony-
mous to classical properties and classes.

4. We extend RDF graphs to ERDF formulas that are built from positive triples
using the connectives ∼, ¬, ⊃, ∧, ∨ and the quantifiers ∀, ∃. Then, we define
ERDF entailment between two ERDF formulas, extending RDFS entailment
between RDF graphs.

5. We define the ERDF models, Herbrand interpretations, minimal Herbrand
models, and stable models of ERDF ontologies. We show that stable model
entailment on ERDF ontologies extends RDFS entailment on RDF graphs.

6. We show that if all properties are total, classical (boolean) Herbrand model
reasoning and stable model reasoning coincide. In this case, we make an
open-world assumption for all properties and classes.
The rest of the paper is organized as follows: In Section 2, we extend RDF

graphs to ERDF graphs and ERDF formulas. Section 3 defines ERDF interpre-
tations and ERDF entailment. We show that ERDF entailment extends RDFS
entailment. In Section 4, we define ERDF ontologies and the Herbrand models of
an ERDF ontology. In Section 5, we define the stable models of an ERDF ontol-
ogy and show that stable model entailment extends RDFS entailment. Section
6 reviews related work and Section 7 concludes the paper.

2 Extending RDF graphs with negative information
In this section, we extend RDF graphs to ERDF graphs, by adding strong nega-
tion. Moreover, we extend RDF graphs to ERDF formulas, which are built from
positive ERDF triples, the connectives ∼, ¬, ⊃, ∧, ∨, and the quantifiers ∀, ∃.
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According to RDF concepts [12, 6], URI references are used for naming web
resources. A URI reference consists of two parts: a namespace URI ns and a
local name ln, and is denoted by ns:ln. A plain literal is a string “s”, where s is
a sequence of Unicode characters, or a pair of a string “s” and a language tag t,
denoted by “s”@t. A typed literal is a pair of a string “s” and a datatype URI
reference d, denoted by “s”̂ d̂. A (Web) vocabulary V is a set of URI references
and/or literals (plain or typed). We denote the set of all URI references by URI,
the set of all plain literals by PL, the set of all typed literals by T L, and the set
of all literals by LIT .

In our formalization, we consider a set Var of variable symbols, such that the
sets Var, URI, LIT are pairwise disjoint. In the main text, variable symbols are
explicitly indicated, while in our examples, variable symbols are prefixed by ?.

Below we extend the notion of RDF triple to allow for both positive and
negative information.

Definition 1 (ERDF triple). Let V be a vocabulary. A positive ERDF triple
over V (also called ERDF sentence atom) is an expression of the form p(s, o),
where s, o ∈ V ∪Var are called subject and object, respectively, and p ∈ V ∩URI
is called predicate or property.
A negative ERDF triple over V is the strong negation ¬p(s, o) of a positive
ERDF triple p(s, o) over V .
An ERDF triple over V (also called ERDF sentence literal) is a positive or
negative ERDF triple over V . ¤

For example, ex:likes(ex:Gerd, ex:Riesling) is a positive ERDF triple, and
¬ex:likes(ex:Carlos, ex:Riesling) is a negative ERDF triple. Note that an RDF
triple is a positive ERDF triple with the constraint that the subject of the triple is
not a literal. For example, ex:nameOf(“Grigoris”, ex:Grigoris) is a valid ERDF
triple but not a valid RDF triple. Our choice of allowing literals appearing in
the subject position is based on our intuition that this case can naturally appear
in knowledge representation (as in the previous example). Moreover, note that
a variable in the object position of an ERDF triple in the body of a rule, can
appear in the subject position of the ERDF triple in the head of the rule. Since
variables can be instantiated by a literal, a literal can naturally appear in the
subject position of the derived ERDF triple.

Definition 2 (ERDF formula). Let V be a vocabulary. We consider the log-
ical factors {∼,¬,∧,∨,⊃,∃,∀}, where ¬, ∼, and ⊃ are called strong negation,
weak negation, and material implication respectively. We denote by L(V ) the
smallest set that contains the positive ERDF triples over V and is closed with
respect to the following conditions: if F,G ∈ L(V ) then {∼F, ¬F, F∧G, F∨G,
F ⊃ G, ∃xF, ∀xF} ⊆ L(V ), where x ∈ Var. An ERDF formula over V is an
element of L(V ). We denote the set of variables appearing in F by Var(F ), and
the set of free variables5 appearing in F by FVar(F ). ¤
5 Without loss of generality, we assume that a variable cannot have both free and

bound occurrences in F , and more than one bound occurrence.
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For example, let F = ∀?x ∃?y (rdf :type(?x, ex:Person) ⊃ ex:hasFather(?x, ?y))
∧ rdf :type(?z, ex:Person). Then, F is an ERDF formula over the vocabulary
V = {rdf :type, ex:Person, ex:hasFather} with Var(F ) = {?x, ?y, ?z} and
FVar(F ) = {?z}.

We will denote the sublanguages of L(V ) formed by means of a subset S of
the logical factors, by L(V |S). For example, L(V |{¬}) denotes the set of (positive
and negative) ERDF triples over V .
Definition 3 (ERDF graph). An ERDF graph G is a set of ERDF triples
over some vocabulary V . We denote the variables appearing in G by Var(G),
and the set of URI references and literals appearing in G by VG. ¤

Intuitively, an ERDF graph G represents an existentially quantified conjunc-
tion of ERDF triples. Specifically, let G = {tr1, ..., trn} be an ERDF graph, and
let V ar(G) = {x1, ...xk}. Then, G represents the formula ∃x1, ...xk tr1∧...∧trn.
Following the RDF terminology [12], the variables of an ERDF graph are called
blank nodes, and intuitively denote anonymous web resources.

Note that as an RDF graph is a set of RDF triples [12, 6], an RDF graph is
also an ERDF graph.

3 ERDF Interpretations
In this section, we extend RDF(S) semantics by allowing for partial properties
and classes. In particular, we define ERDF interpretations and satisfaction of an
ERDF formula. For simplicity, we disregard RDF(S) containers, collections, and
reification, as no special semantic conditions are imposed on these, and thus can
be included by a straightforward extension.

Below we define a partial interpretation as an extension of a simple interpre-
tation [6], where each property is associated not only with a truth extension but
also with a falsity extension allowing for partial properties.
Definition 4 (Partial interpretation). A partial interpretation I of a vocab-
ulary V consists of:
– A non-empty set of resources ResI , called the domain or universe of I.
– A set of properties PropI .
– A vocabulary interpretation mapping IV : V ∩URI → ResI ∪ PropI .
– A property-truth extension mapping PTI : PropI → P(ResI ×ResI).
– A property-falsity extension mapping PFI : PropI → P(ResI ×ResI).
– A mapping ILI : V ∩ T L → ResI .
– A set of literal values LVI ⊆ ResI , which contains V ∩ PL.

We define the mapping: I : V → ResI ∪ PropI such that:
– I(x) = IV (x), ∀x ∈ V ∩URI.
– I(x) = x, ∀ x ∈ V ∩ PL.
– I(x) = ILI(x), ∀ x ∈ V ∩ T L. ¤

Definition 5 (Satisfaction of an ERDF formula w.r.t. a partial inter-
pretation and a valuation). Let F, G be ERDF formulas and let I be a
partial interpretation of a vocabulary V . Let v be a mapping v : Var(F ) → ResI

(called valuation). If x ∈ Var(F ), we define [I +v](x) = v(x). If x ∈ V , we define
[I + v](x) = I(x).
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– If F = p(s, o) then I, v |= F iff p ∈ V ∩URI, s, o ∈ V ∪Var, I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PTI(I(p)).

– If F = ¬p(s, o) then I, v |= F iff p ∈ V ∩URI, s, o ∈ V ∪ V ar, I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PFI(I(p)).

– If F = ∼G then I, v |= F iff all URIs and literals appearing in G belong to V ,
and I, v 6|= G.

– If F = F1∧F2 then I, v |= F iff I, v |= F1 and I, v |= F2.
– If F = F1∨F2 then I, v |= F iff I, v |= F1 or I, v |= F2.
– If F = F1 ⊃ F2 then I, v |= F iff I, v |= ∼F1∨F2.
– If F = ∃x G then I, v |= F iff there exists mapping u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G)− {x}, and I, u |= G.
– If F = ∀x G then I, v |= F iff for all mappings u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G)− {x}, it holds I, u |= G.
– All other cases of ERDF formulas are treated by the following DeMorgan-style

rewrite rules expressing the falsification of compound ERDF formulas:
¬(F ∧G) → ¬F ∨ ¬G, ¬(F ∨G) → ¬F ∧ ¬G, ¬¬F → F, ¬ ∼ F → F ,
¬∃x F → ∀x ¬F, ¬∀x F → ∃x ¬F, ¬(F ⊃ G) → F∧¬G. �

Definition 6 (Satisfaction of an ERDF formula w.r.t. a partial inter-
pretation). Let F be an ERDF formula and let I be a partial interpretation
of a vocabulary V . We say that I satisfies F , denoted by I |= F , iff for every
mapping v : Var(F ) → ResI , it holds I, v |= F. ¤

Note that as an ERDF graph represents an existentially quantified conjunc-
tion of ERDF triples, the above definition applies also to ERDF graphs. Specifi-
cally, let G be an ERDF graph representing the formula F = ∃x1, ...xk tr1∧...∧trn.
We say that a partial interpretation I satisfies the ERDF graph G (I |= G) iff
I |= F .

We are now ready to define an ERDF interpretation over a vocabulary V
as an extension of an RDFS interpretation [6], where each property and class
is associated not only with a truth extension but also with a falsity extension,
allowing for both partial properties and partial classes. Additionally, an ERDF
interpretation gives special semantics to terms from the ERDF vocabulary.

The vocabulary of RDF, VRDF , and the vocabulary of RDFS, VRDFS , are
defined in [6]. The vocabulary of ERDF , VERDF , is a set of URI references in the
erdf : namespace. Specifically, the set of ERDF predefined classes is CERDF =
{erdf :TotalClass, erdf :TotalProperty}. We define VERDF = CERDF . Intu-
itively, instances of the metaclass erdf :TotalClass are classes c that satisfy to-
talness, meaning that each resource belongs to the truth or falsity extension of
c. Similarly, instances of the metaclass erdf :TotalProperty are properties p that
satisfy totalness, meaning that each pair of resources belongs to the truth or
falsity extension of p.

Definition 7 (ERDF interpretation). An ERDF interpretation I of a vo-
cabulary V is a partial interpretation of V ∪VRDF ∪VRDFS ∪VERDF , extended
by the new ontological categories ClsI ⊆ ResI for classes, TClsI ⊆ ClsI for
total classes, and TPropI ⊆ PropI for total properties, as well as the class-
truth extension mapping CTI : ClsI → P(ResI), and the class-falsity extension
mapping CFI : ClsI → P(ResI), such that:
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1. x ∈ CTI(y) iff 〈x, y〉 ∈ PTI(I(rdf :type)), and
x ∈ CFI(y) iff 〈x, y〉 ∈ PFI(I(rdf :type)).

2. The ontological categories are defined as follows:
PropI = CTI(I(rdf :Property)) ClsI = CTI(I(rdfs:Class))
ResI = CTI(I(rdfs:Resource)) LVI = CTI(I(rdfs:Literal))
TClsI = CTI(I(erdf :TotalClass)) TPropI = CTI(I(erdf :TotalProperty)).

3. if 〈x, y〉 ∈ PTI(I(rdfs:domain)) and 〈z, w〉 ∈ PTI(x) then z ∈ CTI(y).
4. If 〈x, y〉 ∈ PTI(I(rdfs:range)) and 〈z, w〉 ∈ PTI(x) then w ∈ CTI(y).
5. If x ∈ ClsI then 〈x, I(rdfs:Resource)〉 ∈ PTI(I(rdfs:subclassOf)).
6. If 〈x, y〉 ∈ PTI(I(rdfs:subClassOf)) then x, y ∈ ClsI , CTI(x) ⊆ CTI(y), and

CFI(y) ⊆ CFI(x).
7. PTI(I(rdfs:subClassOf)) is a reflexive and transitive relation on ClsI .
8. If 〈x, y〉 ∈ PTI(I(rdfs:subPropertyOf)) then x, y ∈ PropI , PTI(x) ⊆ PTI(y), and

PFI(y) ⊆ PFI(x).
9. PTI(I(rdfs:subPropertyOf)) is a reflexive and transitive relation on PropI .

10. If x ∈ CTI(I(rdfs:Datatype)) then 〈x, I(rdfs:Literal)〉 ∈ PTI(I(rdfs:subClassOf)).
11. If x ∈ TClsI then CTI(x) ∪ CFI(x) = ResI .
12. If x ∈ TPropI then PTI(x) ∪ PFI(x) = ResI ×ResI .
13. If “s”̂ r̂df :XMLLiteral ∈ V and s is a well-typed XML literal string, then

ILI(“s”̂ r̂df :XMLLiteral) is the XML value of s,
ILI(“s”̂ r̂df :XMLLiteral) ∈ LVI , and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CTI(I(rdf :XMLLiteral)).

14. If “s”̂ r̂df :XMLLiteral ∈ V and s is an ill-typed XML literal string then
ILI(“s”̂ r̂df :XMLLiteral) ∈ ResI − LVI , and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CFI(I(rdfs:Literal)).

15. I satisfies the RDF and RDFS axiomatic triples [6], as well as the ERDF ax-
iomatic triples:
rdfs:subClassOf(erdf :TotalClass, rdfs:Class).
rdfs:subClassOf(erdf :TotalProperty, rdf :Property). �

Note that the semantic conditions of ERDF interpretations may impose con-
straints to both the truth and falsity extensions of properties and classes.

Definition 8 (Coherent ERDF interpretation). An ERDF interpretation
I of a vocabulary V is coherent iff for all x ∈ PropI , PTI(x) ∩ PFI(x) = ∅. ¤
Coherent ERDF interpretations enforce the constraint that a pair of resources
cannot belong to both the truth and falsity extensions of a property. Since
rdf :type is a property, this constraint also implies that a resource cannot be-
long to both the truth and falsity extensions of a class.

In the rest of the document, we consider only coherent ERDF interpretations.
This means that referring to an “ERDF interpretation”, we implicitly mean a
“coherent” one.

According to RDFS semantics, the only source of RDFS-inconsistency is the
appearance of an ill-typed XML literal in the RDF graph (possibly causing an
XML clash, for details see [6]). An ERDF graph can be ERDF-inconsistent6, not
only due to the appearance of an ill-typed XML literal in the ERDF graph, but
also due to the additional semantic condition for coherent ERDF interpretations.
6 Meaning that there is no (coherent) ERDF interpretation that satisfies the ERDF

graph.
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For example, let p, q, s, o ∈ URI and let G = {p(s, o), rdfs:subPropertyOf(p,
q), ¬q(s, o)}. Then, G is ERDF-inconsistent, since there is no (coherent) ERDF
interpretation that satisfies G.

The following proposition shows that for total properties and total classes of
(coherent) ERDF interpretations, weak negation and strong negation coincide
(boolean truth values).

Proposition 1. Let I be an ERDF interpretation of a vocabulary V and let
V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF . Then,

1. For all p, s, o ∈ V ′, such that I(p) ∈ TPropI , it holds:
I |= ∼p(s, o) iff I |= ¬p(s, o) (equivalently, I |= p(s, o) ∨ ¬p(s, o)).

2. For all x, c ∈ V ′ such that I(c) ∈ TClsI , it holds:
I |= ∼rdf :type(x, c) iff I |= ¬rdf :type(x, c)
(equivalently, I |= rdf :type(x, c) ∨ ¬rdf :type(x, c)).

Definition 9 (Classical ERDF interpretation). A (coherent) ERDF inter-
pretation I of a vocabulary V is classical iff for all x ∈ PropI , PTI(x) ∪
PFI(x) = ResI ×ResI . ¤

A classical ERDF interpretation is close to an interpretation of classical logic,
since for every formula F , weak and strong negation coincide.

Proposition 2. Let I be an ERDF interpretation of a vocabulary V and let
V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF . Then,

1. If TPropI = PropI then I is a classical ERDF interpretation.
2. If I is a classical ERDF interpretation and F is an ERDF formula over V ′

such that I(p) ∈ PropI , for every property p in F , then it holds:
I |= ∼F iff I |= ¬F (equivalently, I |= F ∨ ¬F ).

The following definition defines ERDF entailment between two ERDF for-
mulas.

Definition 10 (ERDF Entailment). Let F, F ′ be ERDF formulas. We say
that F ERDF-entails F ′ (F |=ERDF F ′) iff for every ERDF interpretation I, if
I |= F then I |= F ′. ¤
For example, let F = ∀?x ∃?y (rdf :type(?x, ex:Person) ⊃ ex:hasFather(?x, ?y))
∧ rdf :type(ex:John, ex:Person), and let F ′ = ∃?y ex:hasFather(ex:John, ?y)
∧ rdf :type(ex:hasFather, rdf :Property). Then F |=ERDF F ′.

The following proposition shows that an RDF graph is RDFS satisfiable iff
it is ERDF satisfiable.

Proposition 3. Let G be an RDF graph such that VG∩VERDF = ∅. Then, there
is an RDFS interpretation that satisfies G iff there is an ERDF interpretation
that satisfies G.

The following proposition shows that ERDF entailment extends RDFS entail-
ment from RDF graphs to ERDF formulas.

Proposition 4. Let G,G′ be RDF graphs such that VG ∩ VERDF = ∅ and
VG′ ∩ VERDF = ∅. Then, G |=RDFS G′ iff G |=ERDF G′.
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4 ERDF Ontologies

In this section, we define an ERDF ontology as a pair of an ERDF graph G and
a set P of ERDF rules. ERDF rules should be considered as derivation rules
that allow us to infer more ontological information based on the declarations in
G. Moreover, we define the Herbrand interpretations and the Herbrand models
of an ERDF ontology.

Definition 11 (ERDF rule, ERDF program). An ERDF rule r over a vo-
cabulary V is an expression of the form: G ← F , where F ∈ L(V ) is called
condition and G ∈ L(V |{¬}) is called conclusion. We assume that no bound
variable in F appears free in G. We denote the set of variables and the set of
free variables of r by Var(r) and FVar(r)7, respectively. Additionally, we write
Cond(r) = F and Concl(r) = G.
An ERDF program P is a set of ERDF rules over some vocabulary V . We denote
the set of URI references and literals appearing in P by VP . ¤

Definition 12 (ERDF ontology). An ERDF ontology (or knowledge base) is
a pair O = 〈G, P 〉, where G is an ERDF graph and P is an ERDF program. ¤

The following definition defines the models of an ERDF ontology.

Definition 13 (Satisfaction of an ERDF rule and an ERDF ontology).
Let I be an ERDF interpretation of a vocabulary V .

– We say that I satisfies an ERDF rule r, denoted by I |= r, iff it holds:
If there is a mapping v : Var(r) → ResI such that I, v |= Cond(r) then
I, v |= Concl(r).

– We say that I satisfies an ERDF ontology O = 〈G,P 〉 (also, I is a model
of O), denoted by I |= O, iff I |= G and I |= r, ∀ r ∈ P . ¤

Definition 14 (Skolemization of an ERDF graph). Let G be an ERDF
graph. The skolemization function of G is an 1:1 mapping skG : Var(G) → URI,
where for each x ∈ Var(G), skG(x) is an artificial URI denoted by G:x. The set
skG(Var(G)) is called the Skolem vocabulary of G.
The skolemization of G, denoted by sk(G), is the ground ERDF graph derived
from G after replacing each variable x ∈ Var(G) by skG(x). ¤

Intuitively, the Skolem vocabulary of G (that is, skG(V ar(G))) contains arti-
ficial URIs giving “arbitrary” names to the anonymous entities whose existence
was asserted by the use of blank nodes in G.
Proposition 5. Let G be an ERDF graph and let I be an ERDF interpretation.
Then, I |= sk(G) implies I |= G.

Definition 15 (Vocabulary of an ERDF ontology). Let O = 〈G,P 〉 be an
ERDF ontology. The vocabulary of O is defined as VO = Vsk(G) ∪ VP ∪ VRDF ∪
VRDFS ∪ VERDF . ¤
7 FVar(r) = FVar(F ) ∪ FVar(G).
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Let O = 〈G,P 〉 be an ERDF ontology. We denote by ResH
O the union of

VO and the set of XML values of the well-typed XML literals in VO minus the
well-typed XML literals.

Definition 16 (Herbrand interpretation, Herbrand model of an ERDF
ontology). Let O = 〈G,P 〉 be an ERDF ontology and let I be an ERDF
interpretation of VO. I is a Herbrand interpretation of O iff:

– ResI = ResH
O .

– IV (x) = x, for all x ∈ VO ∩URI.
– ILI(x) = x, if x is a typed literal in VO other than a well-typed XML literal,

and ILI(x) is the XML value of x, if x is a well-typed XML literal in VO.

We denote the set of Herbrand interpretations of O by IH(O).
A Herbrand interpretation I of O is a Herbrand model of O iff I |= 〈sk(G), P 〉.
We denote the set of Herbrand models of O by MH(O). ¤
Obviously, every Herbrand model of an ERDF ontology O is a model of O.

5 Minimal Herbrand Interpretations and Stable Models

In the previous section, we defined the Herbrand models of an ERDF ontology
O. However, not all Herbrand models of O are desirable. In this section, we
define the intended models of O, called stable models of O, based on minimal
Herbrand interpretations. In particular, defining the stable models of O, only
the minimal interpretations from a set of Herbrand interpretations that satisfy
certain criteria are considered.

For example, let p, s, o ∈ URI, let G = {p(s, o)} and let O = 〈G, ∅〉, Then,
there is a Herbrand model I of O such that I |= p(o, s), whereas we want ∼p(o, s)
to be satisfied by all intended models of O, as p is not a total property8 and
p(o, s) cannot be derived from O (negation-as-failure).

To define the minimal Herbrand interpretations of an ERDF ontology O, we
need to define a partial ordering on the Herbrand interpretations of O.

Definition 17 (Herbrand interpretation ordering). Let O = 〈G, P 〉 be an
ERDF ontology. Let I, J ∈ IH(O). We say that J extends I, denoted by I ≤ J
(or J ≥ I), iff PropI ⊆ PropJ , and for all p ∈ PropI , it holds PTI(p) ⊆ PTJ(p)
and PFI(p) ⊆ PFJ(p). ¤

The intuition behind Definition 17 is that by extending a Herbrand inter-
pretation, we extend both the truth and falsity extension for all properties, and
thus (since rdf :type is a property), for all classes.

Definition 18 (Minimal Herbrand Interpretations). Let O be an ERDF
ontology and let I ⊆ IH(O). We define minimal(I) = {I ∈ I | 6 ∃J ∈ I : J 6= I
and J ≤ I}. ¤
Let I, J ∈ IH(O), we define [I, J ]O = {I ′ ∈ IH(O), I ≤ I ′ ≤ J}. Additionally,
we define the minimal Herbrand models of O, asMmin(O) = minimal(MH(O)).

8 On total properties and classes, the open-world assumption applies.
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However minimal Herbrand models do not give the intended semantics to
all ERDF rules. This is because ERDF rules are derivation and not implication
rules. Derivation rules are often identified with implications. For nonmonotonic
rules (e.g. with negation-as-failure), this is no longer the case.

To define the intended (stable) models of an ERDF ontology, we need first
to define grounding of ERDF rules.

Definition 19 (Grounding of an ERDF program). Let V be a vocabulary
and r be an ERDF rule. We denote by [r]V the set of rules that result from r if
we replace each variable x ∈ FVar(r) by v(x), for all mappings v : FVar(r) → V .
Let P be an ERDF program. We define [P ]V =

⋃
r∈P [r]V . ¤

Below, we define the stable models of an ERDF ontology based on the co-
herent stable models of partial logic [7] (which, on extended logic programs, are
equivalent [7] to Answer Sets [5]).

Definition 20 (Stable model). Let O = 〈G,P 〉 be an ERDF ontology and
let M ∈ IH(O). We say that M is a stable model of O iff there is a chain of
Herbrand interpretations of O, I0 ≤ ... ≤ Ik such that Ik−1 = Ik = M and:

1. I0 ∈ minimal({I ∈ IH(O) | I |= sk(G)}).
2. For 0 < α ≤ k:

Iα ∈ minimal{I ∈ IH(O) | I ≥ Iα−1 and I |= Concl(r), for all r ∈
P[Iα−1,M ]}, where
P[Iα−1,M ] = {r ∈ [P ]VO | I |= Cond(r), ∀I ∈ [Iα−1, M ]O}.

The set of stable models of O is denoted by Mst(O). ¤
The following proposition shows that a stable model of an ERDF ontology O is
a Herbrand model of O.

Proposition 6. Let O = 〈G,P 〉 be an ERDF ontology and let M ∈ Mst(O).
It holds M ∈MH(O).

On the other hand, if all properties are total, a Herbrand model M of an
ERDF ontology O = 〈G,P 〉 is a stable model of O. This is because, in this case
M ∈ minimal({I ∈ IH(O) | I |= sk(G)}) and M ∈ minimal{I ∈ IH(O) | I ≥
M and I |= Concl(r), for all r ∈ P[M,M ]}.
Proposition 7. Let O = 〈G,P 〉 be an ERDF ontology, such that
rdfs:subclass(rdf :Property, erdf :TotalProperty) ∈ G. Then,Mst(O) = MH(O).

From Proposition 2, it follows that if rdfs:subclass(rdf :Property,
erdf :TotalProperty) ∈ G then each M ∈MH(O) is a classical ERDF interpre-
tation. Therefore, the above proposition shows that classical (boolean) Herbrand
model reasoning on ERDF ontologies is a special case of stable model reasoning.

Similarly to [5, 8, 7], stable models do not preserve Herbrand model satis-
fiability. For example, let O = 〈∅, P 〉, where P = {p(s, o) ← ∼p(s, o)}, and
p, s, o ∈ URI. Then, Mst(O) = ∅, whereas there is a Herbrand model of O that
satisfies p(s, o).
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Definition 21 (Stable model entailment). Let O = 〈G,P 〉 be an ERDF
ontology and let F be an ERDF formula. We say that O entails F under the
(ERDF) stable model semantics, denoted by O |=st F iff for all M ∈ Mst(O),
M |= F . ¤

For example, let O = 〈∅, P 〉, where P = {p(s, o) ← ∼q(s, o)} and p, q, s, o ∈
URI. Then, O |=st ∼q(s, o) ∧ p(s, o). Let O = 〈G,P 〉, where
G = {rdfs:subclass(rdf :Property, erdf :TotalProperty)} and P is as in the
previous example. Then, O |=st q(s, o) ∨ p(s, o), but O 6|=st ∼q(s, o) and
O 6|=st p(s, o). This is the desirable result, since q is a total property, and thus in
contrast to the previous example, an open-world assumption is made for q. As
another example, let p, s, o ∈ URI, let G = {p(s, o)}, and let P = {¬p(?x, ?y) ←
∼p(?x, ?y)}. Then, 〈G,P 〉 |=st ∼p(o, s) ∧ ¬p(o, s) (note that P contains a CWA
on p). Let G = {rdf :type(p, erdf :TotalProperty), p(s, o)} and let P be as in
the previous example. Then, 〈G, P 〉 |=st ∀?x ∀?y (p(?x, ?y) ∨¬p(?x, ?y)) (see
Proposition 1), but 〈G,P 〉 6|=st ∼p(o, s) and 〈G,P 〉 6|=st ¬p(o, s). Indeed, the
CWA in P does not affect the semantics of p, since p is a total property.

Let us now see a more involved example9. Consider the following ERDF
program P , specifying some rules for concluding that a country is not a member
state of the European Union (EU).

(r1) ¬rdf : type(?x,EUMember) ← rdf : type(?x,AmericanCountry).
(r2) ¬rdf : type(?x,EUMember) ← rdf : type(?x,EuropeanCountry),

∼rdf : type(?x,EUMember).

A rather incomplete ERDF ontology O = 〈G,P 〉 is obtained by including
the following information in the ERDF graph G:

¬rdf : type(Russia,EUMember). rdf : type(Canada, AmericanCountry).
rdf : type(Austria,EUMember). rdf : type(Italy, EuropeanCountry).
rdf :type(?x,EuropeanCountry). ¬rdf :type(?x,EUMember).

Using stable model entailment on O, it can be concluded that Austria is a
member of EU, that Russia and Canada are not members of EU, and that it
exists a European Country which is not a member of EU. However, it is also
concluded that Italy is not a member of EU, which is a wrong statement. This
is because G does not contain complete information of the European countries
that are EU members (e.g., it does not contain rdf :type(Italy,EUMember)).
Thus, incorrect information is obtained by the closed-world assumption ex-
pressed in rule r2. In the case that rdf :type(EUMember, erdf :TotalClass) is
added to G (that is, an open-world assumption is made for the class EUMember)
then ∼rdf :type(Italy,EUMember) and thus, ¬rdf :type(Italy,EUMember) are
not longer entailed. This is because, there is a stable model of the extended O
that satisfies rdf :type(Italy,EUMember). Moreover, if complete information for
all European countries that are members of EU is included in G then the stable

9 For simplicity, the example namespace ex: is ignored.

12



model conclusions of O will also be correct (the closed-world assumption will be
correctly applied). Note that, in this case G will include rdf :type(Italy,EUMember).

The following proposition shows that stable model entailment extends RDFS
entailment from RDF graphs to ERDF ontologies.

Proposition 8. Let G,G′ be RDF graphs such that VG ∩ VERDF = ∅, VG′ ∩
VERDF = ∅, and VG′ ∩skG(V ar(G)) = ∅. It holds: G |=RDFS G′ iff < G, ∅ >|=st

G′.

Below we define the stable answers of a query F w.r.t. an ERDF ontology.

Definition 22 (Stable answers). Let O = 〈G,P 〉 be an ERDF ontology. A
query F is an ERDF formula. The (ERDF) stable answers of F w.r.t. O are
defined as follows: Ansst

O (F ) = {v : FV ar(F ) → VO | ∀M ∈ Mst(O) : M |=
v(F )}, where v(F ) is the formula F after replacing all the free variables x in F
by v(x). ¤

An ERDF ontology O = 〈G, P 〉 is called simple if each rule in P has the
form L0 ← L1, ..., Lk,∼Lk+1, ...,∼Ln, where each Li is an ERDF triple (posi-
tive or negative). The following proposition shows that the stable answers of a
query F w.r.t. a simple ERDF ontology can be computed through Answer Set
Programming [5] on an extended logic program (ELP).

Proposition 9. Let O = 〈G,P 〉 be a simple ERDF ontology and let F be
an ERDF formula. We can define an extended logic program ΠO and a corre-
sponding formula F ′ such that: The answers of F ′ according to the answer set
semantics [5] of ΠO coincide with Ansst

O (F ).

Intuitively, ΠO is generated as follows: (i) each [∼|¬]p(s, o) ∈ L(VO|{∼,¬})
is represented by [∼|¬]Holds(s, p, o), where Holds is a conventional predicate
name and p becomes a term, (ii) sk(G) is represented as a set of facts, and (iii)
semantics implicit in the definition of an ERDF interpretation is represented as
rules. ΠO is the union of the rules generated in (ii-iii).

6 Related Work

In this section, we briefly review extensions of web ontology languages with rules.
TRIPLE [15] is a rule language for the Semantic Web supporting RDF and

a subset of OWL Lite [13]. It is based on F-Logic [11]. Part of the semantics of
the RDF(S) vocabulary is represented in the form of pre-defined rules and not
as semantic conditions on interpretations. TRIPLE includes a form of negation-
as-failure under the well-founded semantics [4]. Strong negation is not used.

Flora-2 [20] is a rule-based object-oriented knowledge base system for reason-
ing with semantic information on the Web. It is based on F-logic [11] and sup-
ports metaprogramming, nonmonotonic multiple inheritance, logical database
updates, encapsulation, dynamic modules, and two kinds of weak negation (specif-
ically, Prolog negation and well-founded negation [4]). In Flora-2, anonymous
resources are handled through skolemization (similarly to our theory).

Notation 3 (N3) provides a more human readable syntax for RDF and also
extends RDF by adding numerous pre-defined constructs (“built-ins”) for being
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able to express rules conveniently (see [17]). Remarkably, N3 contains a built-
in (log:definitiveDocument) for making restricted completeness asumptions and
another built-in (log:notIncludes) for expressing simple negation-as-failure tests.
The addition of these constructs was motivated by use cases. However, N3 does
not have any direct formal semantics for these constructs, and does not provide
strong negation. In an extended version of this paper we will show how these N3
constructs can be mapped to ERDF.

OWL-DL [13] is an ontology representation language for the Semantic Web,
that is a syntactic variant of the SHOIN (D) description logic and a decidable
fragment of first-order logic. However, the need for extending the expressive
power of OWL-DL with rules has initiated several studies, including the SWRL
(Semantic Web Rule Language) proposal [10]. In [9], it is shown that this ex-
tension is in general undecidable. For an overview of (decidable) approaches of
combining Description Logics with rules, see [3]. In several of these approaches,
entailment on the extended with rules DL is based on first-order logic, that is
both the DL component and the logic program are viewed as a set of first-order
logic statements. Thus, negation-as-failure, closed-world-assumptions, and non-
monotonic reasoning cannot be supported. In contrast in our work, we support
both weak and strong negation, and allow closed-world and open-world reasoning
on a selective basis.

7 Conclusions
In this paper, we extended RDF graphs to ERDF graphs by allowing negative
triples, and then to ERDF ontologies with the inclusion of derivation rules, al-
lowing freely appearance of (meta)properties and (meta)classes in the body and
head of the rules, all logical factors ∼, ¬, ∀, ∃, ⊃, ∧, ∨ in the body of the rules,
and strong negation ¬ in the head of the rules. Moreover, the RDF(S) vocab-
ulary was extended with the terms erdf :TotalProperty and erdf :TotalClass.
We have developed the model-theoretic semantics of ERDF ontologies, called
ERDF stable model semantics, showing that stable model entailment extends
RDFS entailment on RDF graphs. We have shown that classical (boolean) Her-
brand model reasoning is a special case of our semantics, when all properties are
total. In this case, similarly to classical logic, an open-world assumption is made
for all properties and classes. Allowing totalness of properties and classes to
be declared on a selective basis and the explicit representation of closed-world
assumptions (as derivation rules) enables the combination of open-world and
closed-world reasoning in the same framework. For simple ERDF ontologies, our
semantics can be computed through Answer Set Programming [5]. Future work
concerns the support of datatype maps, including XSD datatypes, and the ex-
tension of the ERDF vocabulary to other useful ontological categories possibly
in accordance with [16].
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