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Abstract—We propose to model an enterprise as an 
institutional agent with organizational units and human actors 
as subagents that participate in zero or more business 
processes involving other subagents of the enterprise and other 
agents, which are possibly affiliated with other organizations. 
Our approach, which unifies state structure and behavior 
modeling, leads to a more holistic model of an enterprise, and 
its multitude of business processes, compared to traditional 
BPM approaches, such as Petri Nets and BPMN, which are 
exclusively focused on single business processes. We discuss the 
ontological foundations of our approach and show the 
superiority of our rule-based modeling and simulation 
language AORSL, which allows the operational modeling of 
entire business systems and their business processes. 

Keywords-ontologies; rules; enterprise modeling; agent-
based simulation 

I.  INTRODUCTION) 

In this paper we summarize some results we have 
attained in our effort to define the ontological foundations of 
enterprise modeling and simulation [6,7,10]. We consider an 
enterprise, and any other form of organization, as an agent-
based discrete event system, or more precisely as an 
institutional agent. In an ontology of agent-based discrete 
event systems, rules play the important role of transition 
functions advancing both the subjective state of agents and 
the objective state of the system under consideration. 

In a series of publications [1-4] we have reported about 
our research project for developing a foundational ontology 
called “UFO” (standing for Unified Foundational Ontology) 
by employing theories from Formal Ontology, Cognitive 
Psychology, Linguistics, Philosophy of Language and 
Philosophical Logics. The core of UFO has been established 
through the development of an ontology of endurants in [5]. 

Since the development of UFO is an ongoing project, we 
use a simplified version of it, called Essential Unified 
Foundational Ontology (eUFO), which restricts both the 
breadth and the depth of UFO, and simplifies its 
philosophical terminology, harmonizing it with common 
informatics terminology as much as possible.  

Since our main concern are the ontological foundations 
of modeling languages for information system engineering 
and system simulation engineering, we derive from eUFO 
the foundational ontologies DESO and ABDESO, which are 
supposed to conceptualize the domains of (agent-based) 
information systems engineering and discrete event 
simulation engineering. However, since organizations, as 

institutional agents, come on top of simple agents, which 
come on top of objects and events, their ontological 
foundations are quite complex.  

II. THE BASE LAYER OF EUFO 

In this section, we briefly summarize the base layer of 
eUFO, called eUFO-0. The purpose of eUFO-0 is to lay the 
ground for categorizing the basic modeling concepts of data 
values, objects, events, sets, data types and object types. 

eUFO-0 defines a number of basic ontological categories, 
as depicted in Fig. 1 below in the form of a conceptual UML 
class diagram, making a fundamental distinction between 
individuals, which are things that exist in time and space in 
“the real world” and have a unique identity, and universals, 
which are feature-based classifiers that classify, at any 
moment in time, a set of individuals with common features. 

Well-known special cases of individuals are objects and 
events. Well-known special cases of universals are object 
types and event types. An example of an object is the earth; 
an example of a universal is the object type planet. 

 
Figure 1.  The base layer eUFO.-0 (common terms in grey) 

We distinguish between three kinds of individuals: 
substance individuals, trope individuals and events. As 
opposed to substance individuals, trope individuals can only 
exist in other individuals, i.e., they are existentially 
dependent on other individuals. The distinction between 
substance individuals and events can be understood in terms 
of their relationship to time. Substance individuals are 
wholly present whenever they are present, i.e., they are in 
time. Events happen in time, they may have temporal parts. 

Examples of substance individuals are: the person with 
name “Gerd Wagner”, the moon, or an amount of sand. 
Examples of events are: today’s rise of the sun, my 



confirmation of an e-commerce purchase order through 
clicking the OK button, the sinking of the Titanic, or the 
Second World War. Examples of trope individuals are: the 
redness of John’s T-shirt, Giancarlo’s employment with 
UFES, or my daughter’s belief in God.  

In addition to individuals and universals, there are also 
abstract things. As opposed to individuals and universals, 
abstract things are independent of space and time. A set is an 
abstract thing. The set of all instances of a universal is called 
its extension. 

In English, the term ‘abstract’ is overloaded, and one 
may consider the universal planet to be ‘more abstract’ than 
the individual earth. However, we consider things to be 
abstract, only, if they do not depend in any way on space 
and time. Thus, we do not consider universals, such as 
planet, to be abstract, since they depend, via their instances, 
on space and time. 

Anything can be a member of a set. The empty set has no 
members and is a subset of all sets. The empty set is a pure 
set. Any set that has only pure sets as members is a pure set 
(in set theory, those things that are not sets are called 
‘urelements’). Thus, only pure sets are abstract, really. 

The important distinction between object types and data 
types is explained by Fig. 2. While an object type is a 
universal, a data type is an abstract thing that is associated 
with two sets: its lexical space (a symbol set) and its value 
space, and with a symbol interpretation function mapping 
data literals from the lexical space to data values from the 
value space. 

 

The special type of existential dependence relation that 
holds between a trope individual x and the individual y on 
which x depends is the relation of inherence. Existential 
dependence can also be used to differentiate intrinsic and 
relational trope individuals: qualities and modes are 
dependent on one single individual; relators depend on two 
or more individuals (their bearers), which they mediate. 

Figure 2.  Data types as abstract things (eUFO-0). 

The ontology of substance individuals and trope 
individuals forms the eUFO layer A, which is further 
discussed in section III, while the ontology of events forms 
the eUFO layer B, which is further discussed in section IV. 

III. SUBSTANCE INDIVIDUALS AND TROPE INDIVIDUALS 

Substance individuals possess (direct) spatio-temporal 
qualities and are founded on matter. We distinguish between 
two kinds of substance individuals: physical objects and 
quantities, as depicted in Fig. 3.  

Examples of physical objects, which we also call just 
“objects”, include ordinary entities of everyday experience 
such as my car, Alan Turing, The Rolling Stones, or the 
North-Sea. Examples of quantities as individuals are these 

5.75 liters of water or these 3 apples (notice that there is also 
the notion of a quantity as a type, which must not be 
confused with quantity individuals). In contrast with trope 
individuals, substance individuals do not inhere in anything 
and, as a consequence, they are (essentially) existentially 
independent. 

 
Figure 3.  Substance individuals. (eUFO-A) 

The redness of John’s T-shirt is an example of a trope 
individual. It inheres in John’s T-shirt, which is its bearer. 
Both John’s T-shirt and the redness of John’s T-shirt are 
individuals. However, they are individuals of very different 
natures. Trope individuals can only exist in other individuals, 
i.e., they are existentially dependent on other individuals in 
the way, for instance, the color and the weight of an apple a 
depend on a, the electric charge of a conductor c depends on 
c, or John’s headache depends on John. In contrast, 
individuals such as John, the apple a, and the conductor c are 
not existentially dependent entities in this sense. 

As depicted in Fig. 4, there are three basic kinds of trope 
individuals: qualities, such as an individualized color, a 
temperature, or a weight, and modes, such as a symptom, a 
skill, a belief, or an intention, are intrinsic trope individuals; 
whereas relators, such as a kiss, a covalent bond, a medical 
treatment, a purchase order, or a social commitment, are 
relational trope individuals. 

There are two further kinds of trope individuals: 
attributions are associated with qualities, and material 
relationships are associated with relators. We discuss them 
in the following subsections. 

A. Qualities and Attributions 

According to the non-migration (or non-transferability) 
principle, it is not possible for a particular quality q to inhere 
in two different individuals a and b. This principle may seem 
counterintuitive. For example, if we have two particulars a (a 
red apple) and b (a red car), and two qualities r1 (the 
particular redness of a) and r2 (the particular redness of b), 
we consider r1 and r2 to be different individuals.  



What does it mean, then, to say that a and b have the 
same color? Sameness here cannot refer to strict (numerical) 
identity, but only to a qualitative one (i.e., equivalence in a 
certain respect). We thus distinguish between the color of a 
particular apple (as a quality of the apple) and the color data 
value that we associate with this quality in an attribution 
(with the help of an attribute). This data value is a member 
of the value space of the data type of the attribute associated 
with the corresponding quality universal (see Subsection 
3.5).  

As an example, consider the attribute hairColor, which is 
applicable to persons, and associated to a data type with a 
value space consisting of color names. Then, the triple 
<john, hairColor, “grey”> represents an attribution that 
makes the sentence “The hair color of John is grey” true. An 
attribution represents a fact that may be viewed as a “truth 
maker” for a corresponding sentence (an attribution 
statement) expressed in a suitable language. 
 

 
Figure 4.  Trope individuals  (eUFO-A). 

 

B. Modes 

Modes are, like qualities, intrinsic trope individuals. 
But unlike qualities, modes are not directly related to 
attributions. 

C. Relators, Relationships and References 

While a formal relationship, such as [Brandenburg is 
part of Germany] holds directly, for a material 
relationship, such as [Paul is being treated in the medical 
unit M], to exist, something else, which mediates the 
involved individuals (Paul and M), must exist. Such a 
mediating individual with the power of connecting 
individuals is called a relator. For example, a medical 
treatment connects a patient with a medical unit; an 
enrollment connects a student with an educational 
institution; a covalent bond connects two atoms. 

For any relator that mediates certain entities, there are 
one or more corresponding material relationships based on 
tuples constituted by these entities. Consider, for instance, 
the marriage of Paul and Marry. For this relator, there are 
three corresponding material relationships: [Paul is 
married to Marry], [Paul is husband of Marry] and [Mary 
is wife of Paul]. 

An important notion for the characterization of relators 
(and, hence, for the characterization of material 
relationships) is the notion of foundation, which can be 
viewed as a type of historical dependence in the way that, 
for example, an instance of being kissed is founded on an 
individual kiss. Suppose that John is married to Mary. In 
this case, we can assume that there is a particular relator 
m1 of type marriage that mediates John and Mary. The 
foundation of this relator can be a wedding event or the 
signing of a contract between the involved parties. In other 
words, a certain event e1, in which John and Mary 
participate, can create a particular marriage m1 which 
existentially depends on John and Mary and which 
mediates them. The event e1, in this case, is the foundation 
of the relator m1. In general, relators are founded on 
events. 

A material reference, as an instance of a material 
reference property, is a binary material relationship 
between two individuals, the referer and the referent. As 
an example, consider the material reference property wife, 
which is a applicable to male persons. The triple <john, 
wife, mary> represents a reference that makes the sentence 
“John is married to Mary” true.  



In a correspondence theory of truth (such as Tarski’s 
semantics of predicate logic), attributions and material 
references, and other kinds of relationships, are considered 
as “truth makers” (“facts”) that make corresponding 
sentences (attribution statements and reference statements) 
true. 

Modeling and simulation languages normally include 
constructs for expressing attributions and references for 
specifying initial states. 

IV. EVENTS 

Events are individuals that may be composed of 
temporal parts. They happen in time in the sense that they 
may extend in time accumulating temporal parts. 

Examples of events are: the arrival of an incoming email 
message, a football game, a symphony execution, a birth 
of a mammal, the Second World War, or a particular 
business process. An event cannot exhibit change in time 
in a genuine sense since none of its temporal parts retain 
their identity through time. 

Fig. 5 depicts the core fragment of the eUFO-B 
ontology of events. An event can be atomic or complex, 
depending on its mereological structure, i.e., while an 
atomic event has no parts, a complex event is an 
aggregation of at least two events (that can themselves be 
atomic or complex). 

 

 

 
Figure 5.  The ontology of events  (eUFO-B). 

 
Events are ontologically dependent entities in the sense 

that they existentially depend on their participants in order 
to exist. Take for instance the event e: the stabbing of 
Caesar by Brutus. In this event we have the participation 
of Caesar himself, of Brutus and of the knife. Each of 
these participations is itself an event (an object 
participation event), which existentially depends on a 
single object. Special cases of object participation events 
are object creation, object change and object destruction 
events. 

Events may change the real world by changing the 
state of affairs from a pre-state situation to a post-state 
situation. Each situation is determined by a set of 
associated object snapshots and a set of associated material 
relationships holding between the involved objects, where 
an object snapshot is a set of attributions and references of 
a particular object. 

Being atomic and being instantaneous are orthogonal 
notions in this framework, i.e., an atomic event can be 
time-extended and an instantaneous event can be 
composed of multiple (instantaneous) events. 

All spatial properties of events are defined in terms of 
the spatial properties of their participants. In contrast, all 
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points could be represented as real numbers and Time 
Intervals as sets of real numbers. However, they could also 
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ontological commitments at this point). 
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modeling and simulation 



Universals classify individuals, which are said to be 
their instances. The set of all instances of a universal is 
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led its extension. As depicted in Fig. 4, we consider 
seven kinds of universals: quantity types, event types, 
object types, quality universals, attributes, relator 
universals, and material relationship types. There are other 
kinds of univer als, but these seven are the most elevant 
for conceptual modeling. 

While the notions of attribute, relationship type and 
material reference proper

nce in the area of information and database modeling, 

their ontological foundation in connection with quality 
universals and relator universals is not well-known. 

A universal U1 is a subtype of another universa
 intension of U1 (its set of features) includes the 

intension of U2 , and the extension of U1 is included in the 
extension of U2. Unlike data types and sets, universals do 
not have a standard set-theoretical extensional semantics. 
That is, if O1 and O2 denote two object types that happen 
to have the same extension, they still do not denote the 
same universal. 

 

 
Figure 6.  The ontology of universals eUFO-U (relevant terms in grey). 
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one or more data types, such that any particular quality 
corresponds to a specific data value from the value space 
of the data type. The association between qualities from 
some quality universal and the corresponding data values 
from an associated data type is provided by an attribute, 
which is a universal that classifies attributions. A quality 
universal can be captured by one or more corresponding 
attributes, each of them based on a different data type. 

E.g., the quality universal “hair color” could 
tured by an attribute with the range of RGB byte triples 

or by an attribute with the range of natural language color 
names. Consequently, we may have more than one 
attribution for a particular quality, one for each associated 
attribute. 

B. Relato
Material Reference Properties 

A relator universal classifies in
e type. The material relationship type R induced by a 

relator universal R classifies all material relationships 
induced by relators from R. Since each material 
relationship corresponds to a tuple, R also has a tuple 

material relationship type is a universal that classifies 
material relationships, which are ‘truth makers’ for 
material relationship statements. 

A material reference property represents a binary 
material relationship type, corr

versal whose instances mediate exactly two individuals. 
Its tuple extension is a subset of the Cartesian product of 
the extensions of the two involved types. The first type is 
called the domain, and the second one the range of the 
reference property. 

VI. DIFFERENT KINDS OF OBJECT TYPES 

We distinguish between the different kinds of ob
types shown in Fig. 7. 

A. Sortal Types and Mixin Types 

While all object types carry a pri
only sortal types carry a principl

tances. A principle of application allows to judge 
whether an individual is an instance of that object type. In 
contrast, a principle of identity allows to judge whether 
two individuals are the same.  



 
Figure 7.  Substance individuals. (eUFO-A) 

As an illustration of this point, contrast the two object 
types Apple and RedThing instantiated by two individuals 
x and y: both object types supply a principle according to 
which we can judge whether x and y are classified under 
those types. However, only the object type Apple supplies 
a principle which allows to decide whether x and y are the 
same (i.e., merely knowing that x and y are both red gives 
no clue to decide whether or not x=y). Non-sortal types, 
such as RedThing, are called mixin types. 

B. Base Types 

Within the category of sortal types, we make a further 
distinction based on the formal notions of rigidity and anti-
rigidity: A sortal type U is rigid if for every instance x of 
U, x is necessarily (in the modal sense) an instance of U. 
In other words, if x instantiates U in a given world w, then 
x must instantiate U in every possible world w’. In 
contrast, a sortal type U is anti-rigid if for every instance x 
of U, x is possibly (in the modal sense) not an instance of 
U. In other words, if x instantiates U in a given world w, 
then there must be a possible world w’ in which x does not 
instantiate U. We call a rigid sortal type a base type. 

An example that highlights this distinction is the 
difference between the base type Person and the anti-rigid 
object types Student and Adolescent instantiated by the 
individual John in a given circumstance. While John can 
cease to be a Student and Adolescent, he cannot cease to 
be a Person. In other words, while the instantiation of the 
object types Student and Adolescent has no impact on the 
identity of an individual, if an individual ceases to 
instantiate the base type Person, then she ceases to exist as 
the same individual. 

C. Roles and Phase Types 

John can move in and out of the object type Student, 
while being the same individual, i.e. without losing his 
identity. This is because the principle of identity that 
applies to instances of Student and, in particular, that can 
be applied to John, is the one which is supplied by the base 
type Person of which Student is a subtype. For any anti-
rigid object type A, there is a unique ultimate base type B, 
such that: (i) A is a subtype of B; (ii) B supplies the unique 
principle of identity obeyed by the instances of A. There is 
a specialization condition SC such that x is an instance of 

A iff x is an instance of B that satisfies SC. A further 
clarification on the different types of specialization 
conditions allows us to distinguish between two different 
kinds of anti-rigid object types: role types and phase types. 
Phase types constitute possible stages in the history of an 
individual. Examples include: (a) Alive and Deceased: as 
possible stages of a Person; (b) Catterpillar and Butterfly 
of a Lepidopteran; (c) Town and Metropolis of a City; (d) 
Boy, Male Teenager and Adult Male of a Male Person. 

Role types differ from phase types with respect to the 
specialization condition SC. For a phase type P, SC 
represents a condition that involves only intrinsic 
properties of P. For instance, one might say that if John is 
a Living Person then he is a Person who has the property 
of being alive or, if Spot is a Puppy then it is a Dog that 
has the property of being less than one year old. For a role 
type R, conversely, SC involves extrinsic (relational) 
properties of R. For example, one might say that if John is 
a Student then John is a Person who is enrolled in some 
educational institution (playing the role of a student), if 
Peter is a Customer then Peter is a Person who buys a 
Product x from a Supplier y (playing the role of a 
customer), or if Mary is a Patient than she is a Person who 
is treated in a certain medical unit (playing the role of a 
patient). 

For any role type (e.g. Student) there is an 
underlying binary material relationship type or reference 
property (e.g. students) such that the extension of the 
role type (e.g. the set of current students of an educational 
institution) is the range of that reference property. 

In [5], it is formally proven that the following 
constraints hold:  

1. Every object must instantiate exactly one ultimate 
base type. 

2. A rigid object type cannot be a subtype of an anti-
rigid object type (e.g., Person cannot specialize 
Student).  

3. A mixin type cannot be specialized by a sortal 
type (e.g., Person cannot specialize Customer).  

4. A mixin type cannot have direct instances. 

D. Example 

We illustrate these conceptual distinctions with the 
help of an example, shown in Fig. 8.  

 
Figure 8.  Example: Customer as a mixin type 



Modeling the object type Customer is a non-trivial 
problem. Often, people are confused about the questions: 
is a customer a person? Or, conversely, is a person a 
customer? Neither of these subclass relatioships holds. 
Rather, Customer is a mixin type that can be segmented in 
two role subtypes: PersonalCustoper and 
CorporateCustomer, which specialize the base types 
Person and Corporation. 

VII. CONSIDERING AGENTS AS SPECIAL OBJECTS 

Agents are special objects. We want to consider all 
kinds of living beings, including insects and bacteria, as 
agents. We also want to consider certain artificial systems 
(such as robots) and social systems (such as organizations) 
as agents. On the other hand, we want to exclude all kinds 
of passive objects, such as chairs, apples and mountains, 
from our concept of an agent. So, what is common to 
living beings, robots and social systems? We claim that all 
these objects are interactive systems that are able to 
interact with passive objects in their environment or with 
each other in a purposeful way. The question what 
constitutes interaction is closely related to the question of 
what is an action. 

We define actions to be those events that are the direct 
result of the purposeful behavior of an interactive system. 
Notice that this definition does not exclude higher-level 
action concepts such as intentional actions, which we just 
consider to be a special case of our general action concept. 
So, we do not require an agent to have a mental state with 
‘desires’ and ‘intentions’, as it is common in many 

Artificial Intelligence approaches to multi-agent systems, 
in particular in the popular Belief-Desire-Intention (BDI) 
approach. 

It is obvious that we have to include in our account of 
interactive systems the concepts of perception and action. 
We conceptualize both of them as special kinds of events: 
perception events and action events, as depicted in Fig. 9. 
For being able to model communication as a special kind 
of interaction between agents, we introduce the concepts 
of a message and a communication event, see Fig. 10. 

The influence of perceptions on the actions of an agent 
is given by its reactive behavior, which is based on 
behavior patterns in the form of reaction rules. A 
perception event may lead, via a reaction rule, to a 
resulting action of the agent in response to the event, or to 
an update of the agent’s information state, which may 
include beliefs. We assume that beliefs are expressed as 
belief statements in the agent’s belief representation 
language. 

The influence of actions, and other events, on the 
perceptions of an agent is given by the causal laws of the 
agent’s environment, taking the form of transition rules, 
(depicted in Fig. 11), which determine the caused 
perception events. 

Beliefs are part of the agent’s information state, which 
is the agent’s basis for making action decisions. Simple 
belief statements have the form of entity-property-value 
triples, which are special cases of atomic sentences of 
predicate logic.  

 
 

 
Figure 9.  The ontology of agents (UFO-C) 

 

A. Communication Events 

A communication event is a complex event, having one 
sender and one or more receivers. It binds an out-message 

event to one or more in-message events (one for each 
receiver), sharing a common outgoing and incoming 
message, as described in Fig. 10. 



 
Figure 10.  Communication events 

VIII. THE CATEGORIES OF DESO AND ABDESO  

In modeling practice, we need more flexibility than a 
rigorous foundational ontology such as UFO would allow. 
For instance, we often want to “objectify” a relationship 
type by modeling it as an object type. Or we want to 
abstract away from the physics properties of an object 
type. Therefore, whenever we want to have explicit 
physics support, we define an entity type as a physical 
object type, otherwise as a plain object type.  

This leads to the type concepts shown in Fig. 11, where 
we define the mixin category entity type as a super concept 
that subsumes both object type and event type. Fig. 11 
defines the basic type concepts of the DES ontology DESO 
proposed in [6]. DESO, which is based on eUFO, is 
tailored to the domain of discrete event systems. 

Notice that also the concept of a transition rule, 
corresponding to the well-known concept if a transition 
function, is included in the type categories of DESO. 
These rules have the form of an event-condition-action 
rule. They define the state change and event causation 
patterns that govern the transitions of a discrete event 
system. 

 

 
Figure 11.  The type concepts of DESO 

In addition to these type concepts, DESO comprises 
the individual concepts shown in Fig. 12. 

 

 
Figure 12.  The individual concepts of DESO 

 

ABDESO extends DESO by adding the agent-related 
concepts shown in Fig. 9 and 10, and the concept of 
institutional agents shown in Fig. 13. ABDESO allows 
specifying reactive behaviors per agent type in the form of 
reaction rules, which can be viewed as special transition 

functions, triggered by perception events and resulting in 
state changes and follow-up action events. An institutional 
agent, such as an organization, may define roles to be 
played by its subagents. These roles, as agent types, define 
additional behaviors for its instances. The overall behavior 



of a subagent of an organization results from merging all 
reaction rules associated with the agent’s base type and all 
the roles played by it. Since roles can be assumed and 
dropped at runtime, this leads to a dynamic behavior 
definition for agents. 

 
Figure 13.  Institutional agents 

IX. EVALUATING MODELING AND SIMULATION 

LANGUAGES AGAINST AN ONTOLOGY 

Both IS modeling languages and DES simulation 
languages can be evaluated by comparing a representation 
of their concepts, typically provided by a metamodel of the 
language, to an ontology of discrete event systems (more 
precisely, to an ontology that represents a shared concept-
tualization of the domain of discrete event systems). The 
stronger the match between them, the easier it is to 
communicate and reason with models made in that 
language. 

A system model is made for representing a conceptual 
abstraction of the real world system under consideration. 
Such an abstraction of a system is formed on the basis of a 
conceptualization of the system’s domain. Both for 
information system (IS) engineering and for system 
simulation engineering, we deal with the domain of 
discrete dynamic systems, also called discrete event 
systems (DES). In order for a DES model M to faithfully 
represent a DES abstraction A, the DES modeling 
language L used to make M should be faithful with respect 
to the conceptualization of DES used to form A.  

For a given ontology of discrete event systems O and a 
given IS or DES modeling language L, we may consider 
(1) a representation mapping from the concepts of O to the 
elements (or modeling primitives) of L; and (2) an 
interpretation mapping from the elements of L to the 
concepts of O. If these mappings are far from being 
isomorphisms, this indicates soundness and completeness 
problems of L. Notice that this approach does not depend 
on our proposals of DESO and ABDESO. It works in 
general for any kind of DES ontology O. 

There are four properties of a simulation language to 
be checked in its evaluation: 
1. Soundness: L is sound wrt O iff every element of L 

has an interpretation in terms of a domain concept 

from O. The degree of soundness can be measured 
relatively as the number of L elements that have an O 
interpretation divided by the total number of L 
elements. 

2. Completeness: L is complete wrt iff every O concept 
is represented by a modeling primitive of L. The 
degree of completeness can be measured relatively as 
the number of O concepts that are represented by an 
element of L divided by the total number of O 
concepts. 

3. Lucidity: L is lucid wrt O iff every element of L has at 
most one interpretation in O. The degree of lucidity 
can be measured relatively as the number of L 
elements that have at most one interpretation in O 
divided by the total number of L elements. 

4. Laconicity: L is laconic wrt O iff every domain 
concept from O is represented by at most one element 
of L. The degree of laconicity can be measured 
relatively as the number of O concepts that are 
represented by at most one element of L. 

The lower these degrees are for a given language L, the 
more problems may be expected from using a model 
expressed in L, e.g. by communicating incorrect 
information and inducing the user to make incorrect 
inferences about the semantics of the model. 

For showing the applicability of the proposed evalu-
ation method, we now summarize some preliminary results 
obtained from evaluating some DES modeling and 
simulation languages and the agent-based simulation 
language Brahms.  

A. Evaluating Classical Petri Nets 

The formalism of classical Petri Nets (PN) provides an 
abstract process modelling language with an intuitive and 
elegant graphical syntax. But it is too abstract for being 
used in practice. However, it has been extended in several 
ways to allow using it for business process modelling and 
other forms of DES modeling. 

When we evaluate PN against DESO, we obtain the 
benchmarks listed in Table 1. They show that PNs have 
only one deficiency: they are too incomplete for being 
used as a system modelling language. This result is not 
surprising. The soundness of PN is the basis of its success, 
and its incompleteness is the reason why there are so many 
proposals how to extend it. 

B. Evaluating Atomic DEVS 

The DEVS family of formalisms [8] is the result of a 
research effort for establishing a general discrete event 
simulation framework. The evaluation of the language of 
Atomic DEVS against DESO (see Table 1) shows that 
Atomic DEVS. has an even greater completeness problem 
than Petri Nets. Both formalisms lack support for state 
structure modelling concepts. 

C. Evaluating SIMAN/Arena 

The widely used Arena simulation tool is based on the 
simulation programming language SIMAN that is tailored 
to modelling production processes. Its evaluation in 



Table I shows that it is also quite incomplete. This is 
mainly due to the fact that SIMAN is not a general purpose 
DES language, but has been tailored towards a specific 
“process simulation” view. 

TABLE I.  EVALUATION AGAINST DESO 

Criteria PN 
Atomic 
DEVS 

ARENA 

Soundness 100% 100% 100% 

Completeness 43% 21% 52% 

Lucidity 100% 100% 100% 

Laconicity 100% 95% 95% 

D. Evaluating Brahms 

Brahms [9] is an agent-based modeling and simulation 
environment a) for developing simulations of people, 
organizations, and objects such as tools, documents and 
systems; and b) for designing, simulating and 
implementing multi-agent software systems. The 
preliminary results of evaluating Brahms against 
ABDESO in Table II show that Brahms is quite 
incomplete, mainly due to the fact that Brahms does not 
support explicit event modeling.  

E. Evaluating BPMN 

The preliminary evaluation result obtained in [10], and 
shown in Table II, suggests 100% soundness indicating 
that the core elements of BPMN have been well-chosen. 
However, the results of only 60% completeness, 70% 
lucidity, and 32% laconicity suggest that there are quite a 
few missing concepts, ambiguous elements, and 
redundant elements in BPMN. 

F. Evaluating AORSL 

The Agent-Object-Relationship Simulation Language 
(AORSL) extends the Entity-Relationship Simulation 
Language (ERSL) by adding agent concepts (see 
www.AOR-Simulation.org). ERSL includes a form of 
transition rules (called ‘environment rules’), while AORSL 
adds reaction rules, which are transition functions for the 
local/subjective state of an agent. 

TABLE II.  EVALUATION AGAINST ABDESO 

Criteria Brahms BPMN AORSL 

Soundness 100% 100% 100% 

Completeness 43% 60% 91% 

Lucidity 90% 70% 100% 

Laconicity 100% 32% 100% 

The evaluation results in Table II show that, compared to 
Brahms and BPMN, only AORSL is nearly complete. 

X. CONCLUSIONS 

Using the Agent-Based Discrete Event Simulation 
Ontology (ABDESO), extending the Discrete Event 

Simulation Ontology (DESO), which is derived from the 
Unified Foundational Ontology (UFO), we have evaluated 
a number of basic and agent-based discrete event system 
modeling and simulation languages, including the rule-
based language AORSL. The result of this preliminary 
evaluation is that AORSL, as an enterprise modeling and 
simulation language, is much more complete compared to 
Petri Nets and BPMN. 
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