
Ontologies and Rules for Enterprise Modeling and Simulation

Gerd Wagner
Institute of Informatics

Brandenburg University of Technology
Cottbus, Germany

G.Wagner@tu-cottbus.de

Abstract—We propose to model an enterprise as an
institutional agent with organizational units and human actors
as subagents that participate in zero or more business
processes involving other subagents of the enterprise and other
agents, which are possibly affiliated with other organizations.
Our approach, which unifies state structure and behavior
modeling, leads to a more holistic model of an enterprise, and
its multitude of business processes, compared to traditional
BPM approaches, such as Petri Nets and BPMN, which are
exclusively focused on single business processes. We discuss the
ontological foundations of our approach and show the
superiority of our rule-based modeling and simulation
language AORSL, which allows the operational modeling of
entire business systems and their business processes.

Keywords-ontologies; rules; enterprise modeling; agent-
based simulation

I. INTRODUCTION)

In this paper we summarize some results we have
attained in our effort to define the ontological foundations of
enterprise modeling and simulation [6,7,10]. We consider an
enterprise, and any other form of organization, as an agent-
based discrete event system, or more precisely as an
institutional agent. In an ontology of agent-based discrete
event systems, rules play the important role of transition
functions advancing both the subjective state of agents and
the objective state of the system under consideration.

In a series of publications [1-4] we have reported about
our research project for developing a foundational ontology
called “UFO” (standing for Unified Foundational Ontology)
by employing theories from Formal Ontology, Cognitive
Psychology, Linguistics, Philosophy of Language and
Philosophical Logics. The core of UFO has been established
through the development of an ontology of endurants in [5].

Since the development of UFO is an ongoing project, we
use a simplified version of it, called Essential Unified
Foundational Ontology (eUFO), which restricts both the
breadth and the depth of UFO, and simplifies its
philosophical terminology, harmonizing it with common
informatics terminology as much as possible.

Since our main concern are the ontological foundations
of modeling languages for information system engineering
and system simulation engineering, we derive from eUFO
the foundational ontologies DESO and ABDESO, which are
supposed to conceptualize the domains of (agent-based)
information systems engineering and discrete event
simulation engineering. However, since organizations, as

institutional agents, come on top of simple agents, which
come on top of objects and events, their ontological
foundations are quite complex.

II. THE BASE LAYER OF EUFO

In this section, we briefly summarize the base layer of
eUFO, called eUFO-0. The purpose of eUFO-0 is to lay the
ground for categorizing the basic modeling concepts of data
values, objects, events, sets, data types and object types.

eUFO-0 defines a number of basic ontological categories,
as depicted in Fig. 1 below in the form of a conceptual UML
class diagram, making a fundamental distinction between
individuals, which are things that exist in time and space in
“the real world” and have a unique identity, and universals,
which are feature-based classifiers that classify, at any
moment in time, a set of individuals with common features.

Well-known special cases of individuals are objects and
events. Well-known special cases of universals are object
types and event types. An example of an object is the earth;
an example of a universal is the object type planet.

Figure 1. The base layer eUFO.-0 (common terms in grey)

We distinguish between three kinds of individuals:
substance individuals, trope individuals and events. As
opposed to substance individuals, trope individuals can only
exist in other individuals, i.e., they are existentially
dependent on other individuals. The distinction between
substance individuals and events can be understood in terms
of their relationship to time. Substance individuals are
wholly present whenever they are present, i.e., they are in
time. Events happen in time, they may have temporal parts.

Examples of substance individuals are: the person with
name “Gerd Wagner”, the moon, or an amount of sand.
Examples of events are: today’s rise of the sun, my

confirmation of an e-commerce purchase order through
clicking the OK button, the sinking of the Titanic, or the
Second World War. Examples of trope individuals are: the
redness of John’s T-shirt, Giancarlo’s employment with
UFES, or my daughter’s belief in God.

In addition to individuals and universals, there are also
abstract things. As opposed to individuals and universals,
abstract things are independent of space and time. A set is an
abstract thing. The set of all instances of a universal is called
its extension.

In English, the term ‘abstract’ is overloaded, and one
may consider the universal planet to be ‘more abstract’ than
the individual earth. However, we consider things to be
abstract, only, if they do not depend in any way on space
and time. Thus, we do not consider universals, such as
planet, to be abstract, since they depend, via their instances,
on space and time.

Anything can be a member of a set. The empty set has no
members and is a subset of all sets. The empty set is a pure
set. Any set that has only pure sets as members is a pure set
(in set theory, those things that are not sets are called
‘urelements’). Thus, only pure sets are abstract, really.

The important distinction between object types and data
types is explained by Fig. 2. While an object type is a
universal, a data type is an abstract thing that is associated
with two sets: its lexical space (a symbol set) and its value
space, and with a symbol interpretation function mapping
data literals from the lexical space to data values from the
value space.

The special type of existential dependence relation that
holds between a trope individual x and the individual y on
which x depends is the relation of inherence. Existential
dependence can also be used to differentiate intrinsic and
relational trope individuals: qualities and modes are
dependent on one single individual; relators depend on two
or more individuals (their bearers), which they mediate.

Figure 2. Data types as abstract things (eUFO-0).

The ontology of substance individuals and trope
individuals forms the eUFO layer A, which is further
discussed in section III, while the ontology of events forms
the eUFO layer B, which is further discussed in section IV.

III. SUBSTANCE INDIVIDUALS AND TROPE INDIVIDUALS

Substance individuals possess (direct) spatio-temporal
qualities and are founded on matter. We distinguish between
two kinds of substance individuals: physical objects and
quantities, as depicted in Fig. 3.

Examples of physical objects, which we also call just
“objects”, include ordinary entities of everyday experience
such as my car, Alan Turing, The Rolling Stones, or the
North-Sea. Examples of quantities as individuals are these

5.75 liters of water or these 3 apples (notice that there is also
the notion of a quantity as a type, which must not be
confused with quantity individuals). In contrast with trope
individuals, substance individuals do not inhere in anything
and, as a consequence, they are (essentially) existentially
independent.

Figure 3. Substance individuals. (eUFO-A)

The redness of John’s T-shirt is an example of a trope
individual. It inheres in John’s T-shirt, which is its bearer.
Both John’s T-shirt and the redness of John’s T-shirt are
individuals. However, they are individuals of very different
natures. Trope individuals can only exist in other individuals,
i.e., they are existentially dependent on other individuals in
the way, for instance, the color and the weight of an apple a
depend on a, the electric charge of a conductor c depends on
c, or John’s headache depends on John. In contrast,
individuals such as John, the apple a, and the conductor c are
not existentially dependent entities in this sense.

As depicted in Fig. 4, there are three basic kinds of trope
individuals: qualities, such as an individualized color, a
temperature, or a weight, and modes, such as a symptom, a
skill, a belief, or an intention, are intrinsic trope individuals;
whereas relators, such as a kiss, a covalent bond, a medical
treatment, a purchase order, or a social commitment, are
relational trope individuals.

There are two further kinds of trope individuals:
attributions are associated with qualities, and material
relationships are associated with relators. We discuss them
in the following subsections.

A. Qualities and Attributions

According to the non-migration (or non-transferability)
principle, it is not possible for a particular quality q to inhere
in two different individuals a and b. This principle may seem
counterintuitive. For example, if we have two particulars a (a
red apple) and b (a red car), and two qualities r1 (the
particular redness of a) and r2 (the particular redness of b),
we consider r1 and r2 to be different individuals.

What does it mean, then, to say that a and b have the
same color? Sameness here cannot refer to strict (numerical)
identity, but only to a qualitative one (i.e., equivalence in a
certain respect). We thus distinguish between the color of a
particular apple (as a quality of the apple) and the color data
value that we associate with this quality in an attribution
(with the help of an attribute). This data value is a member
of the value space of the data type of the attribute associated
with the corresponding quality universal (see Subsection
3.5).

As an example, consider the attribute hairColor, which is
applicable to persons, and associated to a data type with a
value space consisting of color names. Then, the triple
<john, hairColor, “grey”> represents an attribution that
makes the sentence “The hair color of John is grey” true. An
attribution represents a fact that may be viewed as a “truth
maker” for a corresponding sentence (an attribution
statement) expressed in a suitable language.

Figure 4. Trope individuals (eUFO-A).

B. Modes

Modes are, like qualities, intrinsic trope individuals.
But unlike qualities, modes are not directly related to
attributions.

C. Relators, Relationships and References

While a formal relationship, such as [Brandenburg is
part of Germany] holds directly, for a material
relationship, such as [Paul is being treated in the medical
unit M], to exist, something else, which mediates the
involved individuals (Paul and M), must exist. Such a
mediating individual with the power of connecting
individuals is called a relator. For example, a medical
treatment connects a patient with a medical unit; an
enrollment connects a student with an educational
institution; a covalent bond connects two atoms.

For any relator that mediates certain entities, there are
one or more corresponding material relationships based on
tuples constituted by these entities. Consider, for instance,
the marriage of Paul and Marry. For this relator, there are
three corresponding material relationships: [Paul is
married to Marry], [Paul is husband of Marry] and [Mary
is wife of Paul].

An important notion for the characterization of relators
(and, hence, for the characterization of material
relationships) is the notion of foundation, which can be
viewed as a type of historical dependence in the way that,
for example, an instance of being kissed is founded on an
individual kiss. Suppose that John is married to Mary. In
this case, we can assume that there is a particular relator
m1 of type marriage that mediates John and Mary. The
foundation of this relator can be a wedding event or the
signing of a contract between the involved parties. In other
words, a certain event e1, in which John and Mary
participate, can create a particular marriage m1 which
existentially depends on John and Mary and which
mediates them. The event e1, in this case, is the foundation
of the relator m1. In general, relators are founded on
events.

A material reference, as an instance of a material
reference property, is a binary material relationship
between two individuals, the referer and the referent. As
an example, consider the material reference property wife,
which is a applicable to male persons. The triple <john,
wife, mary> represents a reference that makes the sentence
“John is married to Mary” true.

In a correspondence theory of truth (such as Tarski’s
semantics of predicate logic), attributions and material
references, and other kinds of relationships, are considered
as “truth makers” (“facts”) that make corresponding
sentences (attribution statements and reference statements)
true.

Modeling and simulation languages normally include
constructs for expressing attributions and references for
specifying initial states.

IV. EVENTS

Events are individuals that may be composed of
temporal parts. They happen in time in the sense that they
may extend in time accumulating temporal parts.

Examples of events are: the arrival of an incoming email
message, a football game, a symphony execution, a birth
of a mammal, the Second World War, or a particular
business process. An event cannot exhibit change in time
in a genuine sense since none of its temporal parts retain
their identity through time.

Fig. 5 depicts the core fragment of the eUFO-B
ontology of events. An event can be atomic or complex,
depending on its mereological structure, i.e., while an
atomic event has no parts, a complex event is an
aggregation of at least two events (that can themselves be
atomic or complex).

Figure 5. The ontology of events (eUFO-B).

Events are ontologically dependent entities in the sense

that they existentially depend on their participants in order
to exist. Take for instance the event e: the stabbing of
Caesar by Brutus. In this event we have the participation
of Caesar himself, of Brutus and of the knife. Each of
these participations is itself an event (an object
participation event), which existentially depends on a
single object. Special cases of object participation events
are object creation, object change and object destruction
events.

Events may change the real world by changing the
state of affairs from a pre-state situation to a post-state
situation. Each situation is determined by a set of
associated object snapshots and a set of associated material
relationships holding between the involved objects, where
an object snapshot is a set of attributions and references of
a particular object.

Being atomic and being instantaneous are orthogonal
notions in this framework, i.e., an atomic event can be
time-extended and an instantaneous event can be
composed of multiple (instantaneous) events.

All spatial properties of events are defined in terms of
the spatial properties of their participants. In contrast, all

tem

cess, is a complex
eve

NIVERSALS

Universals l h are said to be
their instances
cal

poral properties of objects are defined in terms of the
events in which they participate. The temporal attributes of
events have values from special temporal datatypes. We
assume that these datatypes support the concept of Time
Intervals, which are composed of Time Points. Time
points could be represented as real numbers and Time
Intervals as sets of real numbers. However, they could also
be defined in other ways (we avoid making unnecessary
ontological commitments at this point).

Finally, we would like to point out that a process, such
as a chemical process or a business pro

nt.

V. U

classify individua s, whic
. The set of all instances of a universal is

led its extension. We consider seven kinds of
universals: event types, object types, quality universals,
attributes, relator universals, reference properties and
material relationship types. There are other kinds of
universals, but these seven are the most relevant for
modeling and simulation

Universals classify individuals, which are said to be
their instances. The set of all instances of a universal is
cal

s r

ty are well-known in computer
scie

l U2 if
the

led its extension. As depicted in Fig. 4, we consider
seven kinds of universals: quantity types, event types,
object types, quality universals, attributes, relator
universals, and material relationship types. There are other
kinds of univer als, but these seven are the most elevant
for conceptual modeling.

While the notions of attribute, relationship type and
material reference proper

nce in the area of information and database modeling,

their ontological foundation in connection with quality
universals and relator universals is not well-known.

A universal U1 is a subtype of another universa
 intension of U1 (its set of features) includes the

intension of U2 , and the extension of U1 is included in the
extension of U2. Unlike data types and sets, universals do
not have a standard set-theoretical extensional semantics.
That is, if O1 and O2 denote two object types that happen
to have the same extension, they still do not denote the
same universal.

Figure 6. The ontology of universals eUFO-U (relevant terms in grey).

A. Quality Universals and Attributes

vidual qualities of
the

be
cap

r Universals, Material Relationship Types and

dividual relators of the
sam

extension (i.e. a relation in the sense of set theory). A

esponding to a relator
uni

ject

nciple of application,
e of identity for their

ins

A quality universal classifies indi
 same type. A quality universal can be associated with

one or more data types, such that any particular quality
corresponds to a specific data value from the value space
of the data type. The association between qualities from
some quality universal and the corresponding data values
from an associated data type is provided by an attribute,
which is a universal that classifies attributions. A quality
universal can be captured by one or more corresponding
attributes, each of them based on a different data type.

E.g., the quality universal “hair color” could
tured by an attribute with the range of RGB byte triples

or by an attribute with the range of natural language color
names. Consequently, we may have more than one
attribution for a particular quality, one for each associated
attribute.

B. Relato
Material Reference Properties

A relator universal classifies in
e type. The material relationship type R induced by a

relator universal R classifies all material relationships
induced by relators from R. Since each material
relationship corresponds to a tuple, R also has a tuple

material relationship type is a universal that classifies
material relationships, which are ‘truth makers’ for
material relationship statements.

A material reference property represents a binary
material relationship type, corr

versal whose instances mediate exactly two individuals.
Its tuple extension is a subset of the Cartesian product of
the extensions of the two involved types. The first type is
called the domain, and the second one the range of the
reference property.

VI. DIFFERENT KINDS OF OBJECT TYPES

We distinguish between the different kinds of ob
types shown in Fig. 7.

A. Sortal Types and Mixin Types

While all object types carry a pri
only sortal types carry a principl

tances. A principle of application allows to judge
whether an individual is an instance of that object type. In
contrast, a principle of identity allows to judge whether
two individuals are the same.

Figure 7. Substance individuals. (eUFO-A)

As an illustration of this point, contrast the two object
types Apple and RedThing instantiated by two individuals
x and y: both object types supply a principle according to
which we can judge whether x and y are classified under
those types. However, only the object type Apple supplies
a principle which allows to decide whether x and y are the
same (i.e., merely knowing that x and y are both red gives
no clue to decide whether or not x=y). Non-sortal types,
such as RedThing, are called mixin types.

B. Base Types

Within the category of sortal types, we make a further
distinction based on the formal notions of rigidity and anti-
rigidity: A sortal type U is rigid if for every instance x of
U, x is necessarily (in the modal sense) an instance of U.
In other words, if x instantiates U in a given world w, then
x must instantiate U in every possible world w’. In
contrast, a sortal type U is anti-rigid if for every instance x
of U, x is possibly (in the modal sense) not an instance of
U. In other words, if x instantiates U in a given world w,
then there must be a possible world w’ in which x does not
instantiate U. We call a rigid sortal type a base type.

An example that highlights this distinction is the
difference between the base type Person and the anti-rigid
object types Student and Adolescent instantiated by the
individual John in a given circumstance. While John can
cease to be a Student and Adolescent, he cannot cease to
be a Person. In other words, while the instantiation of the
object types Student and Adolescent has no impact on the
identity of an individual, if an individual ceases to
instantiate the base type Person, then she ceases to exist as
the same individual.

C. Roles and Phase Types

John can move in and out of the object type Student,
while being the same individual, i.e. without losing his
identity. This is because the principle of identity that
applies to instances of Student and, in particular, that can
be applied to John, is the one which is supplied by the base
type Person of which Student is a subtype. For any anti-
rigid object type A, there is a unique ultimate base type B,
such that: (i) A is a subtype of B; (ii) B supplies the unique
principle of identity obeyed by the instances of A. There is
a specialization condition SC such that x is an instance of

A iff x is an instance of B that satisfies SC. A further
clarification on the different types of specialization
conditions allows us to distinguish between two different
kinds of anti-rigid object types: role types and phase types.
Phase types constitute possible stages in the history of an
individual. Examples include: (a) Alive and Deceased: as
possible stages of a Person; (b) Catterpillar and Butterfly
of a Lepidopteran; (c) Town and Metropolis of a City; (d)
Boy, Male Teenager and Adult Male of a Male Person.

Role types differ from phase types with respect to the
specialization condition SC. For a phase type P, SC
represents a condition that involves only intrinsic
properties of P. For instance, one might say that if John is
a Living Person then he is a Person who has the property
of being alive or, if Spot is a Puppy then it is a Dog that
has the property of being less than one year old. For a role
type R, conversely, SC involves extrinsic (relational)
properties of R. For example, one might say that if John is
a Student then John is a Person who is enrolled in some
educational institution (playing the role of a student), if
Peter is a Customer then Peter is a Person who buys a
Product x from a Supplier y (playing the role of a
customer), or if Mary is a Patient than she is a Person who
is treated in a certain medical unit (playing the role of a
patient).

For any role type (e.g. Student) there is an
underlying binary material relationship type or reference
property (e.g. students) such that the extension of the
role type (e.g. the set of current students of an educational
institution) is the range of that reference property.

In [5], it is formally proven that the following
constraints hold:

1. Every object must instantiate exactly one ultimate
base type.

2. A rigid object type cannot be a subtype of an anti-
rigid object type (e.g., Person cannot specialize
Student).

3. A mixin type cannot be specialized by a sortal
type (e.g., Person cannot specialize Customer).

4. A mixin type cannot have direct instances.

D. Example

We illustrate these conceptual distinctions with the
help of an example, shown in Fig. 8.

Figure 8. Example: Customer as a mixin type

Modeling the object type Customer is a non-trivial
problem. Often, people are confused about the questions:
is a customer a person? Or, conversely, is a person a
customer? Neither of these subclass relatioships holds.
Rather, Customer is a mixin type that can be segmented in
two role subtypes: PersonalCustoper and
CorporateCustomer, which specialize the base types
Person and Corporation.

VII. CONSIDERING AGENTS AS SPECIAL OBJECTS

Agents are special objects. We want to consider all
kinds of living beings, including insects and bacteria, as
agents. We also want to consider certain artificial systems
(such as robots) and social systems (such as organizations)
as agents. On the other hand, we want to exclude all kinds
of passive objects, such as chairs, apples and mountains,
from our concept of an agent. So, what is common to
living beings, robots and social systems? We claim that all
these objects are interactive systems that are able to
interact with passive objects in their environment or with
each other in a purposeful way. The question what
constitutes interaction is closely related to the question of
what is an action.

We define actions to be those events that are the direct
result of the purposeful behavior of an interactive system.
Notice that this definition does not exclude higher-level
action concepts such as intentional actions, which we just
consider to be a special case of our general action concept.
So, we do not require an agent to have a mental state with
‘desires’ and ‘intentions’, as it is common in many

Artificial Intelligence approaches to multi-agent systems,
in particular in the popular Belief-Desire-Intention (BDI)
approach.

It is obvious that we have to include in our account of
interactive systems the concepts of perception and action.
We conceptualize both of them as special kinds of events:
perception events and action events, as depicted in Fig. 9.
For being able to model communication as a special kind
of interaction between agents, we introduce the concepts
of a message and a communication event, see Fig. 10.

The influence of perceptions on the actions of an agent
is given by its reactive behavior, which is based on
behavior patterns in the form of reaction rules. A
perception event may lead, via a reaction rule, to a
resulting action of the agent in response to the event, or to
an update of the agent’s information state, which may
include beliefs. We assume that beliefs are expressed as
belief statements in the agent’s belief representation
language.

The influence of actions, and other events, on the
perceptions of an agent is given by the causal laws of the
agent’s environment, taking the form of transition rules,
(depicted in Fig. 11), which determine the caused
perception events.

Beliefs are part of the agent’s information state, which
is the agent’s basis for making action decisions. Simple
belief statements have the form of entity-property-value
triples, which are special cases of atomic sentences of
predicate logic.

Figure 9. The ontology of agents (UFO-C)

A. Communication Events

A communication event is a complex event, having one
sender and one or more receivers. It binds an out-message

event to one or more in-message events (one for each
receiver), sharing a common outgoing and incoming
message, as described in Fig. 10.

Figure 10. Communication events

VIII. THE CATEGORIES OF DESO AND ABDESO

In modeling practice, we need more flexibility than a
rigorous foundational ontology such as UFO would allow.
For instance, we often want to “objectify” a relationship
type by modeling it as an object type. Or we want to
abstract away from the physics properties of an object
type. Therefore, whenever we want to have explicit
physics support, we define an entity type as a physical
object type, otherwise as a plain object type.

This leads to the type concepts shown in Fig. 11, where
we define the mixin category entity type as a super concept
that subsumes both object type and event type. Fig. 11
defines the basic type concepts of the DES ontology DESO
proposed in [6]. DESO, which is based on eUFO, is
tailored to the domain of discrete event systems.

Notice that also the concept of a transition rule,
corresponding to the well-known concept if a transition
function, is included in the type categories of DESO.
These rules have the form of an event-condition-action
rule. They define the state change and event causation
patterns that govern the transitions of a discrete event
system.

Figure 11. The type concepts of DESO

In addition to these type concepts, DESO comprises
the individual concepts shown in Fig. 12.

Figure 12. The individual concepts of DESO

ABDESO extends DESO by adding the agent-related
concepts shown in Fig. 9 and 10, and the concept of
institutional agents shown in Fig. 13. ABDESO allows
specifying reactive behaviors per agent type in the form of
reaction rules, which can be viewed as special transition

functions, triggered by perception events and resulting in
state changes and follow-up action events. An institutional
agent, such as an organization, may define roles to be
played by its subagents. These roles, as agent types, define
additional behaviors for its instances. The overall behavior

of a subagent of an organization results from merging all
reaction rules associated with the agent’s base type and all
the roles played by it. Since roles can be assumed and
dropped at runtime, this leads to a dynamic behavior
definition for agents.

Figure 13. Institutional agents

IX. EVALUATING MODELING AND SIMULATION

LANGUAGES AGAINST AN ONTOLOGY

Both IS modeling languages and DES simulation
languages can be evaluated by comparing a representation
of their concepts, typically provided by a metamodel of the
language, to an ontology of discrete event systems (more
precisely, to an ontology that represents a shared concept-
tualization of the domain of discrete event systems). The
stronger the match between them, the easier it is to
communicate and reason with models made in that
language.

A system model is made for representing a conceptual
abstraction of the real world system under consideration.
Such an abstraction of a system is formed on the basis of a
conceptualization of the system’s domain. Both for
information system (IS) engineering and for system
simulation engineering, we deal with the domain of
discrete dynamic systems, also called discrete event
systems (DES). In order for a DES model M to faithfully
represent a DES abstraction A, the DES modeling
language L used to make M should be faithful with respect
to the conceptualization of DES used to form A.

For a given ontology of discrete event systems O and a
given IS or DES modeling language L, we may consider
(1) a representation mapping from the concepts of O to the
elements (or modeling primitives) of L; and (2) an
interpretation mapping from the elements of L to the
concepts of O. If these mappings are far from being
isomorphisms, this indicates soundness and completeness
problems of L. Notice that this approach does not depend
on our proposals of DESO and ABDESO. It works in
general for any kind of DES ontology O.

There are four properties of a simulation language to
be checked in its evaluation:
1. Soundness: L is sound wrt O iff every element of L

has an interpretation in terms of a domain concept

from O. The degree of soundness can be measured
relatively as the number of L elements that have an O
interpretation divided by the total number of L
elements.

2. Completeness: L is complete wrt iff every O concept
is represented by a modeling primitive of L. The
degree of completeness can be measured relatively as
the number of O concepts that are represented by an
element of L divided by the total number of O
concepts.

3. Lucidity: L is lucid wrt O iff every element of L has at
most one interpretation in O. The degree of lucidity
can be measured relatively as the number of L
elements that have at most one interpretation in O
divided by the total number of L elements.

4. Laconicity: L is laconic wrt O iff every domain
concept from O is represented by at most one element
of L. The degree of laconicity can be measured
relatively as the number of O concepts that are
represented by at most one element of L.

The lower these degrees are for a given language L, the
more problems may be expected from using a model
expressed in L, e.g. by communicating incorrect
information and inducing the user to make incorrect
inferences about the semantics of the model.

For showing the applicability of the proposed evalu-
ation method, we now summarize some preliminary results
obtained from evaluating some DES modeling and
simulation languages and the agent-based simulation
language Brahms.

A. Evaluating Classical Petri Nets

The formalism of classical Petri Nets (PN) provides an
abstract process modelling language with an intuitive and
elegant graphical syntax. But it is too abstract for being
used in practice. However, it has been extended in several
ways to allow using it for business process modelling and
other forms of DES modeling.

When we evaluate PN against DESO, we obtain the
benchmarks listed in Table 1. They show that PNs have
only one deficiency: they are too incomplete for being
used as a system modelling language. This result is not
surprising. The soundness of PN is the basis of its success,
and its incompleteness is the reason why there are so many
proposals how to extend it.

B. Evaluating Atomic DEVS

The DEVS family of formalisms [8] is the result of a
research effort for establishing a general discrete event
simulation framework. The evaluation of the language of
Atomic DEVS against DESO (see Table 1) shows that
Atomic DEVS. has an even greater completeness problem
than Petri Nets. Both formalisms lack support for state
structure modelling concepts.

C. Evaluating SIMAN/Arena

The widely used Arena simulation tool is based on the
simulation programming language SIMAN that is tailored
to modelling production processes. Its evaluation in

Table I shows that it is also quite incomplete. This is
mainly due to the fact that SIMAN is not a general purpose
DES language, but has been tailored towards a specific
“process simulation” view.

TABLE I. EVALUATION AGAINST DESO

Criteria PN
Atomic
DEVS

ARENA

Soundness 100% 100% 100%

Completeness 43% 21% 52%

Lucidity 100% 100% 100%

Laconicity 100% 95% 95%

D. Evaluating Brahms

Brahms [9] is an agent-based modeling and simulation
environment a) for developing simulations of people,
organizations, and objects such as tools, documents and
systems; and b) for designing, simulating and
implementing multi-agent software systems. The
preliminary results of evaluating Brahms against
ABDESO in Table II show that Brahms is quite
incomplete, mainly due to the fact that Brahms does not
support explicit event modeling.

E. Evaluating BPMN

The preliminary evaluation result obtained in [10], and
shown in Table II, suggests 100% soundness indicating
that the core elements of BPMN have been well-chosen.
However, the results of only 60% completeness, 70%
lucidity, and 32% laconicity suggest that there are quite a
few missing concepts, ambiguous elements, and
redundant elements in BPMN.

F. Evaluating AORSL

The Agent-Object-Relationship Simulation Language
(AORSL) extends the Entity-Relationship Simulation
Language (ERSL) by adding agent concepts (see
www.AOR-Simulation.org). ERSL includes a form of
transition rules (called ‘environment rules’), while AORSL
adds reaction rules, which are transition functions for the
local/subjective state of an agent.

TABLE II. EVALUATION AGAINST ABDESO

Criteria Brahms BPMN AORSL

Soundness 100% 100% 100%

Completeness 43% 60% 91%

Lucidity 90% 70% 100%

Laconicity 100% 32% 100%

The evaluation results in Table II show that, compared to
Brahms and BPMN, only AORSL is nearly complete.

X. CONCLUSIONS

Using the Agent-Based Discrete Event Simulation
Ontology (ABDESO), extending the Discrete Event

Simulation Ontology (DESO), which is derived from the
Unified Foundational Ontology (UFO), we have evaluated
a number of basic and agent-based discrete event system
modeling and simulation languages, including the rule-
based language AORSL. The result of this preliminary
evaluation is that AORSL, as an enterprise modeling and
simulation language, is much more complete compared to
Petri Nets and BPMN.

ACKNOWLEDGMENT

The author wants to thank Giancarlo Guizzardi for the
enduring fruitful collaboration over the last 10 years.

REFERENCES
[1] G. Guizzardi and G. Wagner, A Unified Foundational Ontology

and some Applications of it in Business Modeling. In: Janis
Grundspenkis and Marite Kirikova (Eds.), Proc. CAiSE'04
Workshops. Faculty of Computer Science and Information
Technology, Riga Technical University, Riga, Latvia. June 7–11,
2004. Volume 3. pp. 129–143. Riga, Latvia.

[2] G. Guizzardi and G. Wagner, Towards Ontological Foundations
for Agent Modeling Concepts using UFO. In Agent-Oriented
Information Systems (AOIS), selected revised papers of the Sixth
International Bi-Conference Workshop on Agent-Oriented
Information Systems 2005. Lecture Notes in Computer Science,
volume 3508, 2005, pp. 110–124, Springer Berlin/Heidelberg.

[3] G. Guizzardi and G. Wagner, Using the Unified Foundational
Ontology (UFO) as a Foundation for General Conceptual
Modeling Languages. In: Poli, R. (Ed.), Theory and Application of
Ontologies. Springer Berlin/Heidelberg, 2010.

[4] G. Guizzardi, R.A. Falbo, and R.S.S. Guizzardi,. Grounding
Software Domain Ontologies in the Unified Foundational
Ontology (UFO): The Case of the ODE Software Process
Ontology. In: XI Ibero-American Workshop on Requirements
Engineering and Software Environments (IDEAS’2008), 2008,
Recife.

[5] G. Guizzardi, Ontological Foundations for Structural Conceptual
Models, PhD Thesis, University of Twente, The Netherlands,
2005.

[6] G. Guizzardi and G. Wagner., Towards an Ontological Foundation
of Discrete Event Simulation. In: B. Johansson, S. Jain, J.
Montoya-Torres, J. Hugan and E. Yücesan (eds.). Proceedings of
the 2010 Winter Simulation Conference. December 2010,
Baltimore, Maryland, USA, pp. 652–664. Available via
<http://www.informs-sim.org/wsc10papers/059.pdf>.

[7] G. Guizzardi and G. Wagner., Towards an Ontological Foundation
of Agent-Based Simulation. In: S. Jain, R.R. Creasey, J.
Himmelspach, K.P. White, and M. Fu (eds.). Proceedings of the
2011 Winter Simulation Conference. December 2011, Phoenix,
Arizona, USA.

[8] B. Zeigler, Theory of Modeling and Simulation, Wiley
Interscience, New York, 1976.

[9] M. Sierhuis, Modeling and Simulating Work Practice. BRAHMS:
a multiagent modeling and simu-ation language for work system
analysis and design, Ph.D. thesis, Social Science and Informatics
(SWI), University of Amsterdam, SIKS Dissertation Series No.
2001-10, Amsterdam, The Netherlands, ISBN 90-6464-849-2.

[10] G. Guizzardi and G. Wagner., Can BPMN Be Used as a Simulation
Modeling Language?,. in J. Barjis, T. Eldabi, and A. Gupta (Eds.),
Enterprise and Organizational Modeling and Simulation, Lecture
Notes in Business Information Processing, Volume 88, Springer-
Verlag Berlin Heidelberg, 2011.

http://www.aor-simulation.org/
http://www.informs-sim.org/wsc10papers/059.pdf

	I. Introduction)
	II. The Base Layer of eUFO
	III. Substance Individuals and Trope Individuals
	A. Qualities and Attributions
	B. Modes
	C. Relators, Relationships and References

	IV. Events
	V. Universals
	A. Quality Universals and Attributes
	B. Relator Universals, Material Relationship Types and Material Reference Properties

	VI. Different Kinds of Object Types
	A. Sortal Types and Mixin Types
	B. Base Types
	C. Roles and Phase Types
	D. Example

	VII. Considering Agents as Special Objects
	A. Communication Events

	VIII. The Categories of DESO and ABDESO
	IX. Evaluating Modeling and Simulation Languages against an Ontology
	A. Evaluating Classical Petri Nets
	B. Evaluating Atomic DEVS
	C. Evaluating SIMAN/Arena
	D. Evaluating Brahms
	E. Evaluating BPMN
	F. Evaluating AORSL

	X. Conclusions
	Acknowledgment
	References

