
Agent-Oriented Enterprise Modeling

Based on Business Rules

Kuldar Taveter1 and Gerd Wagner2

1 VTT Information Technology (Technical Research Centre of Finland),
P.O.Box 1201, FIN-02044 VTT, Finland,

kuldar.taveter@vtt.fi
2 Eindhoven University of Technology, Faculty of Technology Management,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
G.Wagner@tm.tue.nl

http://tmitwww.tm.tue.nl/staff/gwagner

Abstract. Business rules are statements that express (certain parts of)
a business policy, defining business terms and defining or constraining
the operations of an enterprise, in a declarative manner. Since these
rules define and constrain the interaction among business agents in the
course of business processes, they have to refer to the components of their
mental state, such as the knowledge/information and the commitments
of an organization. We propose an agent-oriented approach to business
rules and show how to represent and visualize business rules and business
processes in Agent-Object-Relationship modeling.

1 Introduction

Agent-Orientation is emerging as a new paradigm in software and information
systems engineering. It offers a range of high-level abstractions that facilitate
the conceptual and technical integration of communication and interaction with
established information system technology. Agent-Orientation is highly signifi-
cant for business information systems since business processes are driven by and
directed towards agents (or actors), and hence have to comply with the physical
and social dynamics of interacting individuals and institutions.

While today’s enterprise information system technology is largely based on
the metaphors of data management and data flow, and is under pressure to adopt
concepts and techniques from the highly successful object-oriented programming
paradigm, Agent-Orientation emphasizes the fundamental role of actors/agents1

and their mental state, and of communication and interaction, for analyzing and
designing organizations and organizational information systems. This turns out
to be crucial for a proper understanding of business rules. Since these rules define
and constrain the interactions among business agents, they have to refer to the
components of their mental state, such as the knowledge/information and the
commitments of an organization.
1 We use the terms ‘actor’ and ‘agent’ as synonyms.

H.S. Kunii, S. Jajodia, and A. Sølvberg (Eds.): ER2001, LNCS 2224, pp. 527–540, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

528 Kuldar Taveter and Gerd Wagner

We attempt to show that our agent-oriented approach, that is based on the
Agent-Object-Relationship (AOR) metamodel proposed in [Wag01a, Wag01b],
allows to capture more of the dynamic and deontic semantics of enterprise mod-
eling than object-oriented modeling approaches, such as the UML, do. Taking
into account that the main motivation for object-oriented modeling stems from
software engineering and not from enterprise modeling, or cognitive modeling,
this should not be surprising.

The rest of the paper is organized as follows. In Section 2, we review the rele-
vant literature on business rules, and present our own definitions of business rules
and business processes. In Section 3, we review the Agent-Object-Relationship
(AOR) metamodel which we use as the basis of our agent-oriented business rule
modeling. Finally, in Section 4, we discuss the formalization and visualization of
business rules on the basis of the AOR metamodel.

2 Business Rules and Business Processes

According to Martin and Odell [MO98], business rules allow user experts to
specify policies in small, stand-alone units using explicit statements. The term
business rule can be understood both at the level of a business domain and at
the operational level of an information system. The more fundamental concept
are business rules at the level of a business domain. In certain cases, they can be
automated by implementing them in an information system, preferably in the
form of an executable specification. It should be the goal of advanced information
system technology to provide more support for business rules in the form of high-
level machine-executable declarative specifications, similar to the SQL concepts
of assertions and triggers.

2.1 Business Rules at the Business Level

At the business level, a business rule is defined as

– a statement about how the business is done, i.e., about guidelines and re-
strictions with respect to states and processes in an organization [Her97];

– a law or custom that guides the behaviour or actions of the actors connected
to the organization [Ass88];

– a declaration of policy or condition that must be satisfied [OMG, 1992].

Business rules can be enforced on the business from the outside environment by
regulations or laws, or they can be defined within the business to achieve the
goals of the business. A business rule is based on a business policy. An example
of a business policy in a car rental company is ”only cars in legal, roadworthy
condition can be rented to customers” [HH00]. Business rules are declarative
statements: they describe what has to be done or what has to hold, but not how.

Our definition of business rules is based on [HH00], [Ass88], [KK92], and
[BBS]: Business rules are statements that express (certain parts of) a

Agent-Oriented Enterprise Modeling Based on Business Rules 529

business policy, such as defining business terms, defining deontic as-
signments (of powers, rights and duties), and defining or constraining
the operations of an enterprise, in a declarative manner (not describ-
ing/prescribing every detail of their implementation).

According to [HH00] and [MDC99], business rules can be divided into ‘struc-
tural assertions’ (or ‘term rules’ and ‘fact rules’), ‘action rules’, and ‘derivation
rules’.2 Similarly, Bubenko et al [BBS] categorize business rules into ‘constraint
rules’, ‘event-action rules’, and ‘derivation rules’, while Martin and Odell [MO98]
group rules into two broad classes, ‘constraint rules’ and ‘derivation rules’ (re-
markably, they subsume ‘stimulus response rules’ – which we call reaction rules –
under ‘constraint rules’). [Her97] distinguishes between ‘integrity rules’ (that are
further divided into static and dynamic integrity constraints) and ‘automation
rules’.

In [HH00], a further class of business rules, authorizations, is proposed. Au-
thorizations represent a particular type of deontic assignments. Synonyms for
authorizations are rights and permissions. They define the privileges of an agent
(type) with respect to certain (types of) actions. Complementary to rights, we
also consider duties.

In summary, three basic types of business rules have been identified in the
literature: integrity constraints (also called ‘constraint rules’ or ‘integrity rules’),
derivation rules, and reaction rules (also called ‘stimulus response rules’, ‘ac-
tion rules’, ‘event-action rules’, or ‘automation rules’). A fourth type, deontic
assignments, has only been partially identified (in the proposal of considering
‘authorizations’ as business rules).

An integrity constraint is a an assertion that must be satisfied in all
evolving states and state transition histories of an enterprise viewed as a dis-
crete dynamic system. There are state constraints and process constraints. State
constraints must hold at any point in time. An example of a state constraint
is: “a customer of the car rental company EU-Rent must be at least 25 years
old”. Process constraints refer to the dynamic integrity of a system; they re-
strict the admissible transitions from one state of the system to another. A
process constraint may, for example, declare that the admissible state changes
of a RentalOrder object are defined by the following transition path: reserved
→ allocated → effective → dropped-off.

A derivation rule is a statement of knowledge that is derived from other
knowledge by an inference or a mathematical calculation. Derivation rules cap-
ture terminological and heuristic domain knowledge that need not to be stored
explicitly because it can be derived from existing or other derived information
on demand. An example of a derivation rules is: “the rental rate of a rental is
inferred from the rental rate of the group of the car assigned to the rental”.
2 ‘Structural assertions’ introduce the definitions of business entities and describe the

connections between them. Since they can be captured by a conceptual model of the
problem domain, e.g. by an Entity-Relationship (ER) or a UML class model, we do
not consider them as business rules but rather as forming the business vocabulary
(or ontology).

530 Kuldar Taveter and Gerd Wagner

Reaction rules are concerned with the invocation of actions in response to
events. They state the conditions under which actions must be taken; this in-
cludes triggering event conditions, pre-conditions, and post-conditions (effects).
An example of a reaction rule from the domain of car rental is: “when receiv-
ing from a customer the request to reserve a car of some specified car group,
the branch checks with the headquarter to make sure that the customer is not
blacklisted”.

Deontic assignments of powers, rights and duties to (types of) internal
agents define the deontic structure of an organization, guiding and constraining
the actions of internal agents. An example of a deontic assignment statement is:
“only the branch manager has the right to grant special discounts to customers”.

The triggering event conditions in the definitions of reaction rules in [HH00],
[Her97], [BBS], and [MDC99] are either explicitly or implicitly bound to update
events in databases. Depending on some condition on the database state, they
may lead to an update action and to system-specific procedure calls. In contrast
to this, we choose the more general concept of a reaction rule as proposed in
[Wag98]. Reaction rules define the behaviour of an agent in response to environ-
ment events (perceived by the agent), and to communication events (created by
communication acts of other agents).

2.2 Business Rules at the Level of an Information System

In certain cases, business rules expressed at the business level can be automated
by mapping them to executable code at the information system level as shown
in Table 1.

Concept Implementation

Constraints if-then statements in programming languages;
DOMAIN, CHECK and CONSTRAINT clauses in SQL table definitions;
CREATE ASSERTION statements in SQL database schema definitions

Derivation Rules deductive database (or Prolog) rules; SQL CREATE VIEW statements

Reaction Rules if-then statements in programming languages;
CREATE TRIGGER statements in SQL;
production rules in ‘expert systems’;

Table 1. Mapping of business rules from the business level to the information system
level using currently available technology.

This mapping is, however, not one-to-one, since programming languages and
database management systems offer only limited support for it. While general
purpose programming languages do not support any of the three types of ex-
pressions (with the exception of the object-oriented language Eiffel that supports
integrity constraints in the form of ‘invariants’ for object classes), SQL has some
built-in support for constraints, derivation rules (views), and limited forms of
reaction rules (triggers).

Agent-Oriented Enterprise Modeling Based on Business Rules 531

2.3 Business Processes

Business rules define and control business processes. A widely accepted definition
of a business process is [Dav92]: ”A business process can be defined as a collection
of activities that takes one or more kinds of input, and creates an output that
is of value to the customer”. In [HC93] this definition is paraphrased by stating:
”A [business] process is simply a structured set of activities designed to produce
a specified output for a particular customer or market”. A business process
describes from start to finish the sequence of events required to produce the
product or service [YWT+96]. A business process is assumed to consume input in
terms of information and/or material and produce output of information and/or
material [BBS]. Business processes typically involve several different functional
organization units. Often business processes also cross organizational boundaries.

We prefer to adopt a more general perspective and consider a business process
as a special kind of a social interaction process. Unlike physical or chemical
processes, social interaction processes are based on communication acts that
may create commitments and are governed by norms. We distinguish between
an interaction process type and a concrete interaction process (instance), while
in the literature the term ‘business process’ is ambiguously used both at the type
and the instance level.

We thus refine and extend the definitions of [YWT+96], [HC93], and [Dav92]:
A business process is a social interaction process for the purpose of
doing business. According to [Wag01b], a social interaction process is a
temporally ordered, coherent set of events and actions, involving one or more
communication acts, perceived and performed by agents, and following a set of
rules, or protocol, that is governed by norms, and that specifies the type of the
interaction process. Notice that we did not choose activities as the basic elements
of a process. While an action happens at a time point (i.e., it is immediate), an
activity is being performed during a time interval (i.e., it has duration), and
consists of a set of actions.

We propose to model both business rules and business processes in the frame-
work of the Agent-Object-Relationship metamodel reviewed in Section 3.

3 Principles of Agent-Object-Relationship Modeling

Agent-Object-Relationship (AOR) diagrams were proposed in [Wag01a, Wag01b]
as an agent-oriented extension of Entity-Relationship diagrams, or UML-style
class diagrams. In order to capture more semantics of the dynamic and deon-
tic aspects of organizations and organizational information systems, such as the
events and actions related to the ongoing business processes of an enterprise,
it is proposed to make an ontological distinction between active and passive
entities, that is, between agents and ordinary objects. AOR modeling suggests
that the semantics of business transactions can be more adequately captured if
the specific business agents associated with the involved events and actions
are explicitly represented in organizational information systems in addition to
passive business objects.

532 Kuldar Taveter and Gerd Wagner

In AOR modeling, an entity is either an agent, an event, an action, a claim,
a commitment, or an ordinary object. An organization is viewed as a complex
institutional agent defining the rights and duties of its internal agents that
act on behalf of it, and being involved in a number of interactions with external
agents. Internal agents may be humans, artificial agents (such as software
agents, agentified information systems, robots or agentified embedded systems),
or institutional agents (such as organizational units).

As usual, entity types are visually represented by rectangles while relation-
ship types are represented by connection lines (possibly with crows feet endings
in order to indicate multiplicity). While an object type is visualized as an ordi-
nary rectangle, an agent type is graphically rendered as a rectangle with rounded
corners. An internal agent type is visualized by such a rectangle with a dashed
line drawn within the institutional agent rectangle it belongs to (like Branch in
Fig. 1). An instance of an agent type is distinguished from an agent type by
underlining its name (like the EU-Rent in Fig. 1).

3.1 Actions and Events

In a business domain, there are various types of actions performed by agents, and
there are various types of state changes, including the progression of time, that
occur in the environment of the agents. For an external observer, both actions
and environmental state changes constitute events. In the internal perspective
of an agent that acts in the business domain, only the actions of other agents
count as events.

Actions create events, but not all events are created by actions. Those events
that are created by actions, such as delivering a product to a customer, are called
action events. Examples of business events that are not created by actions are
the fall of a particular stock value below a certain threshold, the sinking of a
ship in a storm, or a timeout in an auction.

We make a distinction between communicative and non-communicative ac-
tions and events. Many typical business events, such as receiving a purchase
order or a sales quotation, are communication events. Business communication
may be viewed as asynchronous point-to-point message passing. The expressions
receiving a message and sending a message may be considered to be synonyms
of perceiving a communication event and performing a communication act.

As opposed to the low-level (and rather technical) concept of messages in
object-oriented programming, AOR modeling assumes the high-level seman-
tics of speech-act-based Agent Communication Language (ACL) messages (see
[KQM, FIP]).

3.2 Commitments and Claims

Commitments are fundamental components of business interaction processes.
This is acknowledged by the ebXML standardization initiative in the statement

Agent-Oriented Enterprise Modeling Based on Business Rules 533

“The business semantics of each commercial transaction are defined in terms of
the Business Objects affected, and the commitment(s) formed or agreed.”3

Representing and processing commitments and claims in information systems
explicitly helps to achieve coherent behavior in interaction processes. In [Sin99],
the social dimension of coherent behavior is emphasized, and commitments are
treated as ternary relationships between two agents and a ‘context group’ they
both belong to. For simplicity, we treat commitments as binary relationships
between two agents.

Commitments to perform certain actions, or to see to it that certain condi-
tions hold, typically arise from certain communication acts. For instance, sending
a sales quotation to a customer commits the vendor to reserve adequate stocks of
the quoted item for some time. Likewise, acknowledging a sales order implies the
creation of a commitment to deliver the ordered items on or before the specified
delivery date.

Some of these modeling concepts are indexical, that is, they depend on the
perspective chosen: in the perspective of a particular agent, actions of other
agents are viewed as events, and commitments of other agents are viewed as
claims against them.

In the internal perspective of an agent, a commitment refers to a specific
action to be performed in due time, while a claim refers to a specific event that
is created by an action of another agent, and has to occur in due time.

3.3 External AOR Models

In an external AOR model, we adopt the view of an external observer who is
observing the (prototypical) agents and their interactions in the problem domain
under consideration. Typically, an external AOR model will have a focus, that
is an agent, or a group of agents, for which we would like to develop a state
and behavior model. We do not consider internal AOR models (taking the inter-
nal/subjective perspective of a particular agent/system to be modeled) in this
paper.

An Agent Diagram depicts the focus agent (or agents) and the agent types
it is (or they are) interacting with. If another agent (type) is to be represented
by a focus agent (type) with ‘proprietary’ attributes (that have only meaning for
the representer), such as when Customer is to be represented by Headquarter
with the proprietary Boolean attribute isBlacklisted, then a corresponding
agent rectangle with a dot-dashed line is drawn as a representation of the ‘real’
agent (type) within the focus agent (type), as in Fig. 1. Such an explicit represen-
tational duplication of an entity type is only necessary if proprietary attributes
are to be included in the agent diagram. Otherwise, it is tacitly assumed that the
focus agent has a representation of all agents it deals with in terms of ‘standard’
attributes.

In the view of an external observer, actions are also events, and commitments
are also claims, exactly like two sides of the same coin. Therefore, an external
3 From the ebXML Technical Architecture Specification v0.9.

534 Kuldar Taveter and Gerd Wagner

EU-Rent

Headquarter

Branch

Automotive
ServiceStation

Customer

Bank

RentalCar

RentalOrder

Customer

isBlacklisted

Customer

isCreditWorthy

CarGroup

Fig. 1. An Agent Diagram: The car rental company EU-Rent is the focus agent.
It consists of an internal agent Headquarter and (instances of) the internal agent
types Branch and AutomotiveServiceStation. The headquarter classifies customers by
means of the proprietary attribute isBlacklisted. Similarly, banks classify customers
by means of the proprietary attribute isCreditWorthy. In both cases, a rectangle with
a dot-dashed line is used to graphically render the internal representation entity type
Customer.

AOR model contains, besides the agent and object types of interest, the action
event types and commitment/claim types that are needed to describe the in-
teractions between the focus agent(s) and the other types of agents. They are
visualized in an Interaction Frame Diagram.

In an external AOR model, a commitment of agent a1 towards agent a2 to
perform an action of a certain type (such as a commitment to return a car)
can also be viewed as a claim of a2 against a1 that an action of that kind will
be performed. Commitments/claims are conceptually coupled with the type of
action event they refer to (such as returnCar action events). This is graphically
rendered by an arrow rectangle with a dotted line on top of the action event
rectangle it refers to, as depicted in Fig. 2.

Action event types, and commitment/claim types are graphically rendered
like in Fig. 2 which depicts the interaction frames between Customer and Branch,
and between Branch and Headquarter. Notice that not for all action event types
there is a corresponding commitment/claim type. For instance, there are no
commitments of (or claims against) customers to pick up a car, whereas there are
commitments and claims to return a car. An interaction frame between two agent
types consists of those action event types and commitment/claim types that form
the basis of the interaction processes in which these two agent types are involved.
Unlike a UML sequence diagram, it does not model any sequential process but
provides a static picture of the possible interactions including commitment/claim
types.

Agent-Oriented Enterprise Modeling Based on Business Rules 535

BranchCustomer request
Reservation

confirm
Reservation

provideCar

provideCar

pickupCar

returnCar

returnCar

Headquarter

askIf(blacklisted(
?Customer))

replyIf(blacklisted(
?Customer), ?Answ)

Fig. 2. An Interaction Frame Diagram: The interaction frame between the agent
types Customer and Branch consists of the communicative action event (or ACL
message) types requestReservation and confirmReservation, the action event type
pickupCar, and the commitment/claim types provideCar and returnCar coupled
with the corresponding action event types. The interaction frame between the agent
type Branch and the agent Headquarter consists of the ACL message types askIf(

blacklisted(?Customer)) and replyIf(blacklisted(?Customer), ?Answer)).

An external AOR model should not include any software artifacts. It should
rather represent a conceptual analysis view of the problem domain, similarly to
the function of a UML use case model.

4 Business Rules as Reaction Rules

We propose to formalize business rules as integrity constraints, as derivation
rules, as reaction rules, or as deontic assignments in the semantic framework
of knowledge-perception-memory-commitment (KPMC) agents. The concept of
KPMC agents is an extension of the knowledge- and perception-based (KP) agent
model proposed in [Wag96, Wag98]. We can only sketch this logical framework
here.

A KPMC agent consists of five components: a knowledge base KB, an event
queue EQ (representing the perception state), a memory base MB (recording
past events and actions), a commitment/claim base CB, and a set of reaction
rules RR (encoding the behavior of the agent). The schema of a KPMC agent is
composed by a knowledge system (in the sense of [Wag98]), an agent communi-
cation language (ACL), an action language, and an environment event language.
Integrity constraints and derivation rules are expressible on the basis of a knowl-
edge system (and the query and input language defined by it). For expressing
reaction rules one needs, in addition to the query and input language of a knowl-
edge system, languages for expressing events and actions.

536 Kuldar Taveter and Gerd Wagner

In this paper, for space limitations, we restrict our considerations to reaction
rules that are visualized in Interaction Pattern Diagrams. In [TW01], we
discuss deontic assignments.

Business rules that define the interactive behavior of business agents are
best formalized as reaction rules. Business interactions are influenced by com-
mitments and claims. So, reaction rules are those business rules where an agent-
oriented approach is most promising. At the same time, they seem to be the
most important type of business rules.

EU-Rent

Customer

Headquarter

Branch

CarGroupRentalOrder

RentalCar

askIf(blacklisted(
?customer))

replyIf
(blacklisted

(?customer), no)

requestReservation
(?CarGrp, ?Period)

confirmReservation
(?RentalID)

provideCar

provideCar

Timer

R1

hasCapacity
(?Period)

R3

isReserved

request
(remind ...)

reaction
rule

triggering
event

state
condition

state
change

outgoing
message

Legend for reaction rules

action

R2R2

Customer

isBlacklisted

Fig. 3. An Interaction Pattern Diagram: Visualizing a process fragment defined by
the reaction rules R1, R2 and R3.

In Fig. 3, the business process type of rental reservation is modeled on the
basis of three reaction rules, R1, R2 and R3. Variables in the parameter list of
a message type or predicate are prefixed with a question mark.

R1: Upon receiving from a Customer the request to reserve a car of some
?CarGroup for a certain rental ?Period, if that car group has sufficient

Agent-Oriented Enterprise Modeling Based on Business Rules 537

capacity during the period requested – determined by evaluating the in-
tensional predicate hasCapacity(?Period) of the corresponding instance of
CarGroup – the Branch sends a query to the Headquarter to make sure that
the customer is not blacklisted.

R2: Upon receiving from a Branch a query if some customer is blacklisted, the
headquarter checks if the concerned customer is blacklisted, and if he is not,
replies with ‘no’.

R3: Upon receiving from the Headquarter a reply telling that the Customer is
not blacklisted, the Branch creates the corresponding rental reservation (i.e.
an instance of RentalOrder with the status isReserved), commits towards
the customer to provide a car, sends a request to the Timer software agent
to remind about the allocation time of a car for the given rental order (a car
is allocated for the rental reservation 12 hours before the pickup-time), and
sends a confirmation to the customer.

A reaction rule is visualized as a circle with incoming and outgoing arrows.
Each reaction rule has exactly one incoming arrow that is solid: it represents the
triggering event condition which is also responsible for instantiating the reaction
rule. In addition, there may be ordinary incoming arrows representing state
conditions (referring to corresponding instances of other entity types). There
are two kinds of outgoing arrows. An outgoing arrow of the form −� denotes a
mental effect referring to a change of beliefs and/or commitments. An outgoing
connector to an action type denotes the performance of an action of that type.

Reaction rules may also be represented in textual form. For instance, R1
could be expressed as

ON RECEIVE requestReservation(?CarGrp, ?Period) FROM ?Customer
IF ?CarGrp.hasCapacity(?Period)
THEN

SEND askIf(blacklisted(?Customer)) TO headquarter

and R3 could be expressed as

ON RECEIVE replyIf(blacklisted(?Customer), no) FROM headquarter
THEN

COMPUTE ?RentalNo = getNewRentalNo();
CREATE BELIEF RentalOrder(?RentalNo, ?Customer, isReserved, . . .)
CREATE COMMITMENT TOWARDS ?Customer TO provideCar(. . .) BY . . .
SEND request(remind(?RentalNo, . . .)) TO timer
SEND confirmReservation(?RentalNo,. . .) TO ?Customer

5 Related Work

We restrict our discussion of related work to those approaches in enterprise
modeling where business rules play an essential role.

538 Kuldar Taveter and Gerd Wagner

In object-oriented approaches, rules are frequently implemented within the
methods of a business object class. In many cases, however, this binding of a
business rule to a specific object class is not adequate. Typically, a rule refers
to more than one type of business object. Therefore, business rules should be
defined on top of the business object definitions (classes) in a separate module.

In [EP99], Eriksson and Penker propose an approach to business modeling
with UML based on four primary concepts: resources, processes, goals, and rules.
In this proposal, there is no specific treatment of agents. They are subsumed,
together with “material, information, and products” under the concept of re-
sources. This unfortunate subsumption of human agents under the traditional
‘resource’ metaphor prevents a proper treatment of many agent-related concepts
such as commitments, deontic assignments, and communication/interaction.

Ross [Ros97] has proposed one of the most comprehensive methodologies
for modeling business rules. The Ross Notation is, however, largely a database-
oriented methodology, and does therefore not allow to model events and actions.
Neither does it support to model business processes. E.g., [Hur98] remarks that
the primary deficiency of the Ross Notation is its inability to model process
aspects, due to its fundamental restriction of only considering persistent data as
a basis for business rules.

The Enterprise Knowledge Development (EKD) approach described in [BBS]
also addresses the modeling of business rules, business processes, and actors. The
EKD approach does not, however, bring these notions straightforwardly to the
operational level like we do in our approach. Also, visualization of business rules
and processes in EKD is quite simplistic (by boxes).

Recently, in [OvDPB00], an agent-oriented extension of UML, called AUML,
mainly concerning the expressivity of sequence diagrams and activity diagrams,
has been proposed. However, AUML does not distinguish between agents and
objects. In fact, UML class diagrams are not modified at all in AUML. Neither
does it provide any support for (business) rules.

6 Conclusion

Business rules have traditionally been modeled and implemented in the narrow
context of (active) databases. We have adopted a broader view, and a more
cognitive stance, by proposing to model and implement business rules as the
“rules of behaviour” of business agents. We have also shown how to visualize
business rules in Agent-Object-Relationship models. We did not say anything
about a suitable modeling process/method associated with the AOR modeling
language. This is a topic for further research.

In addition to the case study of a car rental company, the methodology de-
scribed in this paper has been used in designing an information system in support
of inter-enterprise business processes of electronic advertising in newspapers, and
in designing the scheduling information system for a ceramic factory, see [Tav01].

Agent-Oriented Enterprise Modeling Based on Business Rules 539

We are aware that, by introducing new concepts for enterprise modeling,
we have also created new problems and research challenges. Some of the new
questions that arise from our approach are:

– How can commitments/claims be used in real systems? What is their oper-
ational semantics?

– How can we relate our formalization of business rules with goals and goal-
oriented behavior based on planning and plan execution?

– How can we handle exceptions to standard processes (for instance, when a
customer does not appear to pick up a car as agreed, or when the automo-
tive service station fails to return a car on time)? Possibly as violations of
commitments?

These and many more questions will guide our future work.

Acknowledgements We are grateful to the anonymous referees for their valuable
hints and suggestions.

References

[Ass88] F. Van Assche. Information systems development: a rule-based approach.
Knowledge-Based Systems, 1(4):227–234, 1988.

[BBS] J. A. Bubenko, D. Brash, and J. Stirna. EKD user guide. Techni-
cal report, Kista, Dept. of Computer and Systems Science, Royal Insti-
tute of Technology (KTH) and Stockholm University, Stockholm, Sweden.
http://www.dsv.su.se/~js/ekd_user_guide.html.

[Dav92] T. H. Davenport. Process Innovation: Reengineering Work through Infor-
mation Technology. Harvard Business School Press, 1992.

[EP99] H.E. Eriksson and M. Penker. Business Modeling with UML: Business
Patterns at Work. John Wiley & Sons, 1999.

[FIP] Foundation for intelligent physical agents (FIPA). http://www.fipa.org.
[GLC99] B.N. Grosof, Y. Labrou, and Hoi Y. Chan. A declarative approach to

business rules in contracts: Courteous logic programs in XML. In Proc.
1st ACM Conference on Electronic Commerce (EC99), Denver, Colorado,
USA, November 1999.

[HC93] M. Hammer and J. Champy. Reengineering the Corporation. Harper
Collins, New York, 1993.

[Her97] H. Herbst. Business Rule-Oriented Conceptual Modeling. Contributions
to Management Science. Springer-Verlag, 1997.

[HH00] D. Hay and K. A. Healy. Defining business rules - what are they
really? Technical Report 1.3, The Business Rules Group, July 2000.
http://businessrulesgroup.org/first_paper/br01c0.htm.

[Hur98] Russ Hurlbut. Managing Domain Architecture Evolution Through Adap-
tive Use Case and Business Rule Models. PhD thesis, Illinois Institute of
Technology, 1998.

[KK92] A. Kieser and H. Kubicek. Organisation. De Gruyter, Berling/New York,
3rd edition edition, 1992.

[KQM] Knowledge query and manipulation language (KQML).
http://www.cs.umbc.edu/kqml/.

540 Kuldar Taveter and Gerd Wagner

[MDC99] Meta data coalition open information model, business engineering model,
business rules. review draft, Kista, Dept. of Computer and Systems Sci-
ence, Royal Institute of Technology (KTH) and Stockholm University, July
1999. http://www.mdcinfo.com/OIM/models/BRM.html.

[MO98] James Martin and James Odell. Object-Oriented Methods: A Foundation
(UML Edition). Prentice-Hall, 1998.

[OvDPB00] J. Odell, H. van Dyke Parunak, and B. Bauer. Extending UML for
agents. In G. Wagner, Y. Lesperance, and E. Yu, editors, Proc. of the
2nd Int. Workshop on Agent-Oriented Information Systems, Berlin, 2000.
iCue Publishing.

[Ros97] R. G. Ross. The Business Rule Book: Classifying, Defining and Modeling
Rules. Database Research Group, Inc., Boston (MA), 2nd edition edition,
1997.

[Sin99] M.P. Singh. An ontology for commitments in multiagent systems. Artifi-
cial Intelligence and Law, 7:97–113, 1999.

[Tav01] Kuldar Taveter. Agent-Oriented Business Modelling and Simulation. PhD
thesis, Tallinn Technical University, 2001.

[TW01] K. Taveter and G. Wagner. Agent-oriented business rules: Deontic assign-
ments. In Proc. of Int. Workshop on Open Enterprise Solutions: Systems,
Experiences, and Organizations (OES-SEO2001), Rome, Italy, September
2001.

[Wag96] G. Wagner. A logical and operational model of scalable knowledge- and
perception-based agents. In W. Van de Velde and J.W. Perram, editors,
Agents Breaking Away, volume 1038 of Lecture Notes in Artificial Intelli-
gence, pages 26–41. Springer-Verlag, 1996.

[Wag98] G. Wagner. Foundations of Knowledge Systems – with Applications
to Databases and Agents, volume 13 of Advances in Database Sys-
tems. Kluwer Academic Publishers, 1998. See http://www.inf.fu-
berlin.de/∼wagnerg/ks.html.

[Wag01a] G. Wagner. Agent-oriented analysis and design of organizational infor-
mation systems. In J. Barzdins and A. Caplinskas, editors, Databases
and Information Systems. Fourth International Baltic Workshop, Vilnius,
Lithuania, May 2000, Vilnius, Lithuania, 2001. Kluwer Academic Publish-
ers.

[Wag01b] Gerd Wagner. The Agent-Object-Relationship meta-model: Towards
a unified conceptual view of state and dynamics. Technical re-
port, Eindhoven Univ. of Technology, Fac. of Technology Management,
http://tmitwww.tm.tue.nl/staff/gwagner/AOR.pdf, May 2001. Sub-
mitted.

[YWT+96] E. Yourdon, K. Whitehead, J. Thomann, K. Oppel, and P. Nevermann.
Mainstream Objects: An Analysis and Design Approach for Business.
Yourdon Press, 1996.

	Introduction
	Business Rules and Business Processes
	Business Rules at the Business Level
	Business Rules at the Level of an Information System
	Business Processes

	Principles of Agent-Object-Relationship Modeling
	Actions and Events
	Commitments and Claims
	External AOR Models

	Business Rules as Reaction Rules
	Related Work
	Conclusion

