
UML-Based Rule Modeling with Fujaba

Sergey Lukichev1, Gerd Wagner1

1Institute of Informatics, Brandenburg University of Technology at Cottbus, Germany
Lukichev@tu-cottbus.de, G.Wagner@tu-cottbus.de

ABSTRACT
In this paper we describe visual rule modeling tool Strelka,
which is implemented as a Fujaba plugin. The modeling tool
supports a UML-Based Rule Modeling Language (URML).
It extends standard UML metamodel with a concept of a
rule. We discuss an issue of a UML-based rule modeling,
present rule metamodel, describe implementation of a Fu-
jaba plugin and give examples of business rules, modeled
using Strelka.

1. INTRODUCTION
Rules are becoming increasingly important in business mod-
eling and requirements engineering, and as a high level pro-
gramming paradigm. They are widely recognized to play
an important role in the Semantic Web and are a criti-
cal technology component for the early adoption and appli-
cations of knowledge-based techniques in e-business, espe-
cially enterprize integration and B2B e-commerce. A lot of
work has been conducted in the area of visual representation
of business vocabularies and the mainstream technology is
MOF/UML, which allows visualization of domain concepts
by means of, for instance, UML class diagrams. In the area
of emerging rule technologies for the Semantic Web and for
Business Rules there are relatively few approaches and tools
for visual rule modeling. We argue, that rule modeling lan-
guage should allow visual rule expressions, which can be un-
derstood by domain experts or by existing software engineers
without extensive technical training. We base our modeling
approach on UML since it is widely adopted modeling lan-
guage. Since rules are built on facts, and facts are built on
concepts as expressed by terms[1], a UML-based rule model-
ing approach is a natural extension of UML. To support rules
in UML class diagrams we extend the UML metamodel with
a concept of a rule. The request for a UML-based rule mod-
eling tool for the Semantic Web comes from the industry.
Many companies claim that even if they understand bene-
fits of using Semantic Web technologies like ontologies and
rule languages, it is difficult for them to start since ontology
architects and rule experts are quite expensive. A UML-
based rule modeling approach for the Semantic Web will
facilitate the use of the Semantic Web technologies by tra-
ditional UML modelers. The actuality of the proposed mod-
eling approach also comes from the rules standardization ef-
forts of W3C (http://www.w3.org/2005/rules/) and OMG
(http://www.omg.org), which need rules modeling method-
ologies and tools.

In Section 2 we give a short overview of existing rule model-

ing approaches. In Section 3 we describe a metamodel and
modeling language for derivation rules. In Section 4 we de-
scribe our rule modeling plugin for Fujaba, called Strelka
and discuss modeling examples in Section 5. In Section 6
we summarize our results and describe future plans.

2. RELATED WORKS
The Protege tool provides facilities for ontology and rules
modeling. In particular, it supports modeling in RDF [9]
and OWL [8] as well as modeling of SWRL [3] rules. Pro-
tege requires a significant knowledge of ontology modeling.
Moreover it is doubtful that it can be easily adopted in en-
terprizes, which already use UML technologies for software
engineering.

There are ontology language specific tools for visual repre-
sentation of ontologies, for instance, SemTalk from Semta-
tion GmbH, which provides a visual language for modeling
OWL ontologies. The approach of defining visual language
for a particular ontology language has a lack of flexibility
and scalability (since they provide visual notation for only
one ontology language, for instance, OWL), while our UML-
based approach has a power of MDA and allows obtain rules
in language-independent manner.

There is a work on defining UML profile for ontologies and
rules[10]. The approach defines a UML profile for SWRL
rules and can be used for modeling of OWL ontologies and
SWRL rules. Our approach is more general, since it sup-
ports not only SWRL-like (integrity and derivation) rules,
but production rules and reaction rules as well. In addition,
we provide special visual notation for rules, which cannot
be obtained by the UML profile approach.

3. METAMODEL FOR RULES
In order to model rules with UML we have developed a
UML-Based Rule Modeling Language (URML)1. This lan-
guage supports modeling of derivation rules, production rules
and reaction rules. In this paper we focus more on derivation
rules, but briefly describe the general rule metamodel.

3.1 Rules
The general rule metamodel is depicted on Figure 1. A rule
extends a UML TypedElement and belongs to a Namespace.
We consider three main rule types:

1The URML on I1 website http://www.rewerse.net/I1 or in
REWERSE I1 deliverable D8.

Rule

TypedElement

Namespace

namespace

0..1*

DerivationRule ProductionRule ReactionRule

1

1

RuleConclusion

RuleCondition

1

1..*

1

1..*
RuleAction

1

1

1

1

1

*

RuleEvent

1

1

PostCondition

1

0..1

1

0..1

Figure 1: The URML rule metamodel

DerivationRule has at least one condition and a conclu-
sion. Such rule defines how model element can be de-
rived. Example of derivation rule in the natural En-
glish language is: ”A gold customer is a customer with
more than $1Million on deposit.” This rule derives a
concept of a gold customer, if condition ”more than
$1Million on deposit” is hold;

ProductionRule has at least one condition, one rule ac-
tion and an optional post condition. Such rule per-
forms an action if conditions are hold. For instance,
the rule ”Exempt an investment from tax on profit if
the stocks have been bought more than a year ago” is
a production rule, since if condition ”stocks have been
bought more than a year ago” is hold, then the ac-
tion ”exempt an investment from tax on profit” is per-
formed;

ReactionRule may have several conditions, a triggering
event, one rule action and an optional postcondition.
Such rule formalizes event-condition-action behavioral
model, where the action is executed on event with a
condition satisfied. An example of such rule is ”When
a share price drops by more than 5% and the invest-
ment is exempt from tax on profit, then sell it”. Event
”is share price drops by more than 5%”, condition is
”the investment is exempt from tax on profit” and the
action is ”sell it”.

3.2 Rule Conditions
A rule condition is a ClassificationCondition, RoleCondition
or AssociationCondition (Figure 2).

ClassificationCondition refers to a UML Class, which is
a condition classifier, and consists of an ObjectTerm,
which is an object variable or an object;

RoleCondition refers to a UML AssociationEnd, which is
a condition classifier, and consists of an ObjectTerm,
which is an object variable or an object at the associ-
ation end;

AssociationCondition refers to a UML Association, which
is a condition classifier, and consists of two Object-
Term’s as a domain and a range, which are object

isNegative : Boolean
RuleCondition

ClassificationCondition
isInverse : Boolean
AssociationCondition

RoleCondition

Class

AssociationEnd

Association

1

rangevariable 1

domainvariable

1
1

*
1

*

1

*
1

OpaqueFilter

OCLFilter 1*

OpaqueExpression

Filter

ObjectTerm

Figure 2: URML condition metamodel

ClassificationConclusion
isInverse : Boolean
AssociationConclusionAttributionConclusion

Class Association

1

rangevariable 1

domainvariable

1

value1
*

1

*

1

*

1

Property
RoleConclusion

1

AssociationEnd

*
1 DataTerm

RuleConclusion

1

ObjectTerm

Figure 3: URML conclusion metamodel

variables or objects of classes from corresponding as-
sociation ends of the Association.

A rule condition may have a filter expression. A filter is used
to filter instances of a conditioned classifier. URML offers an
option to express filters in OCL syntax, but an OpaqueFilter
may be used for some vendor-specific implementation and
syntax of filter expressions. Strelka tool supports OCL filters
by integrating Dresden OCL Toolkit [7].

3.3 A Rule Conclusion
A rule conclusion is a RoleConclusion, ClassificationCon-
clusion, AttributionConclusion, and AssociationConclusion
(Figure 3). It is used in derivation rules in order to define a
UML concepts (classes, associations, attribute values).

RoleConclusion refers to a UML AssociationEnd, which
is a conclusion classifier, and consists of an Object-
Term, which is an object variable or an object at the
association end;

ClassificationConclusion refers to a UML Class, which is
a conclusion classifier, and consists of an ObjectTerm,
which is an object variable or an object;

AttributionConclusion refers to a UML Property and
consists of an ObjectTerm, which is a context object
or an object variable of the property and DataTerm,
which is a value of the property;

AssociationConclusion refers to a UML Association, which
is a conclusion classifier, and consists of two Object-
Term’s as a domain and a range object variable or
object from corresponding association ends of the As-
sociation.

4. STRELKA - RULE MODELING FUJABA
PLUGIN

In the REWERSE Working Group I1 we have developed
a Strelka tool, which supports the URML. The tool is im-
plemented as a Fujaba plugin. Following standard Fujaba
architecture for writing plugins, it connects Fujaba meta-
model with the URML metamodel, introducing required
rule-related concepts like conditions, conclusions, rules, etc.
We have used Fujaba to model URML metamodel, described
in Section 3 and to generate corresponding Java sources. Be-
low is a part of URML visual notation for rules, supported
by Strelka:

Rules are represented as circles with identifiers;

Condition arrow refers to a conditioned model element,
which is a classifier such as a class or an association.
It may come with a filter expression selecting instances
from the extension of the condition classifier and with
an explicit object variable (or object variable tuple, in
the case of an association) ranging over the resulting
instance collection;

Negated condition arrow is crossed at their origin. It
denotes a negated condition which has to be conjoined
with one or more positive condition arrows such that
its variables are covered by them;

Derivation rule is represented graphically as a circle with
an internal label ”DR” and a rule identifier attached
to it. Incoming arrows represent conditions, outgoing
arrows represent conclusions;

Conclusion arrow also refers to a classifier model element.
Its meaning is to state that the predicate represented
by the conclusion classifier applies to any instance that
satisfies all rule conditions;

Filter expression is a text annotation of a condition ar-
row. Filter is used to filter instances of a conditioned
classifier;

Variable is a text annotation of a condition or conclusion
arrow and contains a name of an instance variable of
a condition or a conclusion classifier.

A more detailed description of URML is available in the
REWERSE Working Group I1 Deliverable D8.

In order to visualize the URML metamodel, we have imple-
mented a rendering class for each URML metamodel class
by extending Fujaba AbstractUnparseModule. In order to

deploy modeled rules into a particular rule engine or rule-
based application, Strelka supports serialization of rule mod-
els into the rule markup language R2ML[6], which is an
acronym for the REWERSE Rule Markup Language. This
rule language has been designed as a rule interchange format
between different platforms and has such features as integra-
tion of functional languages (such as OCL) with Datalog lan-
guages (such as SWRL), the ontological distinction between
objects and data values, the datatype concepts of RDF and
user-defined datatypes, supports actions and events. Due to
its design features, R2ML is an efficient intermediary for-
mat for rules and can be used as an interchange language
between different rule systems and formalisms. There is a
number of subsequent projects in the Working Group I1 ded-
icated to the rule interchange support between UML/OCL
and OWL/SWRL using R2ML, Jess and R2ML, JRules and
R2ML, etc. The R2ML serialization of URML models is
already supported by Strelka. Since URML filter expres-
sions (Figure 5) have OCL syntax, Dresden OCL Toolkit [7]
and OCL for Fujaba have been adopted and integrated with
Strelka.

5. MODELING EXAMPLES
In this section we provide two rule examples, modeled with
the URML in the Strelka tool.

5.1 Deriving Association
Let’s model the following derivation rule:

If a rental car is stored at a branch, is not as-
signed to a rental and is not scheduled for service,
then the rental car is available at the branch.

Its rule diagram is depicted on Figure 4, which is a screen-
shot of the Strelka plugin. The non-standard Fujaba model-
ing behavior, like arrows, which start and end in the middle
of associations, is implemented in the tool. The rule is repre-
sented as a circle with an abbreviation DR, which stands for
”Derivation Rule” and a rule identifier, which identifies the
rule in a rule set. This rule has three conditions: rental car
is stored at the branch, rental car is not assigned to a rental,
rental car is not a rental car scheduled for service, which are
visualized by incoming arrows, connecting conditioned clas-
sifier (a class or an association) with the rule circle. In order
to visualize negated conditions, a condition arrow is crossed.
The rule conclusion the rental car is available at the branch
is visualized as an arrow from the rule circle to the derived
association isAvailableAt. Condition and conclusion arrows
are annotated with variables: bra, rc, ren. The semantics
of the rule is captured by the following logical formula:

isAvailableAt(rc, bra)←− isStoredAt(rc, bra)∧

¬RentalCarSchduledForService(ren)∧

¬∃re(isAssignedTo(rc, re))

5.2 Deriving Class
Let’s model the following rule:

bra rc

re

 rc

ren

bra rc

0..1

branch_1

0..1

rental_carisAvailableAt
0..1branch 0..1rentalCar

isStoredAt

Branch

0..1rental

rentalCar

 isAssignedTo

RentalCarScheduledForService

RentalCar

startDate
reservationDate
discount

Rental

 id: 4
DR

Figure 4: If a rental car is stored at a branch, is not
assigned to a rental and is not scheduled for service,
then the rental car is available at the branch.

0..10..1

*1

returnBranch<>pickupBranch

 id: 6
DR

OneWayRental

isAssignedTo

Branch Rental

isAssignedTo

Figure 5: If return branch of a rental is different
from pickup branch of a rental, then rental is a one
way rental.

If return branch of a rental is different from pickup
branch of a rental, then rental is a one way rental.

Its diagram is depicted on Figure 5. This rule has only one
condition with the filter expression in OCL syntax
returnBranch <> pickupBranch.

6. EXPERIENCES AND CONCLUSIONS
In this paper we have introduced the Strelka tool for UML-
based rule modeling. The tool can be used for visual model-
ing of different rule types. In order to support graphical no-
tation of the URML we have added several new FSA Swing
classes like double-head arrow, negated arrow, UML signal
event, UML time event, etc.

From our experience, the main problem with Fujaba is a
flexibility of the user interface. We have implemented sev-
eral setting options in order to switch off/on methods and
attributes visibility, method signatures and attribute types.
The usage scenario assumes that the UML class diagram of

a business vocabulary is developed first and then rules are
visualized on subsequent diagrams. A subsequent diagram
represents only a part of the business vocabulary, which par-
ticipates in the rule. For instance, if only one of several as-
sociations between two classes participates in a rule, it is
difficult to hide others from the diagram in Fujaba. One
possible solution is to use Fujaba views. At the moment a
modeler can choose an association for a view, but it is not
shown, for instance, between which classes this association
is.

During our work on URML models serialization into the
R2ML we had problems with Dresden OCL toolkit integra-
tion with Fujaba. There is a project, which integrates OCL
toolkit with Fujaba and we have based our R2ML serializa-
tion solution on it, but OCL support in Fujaba is still in
alpha.

The future work on the tool includes integration of the rule
verbalization component, which is currently under develop-
ment in the Working Group I1. We are going to join Fu-
jaba4Eclipse project and make Strelka working under Eclipse.

7. REFERENCES
[1] Ross, R. G., Principles of the Business Rule Approach.

Addison-Wesley Information Technology Series (2003).

[2] Object Constraint Language (OCL), v2.0,
http://www.omg.org/docs/ptc/03-10-14.pdf, last
accessed Sep 4, 2006

[3] Semantic Web Rule Language (SWRL),
http://www.daml.org/swrl, last accessed Sep 4, 2006

[4] Model Driven Architecture (MDA), OMG,
http://www.omg.org/cgi-bin/doc?mda-guide, last
accessed Sep 4, 2006

[5] W3C Workgroup on RIF Charter,
http://www.w3.org/2005/rules/wg/charter, last
accessed Sep 4, 2006

[6] Wagner, G., Giurca, A., Lukichev, S. (2006). A Usable
Interchange Format for Rich Syntax Rules. Integrating
OCL, RuleML and SWRL. In proceedings of
Reasoning on the Web Workshop at WWW2006, May
2006.

[7] Dresden OCL Toolkit,
http://dresden-ocl.sourceforge.net/, last accessed Sep
4, 2006

[8] Patel-Schneider, Peter F., Horroks I., OWL Web
Ontology Language Semantic and Abstract Syntax,
http://www.w3.org/2004/OWL, last accessed Sep 4,
2006

[9] Klyne G., Caroll J.J. (Eds.), Resource Description
Framework (RDF): Concepts and Abstract Syntax,
W3C, 2004.

[10] Brockmans, S., Haase, P., Hitzler, P., Studer, R., A
Metamodel and UML Profile for Rule-Extended OWL
DL Ontologies., In proceedings of 3rd European
Semantic Web Conference, ESWC 2006, Budva,
Montenegro, June 11-14, 2006, Springer Verlag.

