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Abstract. We present the result of extending an agent-based simulation
framework by adding a full-fledged model of beliefs and by supporting
ask-reply communication with the help of the W3C RDF query language
SPARQL. Beliefs are the core component of any cognitive agent archi-
tecture. They are also the basis of ask-reply communication between
agents, which allows social learning. Our approach supports the concep-
tual distinctions between facts and beliefs, and between sincere answers
and lies.
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1 Introduction and Motivation

While allowing to model many complex simulation scenarios, today’s agent-based
simulation systems, such as SESAM [3], REPAST [4] or NetLogo [8], do not offer
much support for modeling beliefs and ask-reply communication based on beliefs.
The situation is different in the area of agent programming languages. E.g., in
[1] a solution for automated belief revision in the language AgentSpeak [6] is
presented. But unlike cognitive agent simulation systems, agent programming
languages are not concerned with the important conceptual distinction between
facts and beliefs.

In this paper we present a solution for modeling the beliefs of an agent
about its environment and about itself, and for supporting belief-based ask-
reply communications between agents with the help of the W3C RDF [2] query
language SPARQL [5]. Our solution is obtained as an extension of the open
source Agent-Object-Relationship (AOR) Simulation framework1, which is an
ontologically well-founded agent-based discrete event simulation framework with
a high-level rule-based simulation language, AORSL, and an abstract simulator
architecture and execution model.

AOR Simulation supports the distinction between facts and beliefs by main-
taining both the objective and the subjective state of an agent in parallel using

1 Available from http://AOR-Simulation.org.



the two classes AgentObject and AgentSubject. A fact about an agent is repre-
sented by means of a slot of the corresponding instance of the AgentObject class,
while a belief about the agent (called a self-belief in AORSL) is represented by
means of a slot of the corresponding instance of the AgentSubject class.

Beliefs about objects in the environment (including other agents) cannot be
represented by simple property-value slots, like self-beliefs, but need to be rep-
resented by object-property-value triples, also called “subject-predicate-object”
triples in the jargon of RDF. Therefore, we have extended AORSL by adding
a construct for defining belief entity types as part of the definition of an agent
type. A belief entity type defines a number of belief properties for expressing
belief triples about an object of some type.

The concept of belief entity types allows to represent all kinds of beliefs of
an agent about its environment, no matter which vocabulary (or ontology) the
agent is using. In this way, agents could either use a shared vocabulary, or they
could use their own private vocabularies, which would have to be mapped to each
other for successful communication. However, in this paper, we do not consider
the problems of private vocabularies and ontology mapping. For simplicity, we
assume that all agents are using a shared vocabulary, including shared identifiers
for all objects of the simulation scenario.

2 Introduction to AOR Simulation

AOR Simulation was proposed in [9]. It supports both basic discrete event simu-
lations without agents and complex agent-based simulations with (possibly dis-
torted) perceptions and (possibly false) beliefs. A simulation scenario is expressed
with the help of the XML-based AOR Simulation Language (AORSL). The sce-
nario is then translated to Java source code, compiled to Java byte code and
finally executed, as indicated in Figure 1.

XSLT

Fig. 1. From AORSL to Java byte code.

A simulation scenario consists of a simulation model, an initial state defi-
nition and zero or more view definitions.

A simulation model consists of: (1) an optional space model (needed for
physical objects/agents); (2) a set of entity types, including different categories
of event, message, object and agent types; and (3) a set of environment rules,
which define causality laws governing the environmental state changes.

An entity type is defined by means of a set of properties and a set of
functions. There are two kinds of properties: attributes and reference properties.



Attributes are properties whose range is a data type; reference properties are
properties whose range is another entity type.

An agent type is defined by means of: (1) a set of (objective) properties; (2)
a set of (subjective) self-belief properties; (3) a set of (subjective) belief entity
types; and (4) a set of agent rules, which define the agent’s reactive behavior in
response to events.

A space model is characterized by the parameters: (1) dimension (1D, 2D
or 3D); (2) discrete/continuous; (3) geometry (Euclidean or Toroidal); and (4)
space limits (xMax, yMax, zMax).

The upper level ontological categories of AOR Simulation are objects
(including agents, physical objects and physical agents), messages and events, as
depicted in Figure 2. Notice that according to this upper-level ontology of AOR
Simulation, agents are special objects. For simplicity it is common, though, to
say ’object’ instead of the unambiguous term non-agentive object.

Entity

Agent PhysicalObject

Event Message

PhysicalAgent

Objekt

Fig. 2. Upper-level ontological categories.

An elaborate ontology of event types, shown in Figure 3, has proven to be
fundamental in AOR Simulation. Internal events are those events that happen
‘in the mind’ of the agent. For modeling distorted perceptions, both a perception
event type and the corresponding actual perception event type can be defined
and related with each other via actual perception mapping rules.

EventType

TimeEventType

EnvironmentEventType InternalEventType

periodicity : OpaqueExpression
stopCondition : OpaqueExpression

ExogenousEventTypeCausedEventType

ActualPerceptionEventType

ActionEventType

periodicity : OpaqueExpression
stopCondition : OpaqueExpression

PeriodicTime
EventTypePerceptionEventType

Fig. 3. Categories of event types.



Both the behavior of the environment (its causality laws) and the behavior
of agents are modeled with the help of rules, thus supporting high-level declar-
ative behavior modeling. An environment rule is a 5-tuple 〈EvtT, Var, Cond,
UpdExpr, ResEvtExpr〉, where: (1) EvtT denotes the type of event that trig-
gers the rule; (2) Var is a set of variable declarations, such that each variable
is bound either to a specific object or to a set of objects; (3) Cond is a logical
condition formula, allowing for variables; (4) UpdExpr specifies an update of the
environment state; and (5) ResEvtExpr is a list of resulting events, which will
be created when the rule is fired.

3 Modeling Beliefs

3.1 Self-Beliefs

When defining an agent type, we can not only define its (objective) attributes,
which are used to express fact statements about agents of that type, but we can
also define its self-belief attributes, which are used to express belief statements of
agents of that type about themselves. The following definition of an agent type
Foo contains both kinds of attributes:

<AgentType name="Foo">

<Attribute name="position" type="Float"/>

<Attribute name="velocity" type="Float"/>

<SelfBeliefAttribute name="position" type="Float"/>

<SelfBeliefAttribute name="myFavoriteNumber" type="Integer"/>

</AgentType>

The agent type Foo is then implemented with the help of two classes, as
shown in Figure 4:

1. The class FooAgentObject representing the objective state of Foo agents with
the help of the attributes x and v (for velocity).

2. The class FooAgentSubject representing the subjective state of Foo agents
with the help of the attributes x and myFavoriteNumber.

FooAgentSubject

position : Float
myFavoriteNumber : Integer

FooAgentObject

position : Float
velocity : Float

Fig. 4. An agent is divided into an object and a subject

Notice that according with this definition, Foo agents have a position and a
velocity. They also have a self-belief about their position and another self-belief
about about their favorite number, but not about their velocity. A self-belief
attribute that corresponds to an objective attribute need not have the same
name. Instead of position, a Foo agent type definition could use another name,
say myPosition, for expressing beliefs about their position.



In general, a fact about an agent is represented by means of a slot of the
corresponding instance of the AgentObject class, while a self-belief about the
agent is represented by means of a slot of the corresponding instance of the
AgentSubject class.

3.2 Belief Entity Types

For defining the types of beliefs an agent may have about the entities in its
environment, belief properties applying to all entities of some type are grouped
with the help of belief entity types. For instance, a belief entity type (Castle)
may be defined for the agent type (Knight) in order to allow beliefs about the
location of castles:
<PhysicalAgentType name="Knight">

<BeliefEntityType name="Castle">

<BeliefAttribute name="x" type="Integer"/>

<BeliefAttribute name="y" type="Integer"/>

</BeliefEntityType>

</PhysicalAgentType>

In AORSL, any entity type is defined to be a class in the sense of the UML,
as shown in Figure 5. Therefore, any entity type has a number of properties.
Belief entity types specialize entity types, since they have a number of belief
properties, which specialize properties by imposing the constraint that their
domain (the entity type to which they belong) must be a belief entity type
component of an agent type (called ’believer type’ in the metamodel shown
in Figure 5). Self-belief properties specialize belief properties by imposing the
constraint that their domain is the believer type (that is, they are properties of
instances of the believer type).

idPerceivable[0..1] : Boolean = false

PhysicalObjectType

BeliefProperty

1

* autoPerception[0..1] : Boolean = false

PhysicalAgentType

InternalEventType

SelfBeliefProperty

«invariant»
{class.believerType = class}

EntityType Class Property

class

0..1

ownedAttribute

*

«invariant»
{class.oclIsTypeOf(EntityType)
and class.believerType->nonEmpty()}

ObjectType

memorySize[0..1] : Integer = 0

AgentType

believerType 0..1

beliefEntityType

*

CommunicationRule

1

*
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1 *

Fig. 5. Modeling agents with beliefs

3.3 Facts and Beliefs Are Represented by Triples

More precisely speaking, we do not deal with ’facts’ and ’beliefs’, but with atomic
fact statements and atomic belief statements, each of them having the form of



an object-property-value triple. For instance, the atomic fact statements that the
positions of the Foo agents with identifiers ”007” and ”008” are given by x =
347.2, resp. x = 12.7, is expressed by the triples

(It’s a fact that) 007 position 347.2
(It’s a fact that) 008 position 12.7

while the atomic belief statement of agent ”007” that its position is given by x
= 346.9 is expressed by the triple

(Agent 007 beliefs that) 007 position 346.9

and the atomic belief statement of agent ”007” that the position of agent ”008”
is given by x = 13.1 is expressed by the triple

(Agent 007 beliefs that) 008 position 13.1

In standard predicate logic syntax, such a triple corresponds to an atomic
sentence where the property of the triple statement would be used as a predicate,
and the object identifier and the properties value would be the arguments of this
predicate, resulting in the expression:

(It’s a fact that) position( 007, 347.2)

As discussed below, AORSL supports the use of the W3C RDF query lan-
guage SPARQL for expressing queries about the beliefs of other agents in Ask
messages. RDF defines a language for expressing triples in multiple vocabularies.

3.4 Perfect Information Agents

By default, if no self-belief properties and no belief entity types are defined
for an agent type, agents of that type possess perfect information. These agent
types have all their objective properties duplicated as self-belief properties and
all self-belief slots have the same values as the corresponding objective slots.

3.5 Discrepancies between Fact Statements and Belief Statements

In general, we can have various types of discrepancies between fact and belief
statements. The first issue is the possibility to use different languages to express
statements about the same fact. Assuming that the same languages (i.e. the same
names for entity types and properties and the same identifiers for individuals)
are used, we still have the possibility of discrepancies between a fact statement
and a corresponding belief statement with respect to the actual and the believed
value of a property.

There are several types of possible discrepancies arising from different vo-
cabularies being used. Agents may use different names for entity types and/or
properties, and they may use different identifiers for individuals. There are also
the issues of partiality and non-correspondence. Partiality refers to the possibil-
ity that not all ’real’ entity types and properties (as defined objectively for the



environment of a simulation model) have a corresponding name in the vocabu-
lary of an agent. Non-correspondence refers to the possibility that some of the
entity type and/or property names used by an agent do not correspond to a real
entity type or property.

AOR Simulation allows modeling of all these kinds of discrepancies between
fact and belief statements. However, we are still investigating the required infer-
ence capabilities of agents for being able to map the vocabularies of other agents
to their own when they communicate with each other.

3.6 Belief Handling

An agent may create new beliefs, or it may change or destroy existing beliefs.
The way how an agent manages its beliefs is defined with the help of agent rules.

For instance, as in the scenario presented in next section, knights have beliefs
about the castle and about magic objects found on the map. Since the prince
may have already discovered some magic objects, when he asks a knight about
the next moving direction towards the nearest magic object, he will first inform
the knight about any magic objects already found. Moreover, the prince has to
create new beliefs about any magic object found. The following example is an
excerpt form an agent rule of the agent type Knight and a prince rule showing
how beliefs may be created and destroyed.

<!-- the Prince creates beliefs about a discovered magic object -->

<UpdateSubjectiveStateExpr>

<CreateBeliefEntity beliefEntityType="MagicObjectBelief">

<BeliefEntityId language="Java">

e.getPerceivedPhysicalObject().getId()

</BeliefEntityId>

</CreateBeliefEntity>

</UpdateSubjectiveStateExpr>

<!-- the Knight destroy beliefs about already discovered magic objects -->

<UpdateSubjectiveStateExpr>

<DestroyBeliefEntity>

<BeliefEntityRef beliefEntityType="MagicObjectBelief" language="Java">

this.getBeliefEntityById(((Ask)e.getMessage()).getFoundMagicObjectId())

</BeliefEntityRef>

</DestroyBeliefEntity>

</UpdateSubjectiveStateExpr>

The communication between the prince and knight agent is message based.
The prince sends his request via an Ask message and the knight replies by send-
ing a Reply message. The generic Ask/Reply message types may be adapted for
a specific problem domain, such as in this example, the message contains spe-
cific information about the magic object near the SPARQL query. The following
example defines an Ask message type used by the prince when he asks a knight
about the nearest magic object. The property foundMagicObjectId refers to
the ID of an already discovered magic object:

<MessageType name="AskAboutMagicObject">

<Attribute type="String" name="queryLanguage"/>

<Attribute type="String" name="queryString"/>



<Attribute type="Integer" name="foundMagicObjectId"/>

</MessageType>

4 The Simulation Scenario Test Case

A simulation scenario based on a ‘quest game‘ is used to exemplify and test
capabilities discussed in this paper. This scenario was mainly used as a test
case during this research. The used story is simple: a Prince wants to rescue
the Princess kidnaped by the Evil Demon. First, the Prince has to improve his
power by finding some magic objects on the map. Until the Prince has at least
the same power level as the Demon, he will ask any found Knight about the next
moving direction towards the magic object. When the power level is greater than
the Demon’s power, he will start to ask about the direction towards the Castle.

A set of rules and axioms defines the simulation: (1) the prince has beliefs
about the demon’s power level; (2) while the demon’s power is constant, the
prince’s one may be increased by finding some magic objects; (3) a constant
number of magic objects providing additional power are available on the map;
(4) knights are randomly distributed and they can provide the next moving
direction towards the castle or the nearest magic object; (5) the map is a grid
space, and the prince can move only one cell during each simulation step, in one
of the four directions: E, W, S or N; (6) the prince sees a knight, a magic object,
the castle or the demon when he enters in the same cell where this is placed; (7)
the castle and the demon are in the same cell; (8) the prince rescue the princes
only if at the moment when he discover the castle his power level is greater than
the demon’s one. (9) the prince has basic learning capabilities. He tries to find
the best moving direction when no knight is found in a cell.

The following scenarios are possible: (i) the castle is found before the prince
has the requested power level; (ii) the prince does not find the castle before the
stimulation steps are finished; (iii) the prince finds the castle, defeat the demon,
rescue the princess and marry her.

5 An RDF-based Representation for Agent Beliefs

In this section a solution to represent the beliefs of an agent as an RDF graph
(a conjunction of triple statements) is presented. The main purpose of the RDF
representation is to have a standard representation of beliefs, together with a
standard query language (SPARQL). The main advantages of this approach are
that it allows to:

– use any SPARQL (or other RDF query answering) engine;
– use RDF-based reasoning engines, such as Jena Rules [7] or ERDF [10] as a

middleware layer between an agent’s beliefs and the query level;
– express Semantic-Web-based simulation scenarios (e.g. social networks sim-

ulations).



An AOR simulation model defines a baseURI attribute, having as value an
URI. This is used as a base URI to define RDF triples. Moreover, each Entity
type has a unique ID during its live cycle. Two types of RDF triples are defined
for beliefs:

1. type definition triples, (b rdf:type T), where:
– b = [baseURI] + ”/” + [AgentType] + ”/” + [BeliefType] + ”/” + [ID];
– T = [baseURI] + ”/” + [AgentType] + ”/” + [BeliefType];

2. property value triples, (b prop val), where:
– b = [baseURI] + ”/” + [AgentType] + ”/” + [BeliefType] + ”/” + [ID];
– prop = [baseURI] + ”/” + [AgentType] + ”/” + [BeliefType] + ”/” + [prop name];
– val = Literal OR TypedLiteral OR URIRef .

For example, having the Castle{id=501, x=12, y=15} beliefs for a Knight
agent, and baseURI = ’http://aor.org/KK’, the following RDF triples are
generated :

http://aor.org/KK/Knight/Castle/501 rdf:type http://example.com/KK/Knight/Castle;

http://aor.org/KK/Knight/Castle/x "12"^^xs:integer;

http://aor.org/KK/Knight/Castle/x "15"^^xs:integer.

6 Querying Beliefs with SPARQL

In our simulation scenario, the Prince has to ask Knights about the moving
direction towards the nearest magic object or towards the Castle. The com-
munication is made via Ask/Reply messages. The request message encapsulates
the SPARQL query and the ID of the already found magic object. The response
message contains the moving direction calculated by the knight.

<OutMessageEventExpr messageType="AskAboutMagicObject">

<ReceiverIdRef language="Java">

e.getPerceivedPhysicalObjectIdRef()

</ReceiverIdRef>

<Slot xsi:type="aors:SimpleSlot" property="queryLanguage" value="SPARQL"/>

<Slot xsi:type="aors:SimpleSlot" property="queryString"

value="SELECT ?x ?y WHERE {?c rdf:type :MagicObjectBelief;:x ?x;:y ?y.}"/>

<Slot xsi:type="aors:SimpleSlot" property="foundMagicObjectId">

<ValueExpr language="Java">prince.getBeliefEntityByType(0).getId()</ValueExpr>

</Slot>

</OutMessageEventExpr>

The default (and built-in) namespace (expressed as :) represents the value
of baseURI attribute and the agent type (e.g. http://aor.org/KK/Knight/).

The Knight replies with an Reply message containing the moving direction
towards the nearest magic object.

<OutMessageEventExpr messageType="ReplyAboutTheMagicObject">

<ReceiverIdRef language="Java">e.getSenderIdRef()</ReceiverIdRef>

<Slot xsi:type="aors:OpaqueExprSlot" property="messageReference">

<ValueExpr language="Java">(int)e.getMessage().getId()</ValueExpr>

</Slot>

<Slot xsi:type="aors:OpaqueExprSlot" property="answer">

<ValueExpr language="Java">



knight.computeAnswer(((Ask)e.getMessage()).getQueryString(),

((Ask)e.getMessage()).getFoundMagicObjectId())

</ValueExpr>

</Slot>

</OutMessageEventExpr>

A query can be executed by calling the executeQuery(queryString) method.
As result, a List containing HashMap instances, is returned. Each element of the
list represents a solution of the query. Concrete values of a solution are ex-
tracted by using the corresponding keys. The variable names used in queries are
the needed keys. For instance, x and y variable names are used in the above
SPARQL query, and values bounded to these variables are extracted by using x
and y keys. Finally, these values have to be converted to the appropriate Java
type (e.g. int for the above example).

7 Results of Running the Simulation Test Case

In this paper, all examples are based on the Knights&Knaves simulation scenario
We considered a benchmark for it, and two cases are defined: (1) Knight agents
capable of helping the prince are used; (2) the prince has no external help and
it uses it’s own basic capabilities to find magic objects and the princess. Figure
6 shows a screen-shot taken during a simulation. The blue square represents the
Castle, yellow squares are Magic Objects, green circles symbolizes Knights and
the red circle represents the Prince.

A set of 13 tests, each of them consisting in 100 simulations of 1000 steps
each, was made. The number of Knight agents was increased with 25 for each
new test. In Figure 7A a statistic of the case when Knight agents are available
during the simulation is provided, in contrast with the case from Figure 7B where
Knight agents are not used. It is obvious the difference of game wins between
the two cases. Moreover, it is obvious that the information exchange between
agents can be very important for scenarios where agents have to accomplish a
defined task.

One may argue that, different approaches and simulation engines of this sce-
nario may offer the same (or even more improved) results. This may be true,
but using a standard beliefs representation (RDF) and a standard query lan-
guage (SPARQL) may have the advantage of expressing complex belief models
and complex queries without using complicate technologies which may require
more learning effort. Moreover, nowadays a number of SPARQL query engines
implementations (e.g. ARQ2) and RDF based information representation (e.g.
RDF models in Jena3) are available as open source projects.

8 Conclusions and future work

We have presented a solution for dealing with a full-fledged model of beliefs in
agent-based simulation. Moreover, we have shown how the RDF query language
2 ARQ Web Page - http://jena.sourceforge.net/ARQ/
3 Jena Web Page - http://jena.sourceforge.net/



Fig. 6. Knights&Knaves visualisation
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SPARQL can be used for implementing a model of ask-reply communication be-
tween cognitive agents. A simulation scenario dealing with these new capabilities
has been described and analyzed. In future work we will turn the Java-based com-
munication code into more high-level constructs that extend the current version
(0.6) of our simulation language AORSL. Another important step in our research
is to integrate an inference engine as a middle layer between the RDF triples
representation and SPARQL queries. This requires to define a representation of
production and/or derivation rules as a further extension of AORSL.

Acknowledgments: Thanks to Jens Werner for his help provided to implement
these improvements, and to Dr. Adrian Giurca for his helpful advice and support.
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