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� In memory of Emma Larsdotter-Nilsson who, in search for a thesis in
biological modelling [24], died unexpectedly in October 2005 �

Abstract. This paper discusses the role of ontologies, models, and meta-
models in the model-driven paradigm. To show how ontologies can be
used in model-driven architecture (MDA) and its generalization model-
driven engineering (MDE), the paper argues that the main di�erence
of models and ontologies lies in their descriptiveness resp. prescriptive-
ness. While an ontology is a descriptive model, a model in MDE is
speci�cation�that is, a prescriptive model. Therefore, the role of on-
tologies in model-driven engineering is to describe the existing world,
the environment, and the domain of the system (analysis), while the
role of system models is to specify and control the system under study
itself on various levels of abstraction (design and implementation).
Based on this distinction, we present a scheme combining descriptive
ontologies and prescriptive models in the meta-pyramid, the multi-level
modelling approach of MDE. In this scheme, MDE starts from ontolo-
gies, re�nes, and augments them towards system models, respecting their
relationships to prescriptive models on all metalevels. Conceptually, the
scheme is a �rst attempt towards a megamodel of ontology-aware MDE.

1 Introduction

Software development centers around the production of several models, going
from abstract to concrete (Fig. 1). Step by step, constructs in abstract models
are re�ned to more concrete model elements. Roughly speaking, development
can be divided into two phases. The analysis phase constructs a requirement
speci�cation describing all features the user would like to have, building on

?? Work partially supported by European Community under the IST programme, con-
tract IST-2003-506779-REWERSE [3].
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top of a domain model, a business model, and a context model. Later on, the
design phase produces an architectural design speci�cation and a detailed design
speci�cation. In a last step, this is �lled out to an implementation of the software
system.
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Fig. 1. Models in a typical object-oriented software development process.

Model-driven engineering (MDE) is a variant of this re�nement-based soft-
ware development in which models are no longer loosely coupled, but connected
in a systematic way [8, 9]. On the one hand, MDE improves on the software
re�nement method of the 70es [38] in the sense that more concrete phases are
discerned. On the other hand, every phase derives a more concrete model not
only by manual re�nement, but also by semi-automatic or automatic transforma-
tion. To this end, models must be connected, i.e., model elements can be traced
from a more abstract model to a more concrete model and vice versa. This is
achieved through metamodelling: metamodels de�ne sets of valid models, facili-
tating their transformation, serialization, and exchange, which is a prerequisite
for tool support.

In recent years, model-driven engineering has been popularized by a spe-
ci�c incarnation, model-driven architecture (MDA). In this process, one speci�c
type of model information, the platform information, plays an important role. In
MDA, models di�er in how much platform information they contain (Fig. 2). For
instance, one platform can be the programming language of the system, another
can be the employed libraries or frameworks, a third one can be the binary com-
ponent model. The designer begins with a high-level model that abstracts from
all kinds of platform issues, and iteratively transforms the model to more con-
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crete models, introducing more and more platform speci�c information. Hence,
all information that relates to programming language, frameworks, or compo-
nent model are added to the platform-independent model by platform-speci�c
extensions.
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Fig. 2. Models in model-driven architecture.

Essentially, in MDA three types of viewpoints on models are distinguished [27].
The computationally independent viewpoint CI sees the system from the cus-
tomer's point of view, and manifests in a computation-independent model (CIM).
This model is a typical analysis model, since it is expressed in terms of the prob-
lem domain.

�The computation independent viewpoint focuses on the environment of
the system, and the requirements for the system; the details of the struc-
ture and processing of the system are hidden or as yet undetermined.�
[27]

The CIM contains a domain model, describing the concepts of a domain and
their interrelations, a business model, describing a company's rules of business,
and, �nally, the requirements. The platform-independent viewpoint PI sees the
system from the designer's point of view, abstracts from all platforms a sys-
tem may run on, and results in a platform-independent model (PIM). Roughly
speaking, a PIM contains an architectural model, adorned with su�cient detail
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of platform-generic implementation issues. Finally, the platform-speci�c view-
point adds platform-speci�c extensions and results in a platform-speci�c model
(PSM). Either this model can be executed directly, or it is used to generate code.

To arrive at a PSM, the PIM must be extended with platform-speci�c infor-
mation, for which it is merged with several platform-speci�c extensions (Fig. 3).
Because the platform-speci�c extension can be regarded as an aspect that cross-
cuts the platform-independent information [22], one can speak of model weaving.
This MDA pattern, weaving platform-speci�c models from PIMs and PSE, can
be repeated over several levels. Often, di�erent kinds of platforms are involved
and one would like to vary the system over all combinations of these platform
instantiations; for example, by having a system with C# and Java, both on the
web and GUI-client platforms. The idea of multi-level MDA is to repeat the
model weaving process over several levels (Fig. 2), so that on every level, a PSM
is re-interpreted as a new PIM for the next platform.
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Fig. 3. The MDA pattern: weaving a platform-speci�c extension as an aspect into a
PIM as a base.

A heretic spectator could remark that MDA (and hence MDE) is not a
new technology, but just re�nement-based software development. However, since
MDA discerns platform-speci�c information as the main criterion for re�nement,
the entire process is much more structured than the �free-style� re�nement of
the 1970s. Also, in MDA, all models are graph-based, while standard re�nement
worked mainly for syntax trees.
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Recently, the Semantic Web has popularized another notion of model: ontolo-
gies. Ontologies are formal explicit speci�cations of a shared conceptualization
[16]. They describe the concepts of a domain, similar to the domain model of a
CIM. While they are currently used mainly in the Semantic Web, they could be
useful also in general software development [1, 7]. But then, the question arises
how ontologies should be integrated into MDE, and more speci�cally, into the
process architecture of MDA. And this is what the rest of the paper is about.
In Sect. 2, ontologies are compared to general models, resulting in the insight
that ontologies describe reality while models specify artifacts. Sect. 3 investigates
these relationships in more detail and explains, how the speci�cation relation-
ship instance-of can be used to build up a stack of models, the so-called IRDS
meta-pyramid. Sect. 4 extends the meta-pyramid with ontologies, distinguishing
a descriptive dimension. A comparison to related work concludes the paper.

2 Models and Ontologies

In this section, we discuss the fundamental terms `model' and `ontology' and
investigate their primary commonalities and di�erences. We begin by looking at
de�nitions of `model' and `ontology', go on to discuss a fundamental property
of models�namely whether they are descriptive or prescriptive�and �nish by
showing how this distinction can be applied to distinguish between ontologies
and other software models.

2.1 What's in a Model?

Models are representations, descriptions, and speci�cations of things. Pidd de-
�nes:

�A model is a representation of reality intended for some de�nite pur-
pose.� [30]

Hence, models represent reality (in the following coined by the is-represented-
-by relation).

Models have a causal connection to the modeled part of reality: they must
form true or faithful representations so that queries of the model give reliable
statements about reality, or manipulations of the model result in reliable adap-
tations of reality. Pidd characterizes this as follows:

�A model is an external and explicit representation of a part of reality as
seen by the people who wish to use that model to understand, change,
manage, and control that part of reality.� [30]

Secondly, while models represent reality faithfully, they may abstract from ir-
relevant details. For instance, while models are �nite descriptions, they may well
describe an in�nite language�that is, an in�nite set of things or systems. Usu-
ally then, abstractions are involved�for example, about the number of elements
in the language.
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A model can represent many di�erent kinds of realities, e.g., domains, lan-
guages or, in particular, systems. Hence, we can distinguish domain models from
system models, models that describe or control a set of systems:

�A model of a system is a description or speci�cation of that system and
its environment for some certain purpose.� [27]

where the environment of a system is described by a domain model.
Models can describe structure or behavior. In the former case, models de-

scribe the concepts of a reality and their interrelation, the static semantics of a
domain, its context-free structure or context-sensitive structure. Wellformedness
rules (integrity constraints) describe valid con�gurations of reality.

Example 1. UML class diagrams are frequently used together with an Object
Constraint Language [25]. The OCL integrity constraints describe valid con�g-
urations and interrelationships of classes and objects in an UML class model.

Secondly, while a structural model contains abstractions of a domain or a
system and their interrelationships, a behavioral model also speci�es their be-
havior, their dynamic semantics. In this case, a model may state assertions on
the behavior of things in a domain or of some systems.

Example 2. Modelica is a multi-domain modeling language for simulation, visu-
alization, and controlling technical systems. Hence, it is a prescriptive modeling
language for the dynamic semantics of technical systems [12].

2.2 What's in an Ontology?

Recently, the Semantic Web has popularized another notion of model: ontologies:

Ontologies are �formal explicit speci�cations of a shared conceptualiza-
tion�. [16]

They describe the concepts of a domain, similar to the domain model of a CIM.
Since concepts are abstractions and play an important role in models, an ontol-
ogy is certainly a special kind of model. But what is the exact di�erence? To
answer this question, we have to introduce two other qualities of models.

An important property of ontologies is the so-called open-world assumption
[18]. It states intuitively, that anything not explicitly expressed by an ontol-
ogy is unknown. Hence, ontologies use a form of partial description or under-
speci�cation as an important means of abstraction. In contrast, most system
models underlies the assumption that what has not been speci�ed is either im-
plicitly disallowed or implicitly allowed (closed-world assumption), to restrict
arbitrary extensions of the system, which could introduce inconsistencies.

It is important to distinguish whether models describe or control reality. If
they describe, they monitor reality and form true, or faithful, abstractions. If they
control, they prescribe reality; that is, they specify well-formedness conditions
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what reality should be like, once it has been constructed. It can also be said that
such models are templates or schemas of reality.

Hence, a most fundamental feature of a model is that it can be descriptive
or prescriptive [34]. In the former case, the model describes reality, but reality
is not constructed from it. In the latter case, the model prescribes the structure
or behavior of reality and reality is constructed according to the model; that is,
the model is a speci�cation of reality. Favre [10] observes that in a descriptive
model truth lies in reality, whereas in a prescriptive model, truth lies in the
model itself. Descriptive models are, of course, used in analysis and reengineering,
speci�cations in design and forward engineering. Since most speci�cations model
systems, a prescriptive system model is also called a system speci�cation.

Models are abstractions from reality for some purpose [30]. Ontologies are
special models. In general, models can be prescriptive or descriptive. Most of
the models used in software development and design are of a prescriptive nature
in that they form the templates from which the system is later implemented. In
contrast, because of their open-world assumption, ontologies are always descrip-
tive models. This is so, because the open-world assumption does not allow for
a complete and �nal description: Anything that has not been said explicitly is
unknown. Two very di�erent systems may satisfy an ontology, if they di�er in
areas not explicitly mentioned in the ontology.

Taking this discussion into account, we can de�ne:

An ontology is a standardized, descriptive, structural model, representing
reality by a set of concepts, their interrelations, and constraints under
open-world assumption.

This de�nition deserves some elucidating remarks. When comparing hallmark
papers, such as [16] and [34], models and ontologies look very similar. Both
provide vocabulary for a language and de�ne validity rules for the elements of
the language. Both models and ontologies, use integrity constraints to limit the
valid instances of the domain. However, there are also di�erences. Ontologies are
shared knowledge; that is, they must be standardized in a certain group of people.
Ontologies are not speci�cation models, but descriptive models in Seidewitz's
sense. Ontologies do not describe systems, only domains. Hence, in a software
engineering process, they play the role of an analysis model, not of a design
or implementation model. Ontologies must describe a domain as completely as
possible (to be as faithful as possible). With this view we contradict Devedzic:
�Generally, an ontology is a metamodel describing how to build models.� [7] and
Gruber, because he maintains that ontologies are speci�cations [16].

To summarize: Speci�cation models focus on the speci�cation, control and
generation of systems, ontologies on description, standardization and concepts
(structural models) of things. Both kinds of models have in common the qualities
of abstraction and causal connection. Because ontologies are, thus, somewhat
special in the realm of models, we should investigate how we can make use of
ontologies together with more common kinds of models.
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3 Similarity Relations and Meta-Modelling

The previous arguments make it possible to discern two basic notions of the
is-represented-by relation between a model and the corresponding part of
reality (Fig. 4). In a descriptive model�for example, an ontology�the model
describes the world; that is, the world's objects are in relation is-described-by

with concepts of the descriptive model. In a speci�cation model, the system's
objects are created from the model; that is, an object is an instance-of a model
element. Both relationships are representation relations, one is descriptive, the
other is prescriptive. Their generalization is-represented-by is a similarity

relation, in which a causal connection�delivering true and faithful statements�
is de�ned between the represented things and the representing model. Beyond
that, more similarity relations can be de�ned; for example, two things may
share features (often expressed as is-a�that is, structural or behavioral inheri-
tance), or they may be included in a hierarchy of sets (set inclusion, subset-of).
In Fig. 4, is-a is de�ned as a sub-relationship of subset-of, because inheri-
tance usually has a set-based semantics, namely, that all objects in a subclass
are also members of the superclass. Additionally, is-a is a sub-relationship of
is-described-by, because a superclass also describes all objects in a subclass.
In contrast, is-a cannot be a sub-relationship of instance-of, because a su-
perclass cannot necessarily be regarded as a template, schema or speci�cation
for a subclass.

3.1 Metamodels

In MDE, the speci�cation relationship instance-of plays a special role. When
the speci�cation principle is applied repeatedly, models are regarded as the re-
ality or system under study, so that models specifying models can be de�ned:
metamodels. Metamodels represent and specify models; that is, they tell about
what are valid ingredients of a model. More precisely:

�A metamodel makes statements about what can be expressed in the
valid models of a certain modeling language.� [34]

Hence, a metamodel is a prescriptive model of a modeling language [34]. In gen-
eral, metamodels are language speci�cations, not only of modelling, but also of
arbitrary languages. In the current stage of MDE, they are mainly concerned
with the static semantics�that is, with context-sensitive syntax of models, in-
tegrity and well-formedness constraints. However, modeling languages for dy-
namic semantics could also be applied to construct metamodels.

A language concept or construct in a metamodel is captured by a metaclass.
While its structure and embedding describes the static semantics of the language
constructs, its methods describe the dynamic behavior of the language construct.
Usually, metaclasses are assembled in a behavioral metamodel, the meta-object
protocol (MOP) [23], a re�exive metamodel that describes an interpreter for the
language.
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Fig. 4. A classi�cation of similarity relations.

A big incentive for metamodeling has been the need of CASE (Computer-
Aided Software Engineering) tool vendors to exchange models [26]. Since a
metamodel describes, rather speci�es, valid instances of a modeling language�
models�it enables control over the structure and validiy of models. If two CASE
tools agree on the same metamodel, they impose the same structure on their
models, so that they can easily exchange them.

A language, described by a metamodel, can have a speci�c purpose or domain
in which it is applied. Such purposes or modeling domains are called the subject
areas of metamodels [11].

Example 3. For instance, the common warehouse metamodel (CWM) [28] de-
�nes a data speci�cation language, a metamodel for data and information sys-
tem applications. Work�ow systems are another special subject area whose data,
functions, and tasks can also be described with metamodels [32]. Software pro-
cesses, being speci�c work�ows, can be metamodeled [13] and used to construct
software environments [4].

Subject areas can be organized in hierarchies or partial orders. Then, meta-
models in a certain subject area can build on others from lower-level subject
areas, so that complex languages can reuse simpler languages [11].

Example 4. The CASE Date Interchange Format (CDIF) has structured its
metamodel into several subject areas (Fig. 5). The Foundation module con-
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tains information about names and relations; the Common module de�nes name
aliasing for objects; and the Data module describes access paths to data and
roles of objects. Based on these, data �ow can be de�ned (Data Flow module).
Another module speci�es facilities for the presentation of objects. Finally, the
full integrated metamodel uses all other modules and provides their concepts in
an integrated way to the users.
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Data Model
- roles
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Data Flow Model
- processes

- agents

Presentation

Integrated MM

Fig. 5. The subject areas of CDIF and their metamodels in a use relationship.

3.2 Metametamodels

The speci�cation principle can be applied repeatedly. Metametamodels represent
and specify metamodels; that is, they tell about what are valid ingredients of a
metamodel. They specify languages, and are thus a form of language speci�cation
languages (metalanguages).

In order to model anything useful, such a minimal metalanguage should con-
tain the following concepts [11]:

1. classes (concepts)
2. attributes (or properties) of classes, contained in the classes
3. binary relations between classes
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Thus, the Entity-Relationship Diagram language (ERD) [5] can be used as a very
simple metalanguage. It de�nes modeling concepts, their attributes and their
relationships. Other metalanguages exist that describe other forms of languages,
or describe speci�c aspects:

1. Grammar speci�cation languages�for example, EBNF�specify the concrete
or abstract syntax of a text-based language [15].

2. Attribute grammars describe context-sensitive syntax in form of attribution
rules of syntax trees [6].

3. Natural semantics can be employed for type systems, but are also able to
specify dynamic semantics of systems [21].

4. In SGML [14], markup languages can be de�ned. XML [37] is a variant of
SGML, allowing for de�ning context-free markup languages.

5. EXPRESS [33], a modelling language in the spirit of UML, is frequently used
in mechanical engineering.

3.3 The Meta-Pyramid, the Modeling Architecture of Model-Driven

Engineering

Based on the meta-principle, a so-called meta-pyramid can be de�ned, which
displays systematically the mentioned stack of models and metamodels [20]. In
essence, a meta-pyramid is a speci�cation hierarchy linked by the instance-of
relation, in which upper-level metamodels in some way specify other sets of
lower-level models. Since sets of models can be regarded as languages, the meta-
pyramid is a hierarchy of language speci�cations.

In this paper, we focus on the standard meta-pyramid of OMG, originally
put up in ISO Information Resource Dictionary System (IRDS) standard [20]
(Fig. 6), which contains 4 levels: M0-level (objects), M1-level (models), M2-level
(metamodel or language level), M3-level (metametamodel or language descrip-
tion level). There are alternatives and a debate is going on whether the IRDS
meta-pyramid is precise enough, because it is onedimensional, while multidimen-
sional model pyramids exist [2]. However, at the moment, this is the mainstream
meta-pyramid of MDE.

Example 5. On level M3, CDIF applies ERD as metametamodel [11]. There are
ERD speci�cations for all subject areas of CDIF. On M3 of the OMG meta-
pyramid, a meta-object facility (MOF) plays the role of a metametamodel. Es-
sentially, its concepts are similar to those of the ERD.

The stereotypical models of MDA, CIM, PIM, and PSM live on level M1. All
of them are speci�ed by metamodels (CIM-MM, PIM-MM, PSM-MM), dialects
of UML, enriching the UML core by pro�les containing markup for model ele-
ments (stereotypes and tagged values). While all of these models are prescriptive,
i.e., use the instance-of relationship, the question remains how ontologies, be-
ing models relying on described-by, can be integrated into the meta-pyramid.
This is the topic of the next section.
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Fig. 6. The meta-pyramid with the MDA-related model types CIM, PIM, PSM.

4 MDE and Ontologies

This section discusses the role of descriptive and structural models, in partic-
ular ontologies, in the model-driven process. We propose a �rst attempt to an
ontology-aware meta-pyramid and embed the stereotypical MDA model types
(CIM, PIM, PSM) into it. In fact, this delivers a �rst ontology-aware megamodel
of MDE [9]. First, the di�erent role of domain and upper-level ontologies is dis-
cussed. Secondly, we postulate that ontologies can also be used as language
descriptions. Thirdly, we propose an embedding of parts of the CIM as ontolo-
gies into the MDA meta-pyramid (ontology-aware meta-pyramid) and discuss its
advantages.

4.1 Domain and Upper-Level Ontologies

The basic idea of the ontology-aware meta-pyramid is that most models in MDE
are speci�cations, but can integrate ontologies on di�erent metalevels as de-
scriptive analysis models. Since ontologies di�er from speci�cations due to their
descriptive nature, the standard M0-M3 meta-pyramid can be re�ned from using
pure speci�cation models to also using ontologies.

Depending on the metalevel, an ontology may serve di�erent purposes. In
fact, there are di�erent qualities of ontologies in the literature. First of all, the
word ontology stems from philosophy, where it characterizes Existence.
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�Ontology is a systematic account of Existence.� [16]

We coin such a systematic acount of existence aWorld ontology, a conceptualiza-
tion of the world, that is, all existing concepts. Usually, a World ontology is split
into an upper-level ontology (concept ontology, frame ontology), providing ba-
sic concepts for classi�cation and description, and several lower-level ontologies,
domain ontologies describing domains of the world [17, 36]. Sowa characterizes
domain ontologies as follows:

�The subject of ontology is the study of the categories of things that
exist or may exist in some domain. The product of such a study, called
an ontology, is a catalog of the types of things that are assumed to exist
in a domain of interest D from the perspective of a person who uses a
language L for the purpose of talking about D. The types in the ontology
represent the predicates, word senses, or concept and relation types of
the language L when used to discuss topics in the domain D.� [35]

In contrast, upper-level ontologies can be de�ned as follows:

�An upper ontology is limited to concepts that are meta, generic, abstract
and philosophical, and therefore are general enough to address (at a high
level) a broad range of domain areas. Concepts speci�c to given domains
will not be included; however, this standard will provide a structure and
a set of general concepts upon which domain ontologies (e.g. medical,
�nancial, engineering, etc.) could be constructed.� [19]

Usually, concepts of the domain ontology inherit from concepts in the upper-
level ontology. For better interoperability and understanding, some researchers
try to create a normalized upper-level ontology, from which all possible domain
ontologies may inherit [29]. If a standardized upper-level ontology with modelling
concepts existed, all domain ontologies could rely on a standardized concept
vocabulary.

With this terminological distinction we can relate the di�erent forms of on-
tologies to metalevels in the meta-pyramid. Domain ontologies live on level M1,
they correspond to models. An upper-level ontology, also a standardized one,
should live on level M2, because it provides a language for ontologies. Fig. 7
summarizes this insight, showing both dimensions, descriptive and prescriptive
models, on di�erent metalayers.

Interestingly, on the ontology side, inheritance is used as the connecting rela-
tion of M1 and M2, and not instance-of. We believe that this historic choice,
which might have been made unconsciously, has a deep semantic reason in the
di�erence between descriptiveness and prescriptiveness. A concept in a domain
ontology on M1 needs to express its similarity to a modelling concept of an
upper-level ontology (on M2). For this, the is-a relationship is su�ciently pre-
cise (cf. Fig. 4), and therefore, it has been selected in the ontology world to
connect the metalevels. A concept in a speci�cation model, however, has to ex-
press that it has been made from a speci�cation model, which is clearly a more
speci�c relationship than is-a. And this is the reason why in the IRDS world
the instance-of relationship has been employed.
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Fig. 7. The meta-pyramid with upper-level ontologies as modelling concepts.

4.2 Speci�cation of Ontology Language

We argue that on level M3 of the descriptive side of the ontology-aware model
pyramid, also a speci�cation metalanguage should be employed. The language
that describes or speci�es an ontology language cannot be descriptive, because
ontology languages are not something given, but arti�cial languages. Hence, a
model to represent them should be prescriptive. We argue that the same meta-
language can be used on the ontology as well as on the system model side.

With this additional terminological distinction we can extend the ontology-
aware meta-pyramid as follows. Domain ontologies live on level M1, upper-level
ontologies live on level M2, while ontology metalanguages live on level M3. Since
inheritance is used as a connector of the M1 and M2, it is possible to move
language concepts between these levels. Fig. 8 shows the re�nement, showing
the di�erent interrelationships of the models on di�erent metalayers.

In fact, inheritance is not required in Fig. 8. While, usually, concepts in a
domain ontology inherit from a concept in an upper-level frame ontology, we sug-
gest that to distinguish them better from concepts in speci�cation models, ontol-
ogy modelling should causally connect ontological concepts by the described-by
relationship. This would introduce a parallelism to using instance-of on the
speci�cation side and retain the basic ontological modelling principle of descrip-
tiveness. Because of the parallel structure to the speci�cation dimension, the
advantage of such a meta-pyramid is that easily connections from ontologies to
speci�cations can be made. In particular, this holds for the application of the
meta-pyramid in the MDE.
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Fig. 8. The ontology-aware meta-pyramid.

4.3 Employing Domain Ontologies in the MDA

This version of a ontology-aware meta-pyramid permits us to group the MDA-
based models around ontologies. In particular, the CIM plays a special role.

A CIM contains information about the system from the perspecitive of the
system user. It is an analysis model. As such, it may contain a domain model,
a business model, and requirements (Fig. 1) [27]. The gap between descriptive
and prescriptive models concerns the CIM in particular. The domain model
of a CIM can be selected to be a domain ontology (CIM-DO in Fig. 9). A
business model, capturing business rules for a company that should prevail in
all software products, can also be regarded as a domain ontology, namely that
of the rules of the company (i.e., a domain ontology for a company, CIM-BO
in Fig. 9). However, the parts of the CIM that deal with requirements, cannot
be grasped by ontologies, because they specify requirements of a system to-be-
made. Hence, this speci�cation is grouped in CIM-RM in Fig. 9 as a speci�cation
model. This di�erence is also the reason, why only for CIM-RM, the speci�cation
part of the CIM, a metamodel is needed. Concepts of the CIM-DO or CIM-
BO describe existing things, and may inherit from concepts on the language or
concept ontological level. Concepts in CIM-RM, on the other hand, are instances
of a CIM metamodel, because they specify parts of functions of a system.

Usually, a CIM is extended towards a PIM by hand, by enriching it with
operational model elements. Hence, at least CIM-DO and CIM-BO play the role
of standardized analysis models, whose elements can be traced back from the
PIM [1]:
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Fig. 9. A proposal for the role of ontologies in meta-pyramid of model-driven engineer-
ing and the MDA.

�In an MDA speci�cation of a system, CIM requirements should be trace-
able to the PIM and PSM constructs that implement them, and vice
versa.� [27]

Hence, surprisingly, model-driven architecture can bene�t from ontologies, be-
cause via the standardized domain and business ontologies, once parts of a CIM,
connection to PIM speci�cations can be made in a clear and systematic way.

The ontology-aware meta-pyramid o�ers several other bene�ts. First of all,
it suggests a more concrete model-driven software development process. The de-
signer starts from standardized analysis models, ontologies, which may have been
de�ned long before project start. These domain and business models are re�ned
towards design models. First, the requirements are added to yield a complete
CIM. This is re�ned to a PIM and, then, conventionally, via several PSM towards
an implementation. Employing ontologies as analysis models should increase the
reliability of software products, because these models are well engineered, often
used, and hence trustworthy, and avoid the risks of a self-made domain analysis.

Secondly, ontologies as analysis models o�er more common vocabulary for
software architect, customer, and domain expert. This should improve the un-
derstanding of the parties that order and construct software. Then, the standard-
ization of the ontologies improves the interoperability of applications, because
applications that use the ontology contain a common core of common vocab-
ulary. Finally, domain and business ontologies can be reused in many software
products. In particular, they may form the core of a software product line [1],
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around which many products are grouped, and from which they reuse domain
terminology. Overall, this improves reuse in the software process.

It is also bene�cial to make an explicit distinction between descriptive and
prescriptive models in the MDA. Modelling becomes easier, because designers
and domain experts can always answer the question: where lies the truth? In the
model or in the reality? Speci�cation models have to con�ne themselves to the
modeling of arti�cial things, things that are made, while ontologies can focus on
the description of real things, things that exist. (In particular, this can be seen
from the example of the CIM, which in fact contains descriptive and prescriptive
models.)

Finally, the ontology-aware meta-pyramid distinguishs conceptual from be-
havioral models. It seems to be convenient to center software modeling around
concepts of a domain, or structure of a domain, while adding behavior to it step
by step. In essence, this supports one of the central ideas of MDA, the re�nement.

4.4 The Megamodel of Ontology-Aware MDE

The abovepresented ontology-aware meta-pyramid can be called a megamodel of
ontology-aware MDE.

�A megamodel is a model that describes a meta-pyramid.� [10]

A megamodel stands outside of the meta-pyramid and describes all its levels.
It has a global in�uence on all levels of the meta-pyramid. As such, the pre-
sented megamodel sheds new light on the relation of ontologies and metamodels
in MDE. Systematically, ontologies can be related to speci�cation models and
metamodels in the meta-pyramid. It is important to distinguish the representa-
tion relations is-described-by and instance-of, because then, ontologies can
be di�erentiated from speci�cation models on all levels. As a whole, we propose
that

1. An ontology-aware MDA should employ domain and business ontologies as
parts of the CIM.

2. An ontology-aware MDE should additionally incorporate a second dimen-
sion of ontologies as descriptive models in the meta-pyramid, and maintain
interrelations between the descriptive and prescriptive models on all levels.

5 Related Work

One of the works integrating metamodels and ontologies is [31], which extends
software process and measurement ontologies with to metamodels from which
software can be built. The work demonstrates the usefulness of ontologies in a
metamodelling scenario.

Favre dissects the instanceOf relation into representationOf and member-

-of [8]. A model represents a language, and a system is an element of that
language. This leads to a relative model hierarchy which is not restricted to 4
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levels, but in which certain composite patterns denote more complex similarity
relations, such as instance-of or described-by.

The standard aforementioned meta-pyramid is not undebated in the litera-
ture. Other pyramids can be described, in particular, if some design principles for
meta-pyramids found in the literature are varied. A central role plays the simi-
larity relations: since di�erent notions can be de�ned, di�erent model hierarchies
result.

If every element on level n is instance of exactly one element on level n+1,
a meta-pyramid is called strict [2]. With strict similarity, meta-pyramids must
be lists or trees and are essentially one-dimensional. Based on this distinction,
[2] de�nes a non-strict meta-pyramid, consisting of two dimensions arranged in
a matrix. One dimension of the matrix is characterized by physical (technical,
linguistic) instantiation. The linguistic similarity describes the speci�cation lan-
guage aspect of modeling: which language construct is instance of which language
concept. Linguistic similarity is distinguished from logical (ontological), which
spans up the other dimension, the matrix-like meta-pyramid. Ontological simi-
larity describes similarity of real-world concepts, e.g., that a dog is a mammal,
and Fido is a dog. Clearly, this dimension corresponds to our descriptive, on-
tological dimension. However, [2] does not discern prescriptive vs. descriptive
models, nor further di�erent forms of similarity relations. It is future work to
combine both approaches; at this point in time, it seems unclear whether a twodi-
mensional matrix-like approach or the presented approach of parallel descriptive
and prescriptive dimensions will prevail.

6 Conclusion

Ontologies are no silver bullet. They can be employed in the software process as
descriptive standardized domain models, domain-speci�c languages, and model-
ing (description) languages. However, they should not be mingled with speci�ca-
tions of software systems. In model-driven engineering, both forms of models are
needed and complement each other. It is time to develop appropriate megamod-
els that clarify the role of ontologies in model-driven engineering. This paper
has presented one approach, however, this can be only an intermediate step, be-
cause we restricted ourselves to the standard IRDS meta-pyramid. Other, more
sophisticated meta-pyramids exist and must be extended to be ontology-aware.
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