Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit

Abschlussbericht
F&E Vorhaben FKZ 299 24 274

Dokumentation von Zustand und Entwicklung der wichtigsten Seen Deutschlands

Teil 2
Mecklenburg-Vorpommern

von
Prof. Dr. Brigitte Nixdorf
Dipl.-Ing. Mike Hemm
Dipl.-Biol. Anja Hoffmann
Dipl.-Ing. Peggy Richter

Brandenburgische Technische Universität Cottbus
Lehrstuhl Gewässerschutz

IM AUFTRAG

DES UMWELTBUNDESAMTES
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Beschreibung der einzelnen Gewässer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Barniner See</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.2</td>
<td>Bergsee</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.3</td>
<td>Bolzer See</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.4</td>
<td>Borgwallsee</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.5</td>
<td>Breiter Luzin</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.6</td>
<td>Bützower See</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.7</td>
<td>Cambser See</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Titel</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>1.15.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.15.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.16</td>
<td>Dümmersee</td>
</tr>
<tr>
<td>1.16.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.16.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.16.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.16.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.16.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.17</td>
<td>Feisnecksee</td>
</tr>
<tr>
<td>1.17.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.17.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.17.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.17.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.17.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.18</td>
<td>Feldberger Haussee</td>
</tr>
<tr>
<td>1.18.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.18.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.18.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.18.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.18.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.19</td>
<td>Flacher See Klocksinn</td>
</tr>
<tr>
<td>1.19.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.19.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.19.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.19.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.19.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.20</td>
<td>Fleesensee</td>
</tr>
<tr>
<td>1.20.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.20.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.20.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.20.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.20.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.21</td>
<td>Galenbecker See</td>
</tr>
<tr>
<td>1.21.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.21.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.21.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.21.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.21.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.22</td>
<td>Goldberger See</td>
</tr>
<tr>
<td>1.22.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
<tr>
<td>1.22.2</td>
<td>Topographie und Morphometrie</td>
</tr>
<tr>
<td>1.22.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.22.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.22.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
<tr>
<td>1.23</td>
<td>Gothensee</td>
</tr>
<tr>
<td>1.23.1</td>
<td>Genese, Lage, Einzugsgebiet und Hydrologie</td>
</tr>
</tbody>
</table>
1.23.1 Topographie und Morphometrie... 97
1.23.3 Chemische und trophische Charakteristik des Sees................................. 97
1.23.4 Flora und Fauna.. 98
1.23.5 Nutzung, anthropogener Einfluss... 99

1.24 Groß Labenzer See ...100
 1.24.1 Genese, Lage, Einzugsgebiet und Hydrologie... 100
 1.24.2 Topographie und Morphometrie.. 101
 1.24.3 Chemische und trophische Charakteristik des Sees................................. 101
 1.24.4 Flora und Fauna... 102
 1.24.5 Nutzung, anthropogener Einfluss... 103

1.25 Großer Brückentinsee ...104
 1.25.1 Genese, Lage, Einzugsgebiet und Hydrologie... 104
 1.25.2 Topographie und Morphometrie.. 104
 1.25.3 Chemische und trophische Charakteristik des Sees................................. 105
 1.25.4 Flora und Fauna... 105
 1.25.5 Nutzung, anthropogener Einfluss... 106

1.26 Großer Dambecker See ...107
 1.26.1 Genese, Lage, Einzugsgebiet und Hydrologie... 107
 1.26.2 Topographie und Morphometrie.. 107
 1.26.3 Chemische und trophische Charakteristik des Sees................................. 108
 1.26.4 Flora und Fauna... 108
 1.26.5 Nutzung, anthropogener Einfluss... 109

1.27 Großer Fürstenseer See ...110
 1.27.1 Genese, Lage, Einzugsgebiet und Hydrologie... 110
 1.27.2 Topographie und Morphometrie.. 110
 1.27.3 Chemische und trophische Charakteristik des Sees................................. 111
 1.27.4 Flora und Fauna... 111
 1.27.5 Nutzung, anthropogener Einfluss... 112

1.28 Großer Labussee ...113
 1.28.1 Genese, Lage, Einzugsgebiet und Hydrologie... 113
 1.28.2 Topographie und Morphometrie.. 113
 1.28.3 Chemische und trophische Charakteristik des Sees................................. 113
 1.28.4 Flora und Fauna... 114
 1.28.5 Nutzung, anthropogener Einfluss... 115

1.29 Großer See bei Pinnow..116
 1.29.1 Genese, Lage, Einzugsgebiet und Hydrologie... 116
 1.29.2 Topographie und Morphometrie.. 116
 1.29.3 Chemische und trophische Charakteristik des Sees................................. 117
 1.29.4 Flora und Fauna... 118
 1.29.5 Nutzung, anthropogener Einfluss... 118

1.30 Großer Sternberger See...119
 1.30.1 Genese, Lage, Einzugsgebiet und Hydrologie... 119
 1.30.2 Topographie und Morphometrie.. 119
 1.30.3 Chemische und trophische Charakteristik des Sees................................. 120
 1.30.4 Flora und Fauna... 121
 1.30.5 Nutzung, anthropogener Einfluss... 123
1.31 Großer Wariner See

- **1.31.1 Genese, Lage, Einzugsgebiet und Hydrologie**
- **1.31.2 Topographie und Morphometrie**
- **1.31.3 Chemische und trophische Charakteristik des Sees**
- **1.31.4 Flora und Fauna**
- **1.31.5 Nutzung, anthropogener Einfluss**

1.32 Großer Wostevitzer Teich

- **1.32.1 Genese, Lage, Einzugsgebiet und Hydrologie**
- **1.32.2 Topographie und Morphometrie**
- **1.32.3 Chemische und trophische Charakteristik des Sees**
- **1.32.4 Nutzung, anthropogener Einfluss**

1.33 Hohen Sprenzter See

- **1.33.1 Genese, Lage, Einzugsgebiet und Hydrologie**
- **1.33.2 Topographie und Morphometrie**
- **1.33.3 Chemische und trophische Charakteristik des Sees**
- **1.33.4 Flora und Fauna**
- **1.33.5 Nutzung, anthropogener Einfluss**

1.34 Inselsee

- **1.34.1 Genese, Lage, Einzugsgebiet und Hydrologie**
- **1.34.2 Topographie und Morphometrie**
- **1.34.3 Chemische und trophische Charakteristik des Sees**
- **1.34.4 Flora und Fauna**
- **1.34.5 Nutzung, anthropogener Einfluss**

1.35 Jabeler See

- **1.35.1 Genese, Lage, Einzugsgebiet und Hydrologie**
- **1.35.2 Topographie und Morphometrie**
- **1.35.3 Chemische und trophische Charakteristik des Sees**
- **1.35.4 Flora und Fauna**
- **1.35.5 Nutzung, anthropogener Einfluss**

1.36 Käbelicksee

- **1.36.1 Genese, Lage, Einzugsgebiet und Hydrologie**
- **1.36.2 Topographie und Morphometrie**
- **1.36.3 Chemische und trophische Charakteristik des Sees**
- **1.36.4 Flora und Fauna**
- **1.36.5 Nutzung, anthropogener Einfluss**

1.37 Klein Pritzer See

- **1.37.1 Genese, Lage, Einzugsgebiet und Hydrologie**
- **1.37.2 Topographie und Morphometrie**
- **1.37.3 Chemische und trophische Charakteristik des Sees**
- **1.37.4 Flora und Fauna**
- **1.37.5 Nutzung, anthropogener Einfluss**

1.38 Kölpinsee

- **1.38.1 Genese, Lage, Einzugsgebiet und Hydrologie**
- **1.38.2 Topographie und Morphometrie**
- **1.38.3 Chemische und trophische Charakteristik des Sees**
- **1.38.4 Flora und Fauna**
<table>
<thead>
<tr>
<th>1.39 Krakower See</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.39.1 Genese, Lage, Einzugsgebiet und Hydrologie</td>
<td>155</td>
</tr>
<tr>
<td>1.39.2 Topographie und Morphometrie</td>
<td>156</td>
</tr>
<tr>
<td>1.39.3 Chemische und trophische Charakteristik des Sees</td>
<td>157</td>
</tr>
<tr>
<td>1.39.4 Flora und Fauna</td>
<td>159</td>
</tr>
<tr>
<td>1.39.5 Nutzung, anthropogener Einfluss</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.40 Krüselinsee</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40.1 Genese, Lage, Einzugsgebiet und Hydrologie</td>
<td>161</td>
</tr>
<tr>
<td>1.40.2 Topographie und Morphometrie</td>
<td>161</td>
</tr>
<tr>
<td>1.40.3 Chemische und trophische Charakteristik des Sees</td>
<td>162</td>
</tr>
<tr>
<td>1.40.4 Flora und Fauna</td>
<td>163</td>
</tr>
<tr>
<td>1.40.5 Nutzung, anthropogener Einfluss</td>
<td>163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.41 Kummerower See</th>
<th>164</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.41.1 Genese, Lage, Einzugsgebiet und Hydrologie</td>
<td>164</td>
</tr>
<tr>
<td>1.41.2 Topographie und Morphometrie</td>
<td>165</td>
</tr>
<tr>
<td>1.41.3 Chemische und trophische Charakteristik des Sees</td>
<td>165</td>
</tr>
<tr>
<td>1.41.4 Flora und Fauna</td>
<td>166</td>
</tr>
<tr>
<td>1.41.5 Nutzung, anthropogener Einfluss</td>
<td>168</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.42 Lankower See</th>
<th>169</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.42.1 Genese, Lage, Einzugsgebiet und Hydrologie</td>
<td>169</td>
</tr>
<tr>
<td>1.42.2 Topographie und Morphometrie</td>
<td>169</td>
</tr>
<tr>
<td>1.42.3 Chemische und trophische Charakteristik des Sees</td>
<td>170</td>
</tr>
<tr>
<td>1.42.4 Flora und Fauna</td>
<td>171</td>
</tr>
<tr>
<td>1.42.5 Nutzung, anthropogener Einfluss</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.43 Lebehscher See</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.43.1 Genese, Lage, Einzugsgebiet und Hydrologie</td>
<td>173</td>
</tr>
<tr>
<td>1.43.2 Topographie und Morphometrie</td>
<td>173</td>
</tr>
<tr>
<td>1.43.3 Chemische und trophische Charakteristik des Sees</td>
<td>174</td>
</tr>
<tr>
<td>1.43.4 Flora und Fauna</td>
<td>175</td>
</tr>
<tr>
<td>1.43.5 Nutzung, anthropogener Einfluss</td>
<td>176</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.44 Malchiner See</th>
<th>177</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.44.1 Genese, Lage, Einzugsgebiet und Hydrologie</td>
<td>177</td>
</tr>
<tr>
<td>1.44.2 Topographie und Morphometrie</td>
<td>177</td>
</tr>
<tr>
<td>1.44.3 Chemische und trophische Charakteristik des Sees</td>
<td>178</td>
</tr>
<tr>
<td>1.44.4 Flora und Fauna</td>
<td>179</td>
</tr>
<tr>
<td>1.44.5 Nutzung, anthropogener Einfluss</td>
<td>181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.45 Malkwitzer See</th>
<th>182</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.45.1 Genese, Lage, Einzugsgebiet und Hydrologie</td>
<td>182</td>
</tr>
<tr>
<td>1.45.2 Topographie und Morphometrie</td>
<td>182</td>
</tr>
<tr>
<td>1.45.3 Chemische und trophische Charakteristik des Sees</td>
<td>183</td>
</tr>
<tr>
<td>1.45.4 Flora und Fauna</td>
<td>183</td>
</tr>
<tr>
<td>1.45.5 Nutzung, anthropogener Einfluss</td>
<td>184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.46 Medeweger See</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.46.1 Genese, Lage, Einzugsgebiet und Hydrologie</td>
<td>185</td>
</tr>
<tr>
<td>1.46.2 Topographie und Morphometrie</td>
<td>185</td>
</tr>
<tr>
<td>1.46.3</td>
<td>Chemische und trophische Charakteristik des Sees</td>
</tr>
<tr>
<td>1.46.4</td>
<td>Flora und Fauna</td>
</tr>
<tr>
<td>1.46.5</td>
<td>Nutzung, anthropogener Einfluss</td>
</tr>
</tbody>
</table>

1.47	Mickowsee	189
1.47.1	Genese, Lage, Einzugsgebiet und Hydrologie	189
1.47.2	Topographie und Morphometrie	189
1.47.3	Chemische und trophische Charakteristik des Sees	190
1.47.4	Flora und Fauna	190
1.47.5	Nutzung, anthropogener Einfluss	190

1.48	Müritz	191
1.48.1	Genese, Lage, Einzugsgebiet und Hydrologie	191
1.48.2	Topographie und Morphometrie	192
1.48.3	Chemische und trophische Charakteristik des Sees	192
1.48.4	Flora und Fauna	194
1.48.5	Nutzung, anthropogener Einfluss	198

1.49	Neuklostersee	200
1.49.1	Genese, Lage, Einzugsgebiet und Hydrologie	200
1.49.2	Topographie und Morphometrie	200
1.49.3	Chemische und trophische Charakteristik des Sees	201
1.49.4	Flora und Fauna	201
1.49.5	Nutzung, anthropogener Einfluss	202

1.50	Neumüller See	203
1.50.1	Genese, Lage, Einzugsgebiet und Hydrologie	203
1.50.2	Topographie und Morphometrie	203
1.50.3	Chemische und trophische Charakteristik des Sees	204
1.50.4	Flora und Fauna	205
1.50.5	Nutzung, anthropogener Einfluss	206

1.51	Neustädter See	207
1.51.1	Genese, Lage, Einzugsgebiet und Hydrologie	207
1.51.2	Topographie und Morphometrie	207
1.51.3	Chemische und trophische Charakteristik des Sees	208
1.51.4	Flora und Fauna	209
1.51.5	Nutzung, anthropogener Einfluss	209

1.52	Parumer See	211
1.52.1	Genese, Lage, Einzugsgebiet und Hydrologie	211
1.52.2	Topographie und Morphometrie	211
1.52.3	Chemische und trophische Charakteristik des Sees	212
1.52.4	Flora und Fauna	212
1.52.5	Nutzung, anthropogener Einfluss	213

1.53	Paschensee	214
1.53.1	Genese, Lage, Einzugsgebiet und Hydrologie	214
1.53.2	Topographie und Morphometrie	214
1.53.3	Chemische und trophische Charakteristik des Sees	215
1.53.4	Flora und Fauna	215
1.53.5	Nutzung, anthropogener Einfluss	216

| 1.54 | Pinnower See | 217 |
1.61.5 Nutzung, anthropogener Einfluss

1.62 Schmacher See
1.62.1 Genese, Lage, Einzugsgebiet und Hydrologie
1.62.2 Topographie und Morphometrie
1.62.3 Chemische und trophische Charakteristik des Sees
1.62.4 Flora und Fauna
1.62.5 Nutzung, anthropogener Einfluss

1.63 Schmaler Luzin
1.63.1 Genese, Lage, Einzugsgebiet und Hydrologie
1.63.2 Topographie und Morphometrie
1.63.3 Chemische und trophische Charakteristik des Sees
1.63.4 Flora und Fauna
1.63.5 Nutzung, anthropogener Einfluss

1.64 Schmollensee
1.64.1 Genese, Lage, Einzugsgebiet und Hydrologie
1.64.2 Topographie und Morphometrie
1.64.3 Chemische und trophische Charakteristik des Sees
1.64.4 Flora und Fauna
1.64.5 Nutzung, anthropogener Einfluss

1.65 Schweingartensee
1.65.1 Genese, Lage, Einzugsgebiet und Hydrologie
1.65.2 Topographie und Morphometrie
1.65.3 Chemische und trophische Charakteristik des Sees
1.65.4 Flora und Fauna
1.65.5 Nutzung, anthropogener Einfluss

1.66 Schweriner See
1.66.1 Genese, Lage, Einzugsgebiet und Hydrologie
1.66.2 Topographie und Morphometrie
1.66.3 Chemische und trophische Charakteristik des Sees
1.66.4 Flora und Fauna
1.66.5 Nutzung, anthropogener Einfluss

1.67 Tempziner See
1.67.1 Genese, Lage, Einzugsgebiet und Hydrologie
1.67.2 Topographie und Morphometrie
1.67.3 Chemische und trophische Charakteristik des Sees
1.67.4 Flora und Fauna
1.67.5 Nutzung, anthropogener Einfluss

1.68 Teterower See
1.68.1 Genese, Lage, Einzugsgebiet und Hydrologie
1.68.2 Topographie und Morphometrie
1.68.3 Chemische und trophische Charakteristik des Sees
1.68.4 Flora und Fauna
1.68.5 Nutzung, anthropogener Einfluss

1.69 Tiefer See
1.69.1 Genese, Lage, Einzugsgebiet und Hydrologie
1.69.2 Topographie und Morphometrie
1.69.3 Chemische und trophische Charakteristik des Sees 282
1.69.4 Flora und Fauna .. 282
1.69.5 Nutzung, anthropogener Einfluss.. 283

1.70 Tiefer Trebbower See ... 284
1.70.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 284
1.70.2 Topographie und Morphometrie... 284
1.70.3 Chemische und trophische Charakteristik des Sees 285
1.70.4 Flora und Fauna .. 286
1.70.5 Nutzung, anthropogener Einfluss.. 286

1.71 Tiefwarensee .. 287
1.71.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 287
1.71.2 Topographie und Morphometrie... 288
1.71.3 Chemische und trophische Charakteristik des Sees 288
1.71.4 Flora und Fauna .. 289
1.71.5 Nutzung, anthropogener Einfluss.. 291

1.72 Tollensee ... 292
1.72.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 292
1.72.2 Topographie und Morphometrie... 293
1.72.3 Chemische und trophische Charakteristik des Sees 293
1.72.4 Flora und Fauna .. 295
1.72.5 Nutzung, anthropogener Einfluss.. 296

1.73 Treptowsee ... 297
1.73.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 297
1.73.2 Topographie und Morphometrie... 297
1.73.3 Chemische und trophische Charakteristik des Sees 297
1.73.4 Flora und Fauna .. 298
1.73.5 Nutzung, anthropogener Einfluss.. 299

1.74 Tressower See .. 300
1.74.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 300
1.74.2 Topographie und Morphometrie... 301
1.74.3 Chemische und trophische Charakteristik des Sees 301
1.74.4 Flora und Fauna .. 302
1.74.5 Nutzung, anthropogener Einfluss.. 303

1.75 Upahler See ... 304
1.75.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 304
1.75.2 Topographie und Morphometrie... 305
1.75.3 Chemische und trophische Charakteristik des Sees 305
1.75.4 Flora und Fauna .. 306
1.75.5 Nutzung, anthropogener Einfluss.. 307

1.76 Wanzkaer See .. 308
1.76.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 308
1.76.2 Topographie und Morphometrie... 308
1.76.3 Chemische und trophische Charakteristik des Sees 309
1.76.4 Flora und Fauna .. 310
1.76.5 Nutzung, anthropogener Einfluss.. 311

1.77 Wockersee ... 312
1.77.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 312
1.77.2 Topographie und Morphometrie ... 312
1.77.3 Chemische und trophische Charakteristik des Sees 313
1.77.4 Flora und Fauna .. 314
1.77.5 Nutzung, anthropogener Einfluss ... 314

1.78 Wozer See ... 315
1.78.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 315
1.78.2 Topographie und Morphometrie ... 315
1.78.3 Chemische und trophische Charakteristik des Sees 315
1.78.4 Flora und Fauna .. 316
1.78.5 Nutzung, anthropogener Einfluss ... 316

1.79 Wolgastsee ... 317
1.79.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 317
1.79.2 Topographie und Morphometrie ... 318
1.79.3 Chemische und trophische Charakteristik des Sees 318
1.79.4 Flora und Fauna .. 319
1.79.5 Nutzung, anthropogener Einfluss ... 321

1.80 Woseriner See .. 322
1.80.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 322
1.80.2 Topographie und Morphometrie ... 322
1.80.3 Chemische und trophische Charakteristik des Sees 323
1.80.4 Flora und Fauna .. 324
1.80.5 Nutzung, anthropogener Einfluss ... 324

1.81 Woterfitzsee .. 325
1.81.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 325
1.81.2 Topographie und Morphometrie ... 325
1.81.3 Chemische und trophische Charakteristik des Sees 326
1.81.4 Flora und Fauna .. 327
1.81.5 Nutzung, anthropogener Einfluss ... 328

1.82 Ziegelsee .. 329
1.82.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 329
1.82.2 Topographie und Morphometrie ... 329
1.82.3 Chemische und trophische Charakteristik des Sees 330
1.82.4 Flora und Fauna .. 331
1.82.5 Nutzung, anthropogener Einfluss ... 333

1.83 Zierker See ... 334
1.83.1 Genese, Lage, Einzugsgebiet und Hydrologie .. 334
1.83.2 Topographie und Morphometrie ... 334
1.83.3 Chemische und trophische Charakteristik des Sees 335
1.83.4 Flora und Fauna .. 336
1.83.5 Nutzung, anthropogener Einfluss ... 338

2 Abbildungsverzeichnis .. 339
3 Tabellenverzeichnis .. 348
4 Literatur ... 368
Beschreibungen der einzelnen Gewässer

1.1 Barniner See

1.1.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 1: Tiefenkarte des Barniner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
1.1.2 Topographie und Morphometrie

Der See ist im nördlichen Bereich (Hauptteil) breit und flach, im südlichen rinnenartig. Die maximale Tiefe von 7,5 m wird im südlichen Seeteil erreicht, im nördlichen liegt die maximale Tiefe meist unter der mittleren des Sees.

Tab. 1: Topographie und Morphometrie des Barniner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th></th>
<th>[Mio. m³]</th>
<th>[km²]</th>
<th>[m]</th>
<th>[m]</th>
<th>[-]</th>
<th>[-]</th>
<th>[m]</th>
<th>[m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>5,43</td>
<td>2,55</td>
<td>7,5</td>
<td>2,1</td>
<td>3170</td>
<td>1190</td>
<td>2,0</td>
<td>1,0</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zmean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zepi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.3 Chemische und trophische Charakteristik des Sees

Der Barniner See ist in seinem flachen Hauptteil polymiktisch, im tieferen Südteil kommt es nur bei Windstille im Sommer zu einer instabilen Schichtung, wobei dann in Grundnähe sofort anaerobe Zustände auftreten. Der See wurde in der Vergangenheit durch den nährstoffreichen Oberlauf der Warnow und durch kommunale Abwässer der Stadt Crivitz, die über den Crivitzer Bach in den See gelangten, sowie durch eine bis 1991 betriebene Entenintensivmast stark belastet. Die resultierenden polytropen Verhältnisse, die durch ganzjährig hohe Planktonentwicklungen und geringe Sichttiefen gekennzeichnet sind, belasten auch die Warnow, was in Hinblick auf deren Trinkwassernutzung für Rostock problematisch ist. Um die Planktonfracht in die Warnow zu reduzieren, wurde 1993 am Seeeinlauf ein sogenannter vegetativer Planktonrechen installiert. Dabei handelt es sich um eine mit Makrophyten bepflanzte künstliche Schwelle, die die Planktonabdrift durch mechanisches Ausfiltern mindern soll.

Daten von 4 Beprobungsterminen (LUNG 1999) zwischen April und September 1996 (1 m Tiefe) ergaben im Hauptteil geringe Schwankungen des pH-Wertes zwischen 8,3 und 8,9 und der Leitfähigkeit zwischen 511 µS/cm und 556 µS/cm. Die Messwerte an der tiefen Stelle waren mit diesen Angaben vergleichbar. Die Gesamtporphorkonzentrationen betrugen im Hauptteil zwischen 100 µg/l und 400 µg/l, an der tiefen Stelle steigen sie im September auf 450 µg/l an. Die Konzentrationen an Gesamtstickstoff lagen zwischen 1,2 mg/l und 2,1 mg/l (Hauptteil) bzw. 6,0 mg/l (tiefen Stelle), dabei betrugen die Nitrat-N-Konzentrationen im Minimum < 0,05 mg/l und im Maximum 0,2 mg/l (Hauptteil) bzw. 0,4 mg/l (tiefen Stelle), die Ammonium-N-Konzentrationen im Minimum < 0,05 mg/l und im Maximum (September) 0,47 mg/l (Hauptteil) bzw. 0,43 mg/l (tiefen Stelle). Die SRP-Konzentrationen erreichten im September Maxima von 292 µg/l (Hauptteil) bzw. 214 µg/l. Maximale Chlorophyll a-Konzentrationen wurden in beiden Seeteilen im August ermittelt, die Konzentrationen waren mit 135,6 µg/l (Hauptteil) und 136,8 µg/l (tiefen Stelle) sehr ähnlich. Zugleich erreichte die Sauerstoffsättigung ebenfalls ähnliche Maxima von 185 % (Hauptteil) bzw. 188 % (tiefen Stelle). Entsprechend gering fielen die Sichttiefen in diesem Zeitraum in beiden Seeteilen aus (0,4 - 0,9 m). Die hohen Calciumkonzentrationen zeigten im Hauptteil Veränderungen im Bereich zwischen 73,7 mg/l und 88,4 mg/l, an der tiefe Stelle zwischen 76,1 mg/l und 83,4 mg/l. Die Trophieparameter des Jahres 1996 weisen den polymiktischen Hauptteil nach LAWA-Bewertungsansatz (LAWA 1998) als stark polytrophi (p2), den tiefen Teil als polytrophi (p1) aus. Hinsichtlich des morphometrischen Referenztrophiegrades ergibt sich für den See Eutrophie (e1) (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptteil</td>
<td>8,5</td>
<td>522</td>
<td>97,1</td>
<td>0,6</td>
<td>1,7</td>
<td>270</td>
<td>175</td>
</tr>
<tr>
<td>tiefer Teil</td>
<td>8,5</td>
<td>534</td>
<td>89,3</td>
<td>0,6</td>
<td>2,7</td>
<td>302</td>
<td>100</td>
</tr>
</tbody>
</table>

1.1.4 Flora und Fauna

Das Phytoplankton bildete auch im Untersuchungsjahr 1996 (4 Probenahmetermine) enorme Biomassen (FM) aus. Das Phytoplankton zeigte dabei in beiden Seeteilen insgesamt eine ähnliche Entwicklung. Im Hauptteil lagen die Biomassekonzentrationen im April bei 18,2 mg/l, gingen dann im Juni auf 3,5 mg/l zurück und stiegen im August auf maximal 24,9 mg/l an, an der tiefen Stelle wurde zu diesem Zeitpunkt sogar ein Maximum von 33,4 mg/l ermittelt. Im September zeigten die Biomassewerte dann eine Abnahme auf 18,1 mg/l (Hauptteil) bzw. 20,2 mg/l (tiefe Stelle). Im Hauptteil dominierten im April Cryptophyceen (Cryptomonas sp.) mit 64,3 % FM-Anteil, gefolgt von Diatomeen (vor allem centrische Formen und Fragilaria ulna var. acus), deren FM-Anteil bei 35,3 % lag, an der tiefen Stelle waren ebenfalls beide Klassen dominant jedoch mit umgekehrter Gewichtung. Der Frühsommeraspekt (Juni) wurde hauptsächlich von Chlorophyceen mit 62,4 % FM-Anteil bestimmt, die weiteren Anteile an der Biomasse verteilen sich auf Cryptophyceen und centrische Diatomeen. Als dominante Chloro- und Chlamydophyceenart sind Scenedesmus quadricauda und Eudorina elegans zu nennen. Im August und September waren Cyanobakterien vorherrschend, wobei der FM-Anteil der Cyanobakterien an der tiefen Stelle bei maximal 56,7 % lag, im Hauptteil jedoch 42,1 % nicht überschritt (jeweils August). Im August prägten dabei Aphanizomenon flos-aquae, Anabaena spiroides sowie nicht näher bestimmte trichale Cyanobakterien zusammen mit centrischen Diatomeen und Aulacoseira granulata das Bild, im September waren es innerhalb der Cyanobakterien Planktothrix agardhii und trichale Formen.

Das Zooplankton bildete im April im Hauptteil eine extrem hohe und im Vergleich der 4 Probenahmetermine 1996 zugleich maximale Biomasse (FM) von 18,9 mg/l aus. Hauptbimassebildner waren hier zu dieser Zeit Rotatorien mit einem FM-Anteil von 72,5 %. An der tiefen Stelle wurden deutlich geringere Biomassekonzentrationen von 5,7 mg/l erreicht, hieran hatten Rotatorien gemeinsam mit Copepoden entscheidende Anteile. Im Hauptteil war der Anteil von Cladoceren und Copepoden im Juni annähernd ausgeglichen, im Anschluss dominierten dann Copepoden mit maximalen FM-Anteilen von 91,3 % im September. An der tiefen Stelle dominierten im Juni und September Copepoden mit FM-Anteilen von 85,1 % bzw. 75,1 %, im August waren hier Rotatorien die stärkste Fraktion. Die Biomasse ging bis September auf 1,5 mg/l (Hauptteil) bzw. 1,8 mg/l (tiefe Stelle) zurück.

Innerhalb des Makrozoobenthos wurden nur wenige Taxa nachgewiesen, wobei die Chironomiden nicht näher bestimmt wurden. Auch die Individuendichten waren im regionalen Vergleich eher gering, wobei die Chironomidenlarven am zahlreichsten
vertreten waren. Bezüglich des weiteren Insektenvorkommens und auch in Bezug auf Molluskenordnungen kann der See als verarmt bezeichnet werden.

Tab. 3: Makrozoobenthosvorkommen im oberen Sublitoral außerhalb der Makrophytenzone während einer Frühsommerbeprobung mittels Bodengreifer (Mischprobe aus allen Hols von 12 Sektoren). Siebmaschenweite: 200 µm (Institut für angewandte Ökologie GmbH 2001)

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax. Oberbegriff</th>
<th>Ordnung</th>
<th>Fam. /Gatt. / Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.06.2001</td>
<td>Schlick, teilw. Muschelschill, teilw. H₂S-Geruch</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Sphaeriidae</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Annelida</td>
<td>Oligochaeta</td>
<td>Naididae</td>
<td>indet.</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Nemertini</td>
<td>indet.</td>
<td>indet.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anzahl Arten/Taxa</td>
<td>5</td>
<td>Summe Ind./m²</td>
<td>516</td>
<td></td>
</tr>
</tbody>
</table>

Folgende Fischarten sind anzutreffen: Bleie, Schleie, Karpfen, Weißfisch, Aal, Hecht, Zander (http://www.mvweb.de/angeln/88.html).

1.1.5 Nutzung, anthropogener Einfluss

1.2 Bergsee

1.2.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 2: Tiefenkarte des Bergsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.2.2 Topographie und Morphometrie

Der Bergsee weist eine längliche Gestalt auf und ist im zentralen Bereich am tiefsten. Die maximale Längenausdehnung verläuft von Norden nach Süden.

Tab. 4: Topographie und Morphometrie des Bergsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,76</td>
<td>0,59</td>
<td>15,0</td>
<td>6,4</td>
<td>1734</td>
<td>391</td>
<td>1,8</td>
<td>2,5</td>
<td>5,9</td>
<td></td>
</tr>
</tbody>
</table>
1.2.3 Chemische und trophische Charakteristik des Sees

Der Bergsee ist ein dimiktisches Gewässer. Daten von 4 Beprobungsterminen (LUNG M-V 1999) zwischen April und November 1996 (0,5 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 8,1 und 9,1 und der Leitfähigkeit zwischen 400 µS/cm und 582 µS/cm. Die Gesamtphosphorkonzentrationen betrugen in 1 m Probenahmetiefe zwischen 87 µg/l und 124 µg/l. Die Konzentrationen an Gesamtstickstoff lagen in 1 m Wassertiefe zwischen 0,8 mg/l und 1,3 mg/l, dabei betrugen die Nitrat-N-Konzentrationen im Minimum 0,02 mg/l und im Maximum < 0,1 mg/l, die Ammonium-N-Konzentrationen im Minimum 0,03 mg/l und im Maximum (Juli) 0,2 mg/l. Die SRP-Konzentrationen erreichten im November ein Maximum von 33 µg/l. Maximale Chlorophyll a-Konzentrationen von moderater 7,3 µg/l wurden ebenfalls im November ermittelt. Die oberflächennahe Sauerstoffsättigung erreichte dagegen im April maximal 118 %. Schwankungen der Sichttiefe lagen im Untersuchungszeitraum zwischen 3,2 m und 4,8 m. Die relativ hohen Calciumkonzentrationen zeigten im Hauptteil Veränderungen im Bereich zwischen 65,8 mg/l und 74,3 mg/l. Die Trophieparameter des Jahres 1996 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) als mesotroph aus. Darauf verweist auch der morphometrische Referenztrophiegrad. Der See gilt trotz geringer Chlorophyll a- Konzentrationen bei relativ hohen Gesamtphosphor-Konzentrationen nicht als makrophytendominiert.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,9</td>
<td>534</td>
<td>1,4</td>
<td>4,1</td>
<td>1,2</td>
<td>105</td>
<td>81,0</td>
</tr>
</tbody>
</table>

1.2.4 Flora und Fauna

Das Phytoplankton bildete im Untersuchungsjahr 1996 (4 Probenahmetermine) nur geringe Biomassen (FM) von maximal 1,6 mg/l im Juli aus. Im April und Juli dominierten klar Dinoflagellaten mit FM-Anteilen von 80,3 % bzw. 92,1 %. Im September prägten vor allem Cyanobakterien mit FM-Anteilen von 66,7 % das Phytoplanktonbild. Im November war das Phytoplankton bei einer Gesamtbiomasse von 0,6 mg/l sehr divers.

Die Zooplanktonbiomasse erreichte im September des Untersuchungsjahres 1996 maximale Biomassekonzentrationen (FM) von 3,9 mg/l. Es dominierten zu allen Probenahmeterminen Copepoden, ihr maximaler FM-Anteil lag bei 91,6 % im Juli. Rotatorien waren nur im April mit einem FM-Anteil von 19,1 % codominant. Cladoceren waren dagegen unterrepräsentiert und entwickelten erst ab September etwas höhere FM-Anteile von maximal 12,2 % (November).

Im Bergsee wurden bei Fischerbefragungen 18 Fischarten ermittelt. Dabei kamen 10 Fischarten häufig vor und 8 eher selten (siehe Tab. 6).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus albumus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
</tbody>
</table>

1.2.5 Nutzung, anthropogener Einfluss

Im Jahr 1980 wurde zur Erhaltung der Wasserbeschaffenheit und für die Beregnung landwirtschaftlicher Nutzflächen eine Tiefenwasserentnahme durchgeführt. Diese Maßnahme hatte allerdings keinen Einfluss auf die Wasserbeschaffenheit (LUNG 1999).

1.3 Bolzer See

1.3.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 3: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.3.2 Topographie und Morphometrie

Eine Halbinsel teilt den See vom Norden her in das Ostbecken (maximale Tiefe 15,3 m) und den flacheren westlichen Seeteil. Im Westen befindet sich eine kleine Insel.

Tab. 7: Topographie und Morphometrie des Bolzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_{max}</th>
<th>z_{mean}</th>
<th>L_{eff}</th>
<th>B_{eff}</th>
<th>U_E</th>
<th>F</th>
<th>z_{epi}</th>
<th>t_{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,50</td>
<td>0,81</td>
<td>15,5</td>
<td>6,8</td>
<td>1561</td>
<td>770</td>
<td>1,77</td>
<td>2,6</td>
<td>6,1</td>
<td></td>
</tr>
</tbody>
</table>

1.3.3 Chemische und trophische Charakteristik des Sees

Der Bolzer See ist dimiktisch. Im Jahresverlauf 1995 wurden ab August anaerobe Bedingungen im Hypolimnion und schon ab 5 m Wassertiefe Schwefelwasserstoffbildung registriert, während die epilimnischen Sauerstoffkonzentrationen im Übersättigungsbereich lagen. Gleichzeitig traten in den tieferen Wasserschichten erhöhte Phosphatkonzentrationen auf. Ende Oktober, mit dem Einsetzen der herbstlichen Vollzirkulation, wurden auch in den oberflächennahen Wasserschichten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,9</td>
<td>576</td>
<td>14,0</td>
<td>1,7</td>
<td>0,8</td>
<td>86,7</td>
<td>> 54,0</td>
</tr>
</tbody>
</table>

1.3.4 Flora und Fauna

Der Schilfgürtel des Sees, gelegentlich von Rohrglanzgras (*Phalaris arundinacea*) und Rohrkolben (*Typha spec.*) durchsetzt, säumt 80 – 90 % der Uferlinie beider Becken.

Während die Phytoplanktonbiomasse-Konzentrationen 1995 im Frühjahr relativ gering waren, stiegen die Werte im Sommer bis auf 20 mg/l an, wobei Dinoflagellaten mit der Art *Ceratium hirundinella* dominierten. Neben diesen bildeten im Herbst Diatomeen (vor allem Vertreter der Gattung *Synedra*) ca. 50 % der Phytoplanktonbiomasse.

Das Zooplankton wurde während des ganzen Jahres von Copepoden (hauptsächlich *Eudiaptomus gracilis*) dominiert, wobei die höchsten Zooplanktonmassen im Frühsommer und im Herbst registriert wurden. Weiterhin waren Cladoceren im Frühsommer mit der Gattung *Daphnia* und im Herbst mit *Bosmina coregoni* sowie auch Rotatorien (*Keratella quadrata* und *Synchaeta spec.*) in größeren Abundanzen im Zooplankton vertreten.

Angaben zur Fischfauna lagen nicht vor.

1.3.5 Nutzung, anthropogener Einfluss

Auf der ca. 4 ha großen im Westteil gelegenen Insel hat sich seit Beginn der 1960er Jahre eine Kormoran- und eine Graureiherkolonie angesiedelt, die 1967 der wesentliche Grund dafür waren, den See und seinen Uferstreifen unter Naturschutz zu stellen.
1.4 Borgwallsee
1.4.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 4: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.4.2 Topographie und Morphometrie
Der Borgwallsee erstreckt sich in seiner Längsausdehnung von Nordwesten nach Südosten.

Tab. 9: Topographie und Morphometrie des Borgwallsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_{E} [-]</th>
<th>F [-]</th>
<th>z_{epl} [m]</th>
<th>t_{R} [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,2</td>
<td>3,89</td>
<td>4,8</td>
<td>2,4</td>
<td>3640</td>
<td>1780</td>
<td>1,5</td>
<td>0,6</td>
<td>7,4</td>
<td>2,2</td>
</tr>
</tbody>
</table>

1.4.3 Chemische und trophische Charakteristik des Sees
Der geringe Tiefengradient von 0,6 weist den See als polymiktisch aus. Auch im Untersuchungsjahr 1997 trat keine dauerhafte thermische Schichtung auf. Lediglich
im August konnte während einer länger anhaltenden Schönwetterperiode eine
deutliche Abnahme der Sauerstoffkonzentrationen und der Temperatur in boden-
nahen Schichten festgestellt werden. Diese vermutlich kurzfristige Sauerstoffarmut
führte nicht zu erhöhten Nährstoffkonzentrationen über dem Sediment.

Tab. 10: Vegetationsmittelwerte (April-Oktober) chemischer und trophie-
relevanter Parameter des Jahres 2000 vom Borgwallsee (Negaster
Bucht), Oberfläche (Ausnahme TPfrüh; Mittelwert der Monate März und
April 2000) (Daten vom Umweltministerium M-V, Abteilung Integrierter
Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,2</td>
<td>553</td>
<td>32,4</td>
<td>0,7</td>
<td>1,7</td>
<td>36,0</td>
<td>70,0</td>
</tr>
</tbody>
</table>

Abb. 5: Zeitliche Entwicklung der Trophieparameter vom Borgwallsee
(Vegetationsmittelwerte, April - Oktober) (Daten vom
Umweltministerium M-V, Abteilung Integrierter Umweltschutz und
Nachhaltige Entwicklung - Seenprojekt, 2002)

Die Gesamtphosphatkonzentrationen stiegen im Jahresverlauf auf maximal 120 µg/l
an. Die geringen Sichttiefen von 40 - 80 cm waren mehr auf die Aufwirbelung von
Sediment als auf Trübungen durch hohe Algenbiomassen zurückzuführen. Die
Chlorophyll a-Konzentrationen lagen zwischen 11,3 µg/l und 26,3 µg/l. Nach den
Untersuchungsergebnissen von 1997 wurde der Borgwallsee wie auch schon 1995
als hoch eutroph (e2) eingestuft. Auch die Trophieparameter des Jahres 2000
weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) weiterhin als hoch
eutroph (e2) aus. Die mittleren Gesamtphosphorkonzentrationen zeigen zwar im
Vergleich zu 1997 eine deutliche Abnahme, die Chlorophyll a-Konzentrationen
hingegen eine deutliche Zunahme. Insgesamt sind die aktuellen Trophieparameter

1.4.4 Flora und Fauna

Im Untersuchungsjahr 1997 waren die Phytoplanktonbiomassen mit maximal 5,5 mg/l relativ gering. Diatomeen stellten zu allen Untersuchungsterminen eine bedeutende Algenklasse dar und dominierten im Frühjahr die Phytoplanktongemeinschaft wie auch 1995, als die Gattungen *Fragilaria* und *Cyclotella* Biomasseanteile von 83 % ausbildeten. Im Sommer gewannen fädige und coccale Cyanobakterien an Bedeutung und im Spätsommer erreichten ihre Biomassenanteile 80 %. Phytoplanktonergebnisse aus dem Jahr 2000 (Negaster Bucht) dokumentieren erneut eine ausgeprägte Cyanobakteriendominanz zwischen Mai und September. Im Mai wurden dabei enorme Biomassekonzentrationen von 23,8 mg/l gebildet, die zu 84,9 % von der Cyanobakterienart *Pseudanabaena limnetica* verursacht wurden. Im Juni und Juli lagen die FM-Anteile der Cyanobakterien bei 55,4 % bzw. 58,6 %, um bis September auf 69,2 % anzusteigen. Zweitstärkste Biomassebildner waren im Juni und Juli Dinophyceen der Gattungen *Ceratium hirundinella* und *Gymnodinium* spec. und im August/September Diatomeen der Gattung *Fragilaria ulna* var. *acus*. Zwischen Juni und September lag die Phytoplanktonbiomasse bei Konzentrationen von 5,6 - 9,1 mg/l.

Angaben zur Fischfauna lagen nicht vor.

1.4.5 Nutzung, anthropogener Einfluss

Der Borgwallsee dient der Stadt Stralsund als Trinkwasserreservoir und ist Bestandteil des Naturschutzgebietes „Borgwallsee und Püttersee“. Er lädt zur Erholung ein, unterliegt entsprechend seines NSG-Status hinsichtlich einer Nutzung als Erholungs-
1.5 Breiter Luzin

1.5.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Breite Luzin befindet sich nordöstlich von Feldberg mitten im Naturpark Feldberger Seenlandschaft. Bei dem Breiten Luzin handelt es sich um einen glazialen Zungenbeckensee. Zwischen dem Breiten Luzin und Kleinstadt befindet sich der Feldberger Haussee, von dem der Breite Luzin einen Zulauf erhält. Das Einzugsgebiet weist eine Größe von 12,0 km² auf. Der mittlere Seeabfluss beträgt nach Messungen von 1987 0,1 m³/s.

Abb. 6: Tiefenkarte des Breiten Luzin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.5.2 Topographie und Morphometrie

Der Breite Luzin ist in zwei Seebecken gegliedert, von denen das in südwestlicher Richtung gelegene eine maximale Wassertiefe von 58,3 m aufweist, so dass der See nach dem Schaalsee zum zweittiefsten in Mecklenburg-Vorpommern zählt. Das durch die Landzunge Mönkenwerder abgetrennte zweite Becken ("Lütter See") ist deutlich flacher und besitzt eine zentral gelegene Insel. Im Folgenden wird der See jedoch in seiner morphometrischen Gesamtheit betrachtet, da die Unterschiede im Chemismus und in den biotischen Parametern gering sind.

Tab. 11: Topographie und Morphometrie des Breiten Luzin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>77,04</td>
<td>3,45</td>
<td>58,3</td>
<td>22,3</td>
<td>3434</td>
<td>1785</td>
<td>2,1</td>
<td>7,7</td>
<td>7,6</td>
<td>24,4</td>
</tr>
</tbody>
</table>
1.5.3 Chemische und trophische Charakteristik des Sees

Der See weist eine stabile thermische Schichtung auf. Im Jahr 1997 kam es nach der Frühjahrszirkulation zur Ausbildung eines metalimnischen Sauerstoffminimums in ca. 10 - 15 m Wassertiefe, das bis Anfang Oktober nachzuweisen war. Die Gesamtphosphorkonzentration von 72 µg/l zu Vegetationsbeginn verringerte sich in diesem Zeitraum im Epilimnion auf Werte bis nahe der Nachweisgrenze. Die Herbstzirkulation des Wasserkörpers konnte die seit Ende Juli registrierten anäeroben Zustände in unmittelbarer Sedimentnähe nicht auflösen, was zum Anstieg der Phosphorkonzentrationen im Tiefenbereich führte. Die sommerlichen oberflächennahen Sauerstoffersättigungen erreichten Werte von 142 % mit einem Schwerpunkt in 5 m Tiefe als Ort intensivster planktischer Primärproduktion. An der Oberfläche wurden Ende Mai 1997 maximale Chlorophyll a-Konzentrationen von ca. 21,0 µg/l ermittelt. Die sommerlichen Sichttiefen lagen zwischen 1,4 m und 2,0 m, im Herbst erreichten sie 6,0 m. Daten von 5 Beprobungsterminen (LUNG 1999) zwischen April und November 1997 (Oberfläche) ergaben Schwankungen des pH-Wertes zwischen 7,8 und 8,8 und der Leitfähigkeit zwischen 291 µS/cm und 377 µS/cm. Die Gesamtphosphorkonzentrationen variierten an der Oberfläche zwischen 10 µg/l und 48 µg/l, im Hypolimnion stiegen sie im Jahresverlauf kontinuierlich auf maximal ca. 150 µg/l im Oktober an. Eine Vollzirkulation ließ sich anhand des Temperaturgradienten bis zum 20.11.1997 nicht nachweisen. Die Konzentrationen an Gesamtstickstoff lagen zwischen 0,6 mg/l und 0,9 mg/l, dabei betrugen die oberflächennahen Nitrat-N-Konzentrationen im Minimum 0,003 mg/l und im Maximum 0,087 mg/l, die Ammonium-N-Konzentrationen im Minimum 0,022 mg/l und im Maximum 0,05 mg/l. Im Hypolimnion zeigten die Ammonium-N-Konzentrationen ebenfalls im Oktober maximale Werte von ca. 0,32 mg/l. Die SRP-Konzentrationen waren oberflächennah mit maximal 17 µg/l relativ gering. Im Breiten Luzin setzt während der Sommermonate eine intensive autochthone Calcitfällung ein, die einen wirksamen Selbstreinigungsprozess mit starker Phosphatreduzierung darstellt. Die Calciumkonzentrationen lagen im Untersuchungszeitraum zwischen 43,4 mg/l und 53,4 mg/l.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,7</td>
<td>309</td>
<td>10,6</td>
<td>2,2</td>
<td>0,7</td>
<td>18,5</td>
<td>41,0</td>
</tr>
</tbody>
</table>

Untersuchungen zwischen 1993 und 2000 belegen, dass sich der trophische Zustand zunächst um eine Stufe verbessert und seit 1995 nicht verschlechtert hat. Dabei zeigen die Gesamtphosphorkonzentrationen eine leicht rückläufige Tendenz (s. Abb. [2]). In der Transparenz und Sauerstoffkonzentration zeigt sich diese positive Entwicklung noch nicht, die Phytoplanktonbiomasse (Vegetationsmittel) und
entsprechend auch die mittleren Chlorophyll a-Konzentrationen haben im langjährigen Vergleich wieder zugenommen.

Abb. 7: Zeitliche Entwicklung der Trophieparameter vom Breiten Luzin (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.5.4 Flora und Fauna

Ein großer Teil des relativ steilen Westufers ist mit Buchenwald bestanden. Das gegenüber liegende Ufer ist durch einen gut ausgebildeten Schilfgürtel geprägt.

Die Phytoplanktonbiomasse wurde das gesamte Jahr 1997 über von Cyanobakterien dominiert, ihr Anteil an der Gesamtbiomasse (FM) lag im April bei 45,8 %, im Juni und August bei ca. 88 % und im Oktober noch bei 72,9 %. Im November sank ihr Anteil auf 47,2 %, zu dieser Zeit waren auch Cryptophyceen mit 42,3 % in vergleichbarem Ausmaß an der Zusammensetzung des Phytoplanktons beteiligt. Die Gesamtbiomasse lag im Juni bei 4,2 mg/l und erreichte Ende September ihr Maximum von > 5 mg/l. Im April waren neben Cyanobakterien auch Crypto- und Chlorophyceen mit Anteilen von 18,3 % bzw. 15,8 % dominante Phytoplanktonklassen.

Innerhalb des Zooplankton wurden im Untersuchungsjahr 1997 Ende Juni und Anfang Oktober die höchsten Frischmassen registriert, die bei 0,12 mg C/l und 0,31 mg C/l lagen. Im Juni hatten die Crustaceen daran einen Anteil von 77,7 %, im Oktober setzte sich das Zooplankton dagegen zu 90,5 % aus Rotatorien zusammen.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax. Oberbegriff</th>
<th>Ordnung</th>
<th>Fam. / Gatt. / Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.06.2001</td>
<td>Schlick</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Dreissena polymorpha</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>- Sand,</td>
<td></td>
<td></td>
<td>Pisidium sp.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>- Schill</td>
<td></td>
<td></td>
<td>Unio tumidus</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>teilw.</td>
<td></td>
<td></td>
<td>Bithynia tentaculata</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>leichter</td>
<td>Gastropoda</td>
<td></td>
<td>Potamopyrgus antipodarum</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>H₂S-Geruch</td>
<td></td>
<td></td>
<td>Valvata piscinalis</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ephemeroptera</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caenis horaria</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Athripsodes cinereus</td>
<td>15</td>
</tr>
<tr>
<td>Anzahl Arten/Taxa</td>
<td>9</td>
<td>Summe Ind./m²</td>
<td></td>
<td>771</td>
<td></td>
</tr>
</tbody>
</table>

Im Breiten Luzin wurden bei Fischerbefragungen 17 Fischarten ermittelt. Dabei kamen 10 Fischarten häufig vor und 7 eher selten (siehe Tab. 14).

<table>
<thead>
<tr>
<th>h</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>h</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>s</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>H</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>S</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td>S</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>H</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>S</td>
<td>Wels</td>
<td>Silurus</td>
</tr>
</tbody>
</table>

1.5.5 Nutzung, anthropogener Einfluss

In der wasserreichen Gegend um Feldberg kommen Paddel- und Segelsportbegeisterte auf ihre Kosten. Der Breite Luzin bildet zusammen mit den anderen Feldberger Gewässern ein abwechslungsreiches Wassersportgebiet. Aber auch Badelustige, Angler und Taucher können im Breiten Luzin ihrem Hobby nachgehen. Am Ufer des Gewässers befinden sich zwei Badestellen (Lichtenberg, Hüttenberg) sowie der Campingplatz „Am Bauernhof“.
1.6 Bützower See

1.6.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Bützower See befindet sich im Kreis Güstrow, nordwestlich des Ortes Bützow. Südwestlich des Sees befindet sich das Bützower Gefängnis. Der Bützower See ist vorwiegend durch Erosion entstanden und befindet sich im Bereich jüngerer Rückzugsstaffeln des Pommerschen Stadiums. Im Norden wird der See von landwirtschaftlicher Nutzfläche umgeben. Der See wird im Nebenschluss von der Warnow durchflossen. Das Einzugsgebiet weist eine Größe von 16 km² (ohne Warnow) bzw. von 1425 km² (mit Warnow) auf. Der mittlere Abfluss betrug 1988 0,1 m³/s. Über den nur 500 m langen Ablauf (Temse) trägt der polytrophe See wesentlich zur Planktonbefrachtung und -beimpfung der in diesem Abschnitt rückgestauten Warnow bei.

Abb. 8: Tiefenkarte des Bützower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.6.2 Topographie und Morphometrie

Der See ist im nördlichen Bereich von rundlicher Gestalt und verjüngt sich zum südwestlichen Ende hin. Der Uferverlauf ist relativ unregelmäßig.
Tab. 15: Topographie und Morphometrie des Bützower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,02</td>
<td>0,98</td>
<td>2,2</td>
<td>1,0</td>
<td>1650</td>
<td>1150</td>
<td>1,8</td>
<td>0,3</td>
<td>6,4</td>
<td>0,3</td>
</tr>
</tbody>
</table>

1.6.3 Chemische und trophische Charakteristik des Sees

Der sehr flache See ist polymiktisch. Im Untersuchungsjahr 1997 wies der Bützower See große saisonale Schwankungen der Sauerstoffsättigungen zwischen 85 % (Juni) und 177 % (August) auf. Mit Calciumkonzentrationen zwischen 58,3 mg/l und 96,4 mg/l und bei einer Gesamthärte zwischen 94 mg CaO/l und 161 mg CaO/l gehört der See zu den sehr kalkreichen Gewässern, was die geringen pH-Schwankungen (7,9 - 8,8) erklärt. Die Sestonhalte waren ganzjährig hoch und vor allem durch organische Partikel geprägt. Daten von 8 Beprobungsterminen (LUNG 1999) zwischen April und November 1997 (0,5 m) ergaben außerdem Schwankungen der Leitfähigkeit zwischen 394 µS/cm und 543 µS/cm. Die Gesamtphosphorkonzentrationen lagen im gesamten Jahr 1997 über 100 µg/l, maximale Konzentrationen von 298 µg/l wurden im August registriert. Die Konzentrationen an Gesamtstickstoff betrugen zwischen 0,9 mg/l und 1,8 mg/l. Die Ammonium-N und Nitrat-N-Konzentrationen schwankten im Jahresverlauf, ohne allerdings einen Trend erkennen zu lassen. Für Nitrat-N ergab sich ein Minimum von 0,03 mg/l und ein Maximum von 0,63 mg/l und für Ammonium-N ein Minimum von 0,01 mg/l und ein Maximum von 0,2 mg/l. Die SRP-Konzentrationen erreichten maximal 62 µg/l im Juni. Die extrem starke Phytoplanktonentwicklung spiegelt sich entsprechend in den hohen Chlorophyll a-Konzentrationen wider, die während der Massenentwicklung von Cyanobakterien im August auf 95,4 µg/l anstiegen. Im gesamten Jahresverlauf lagen die Sichttiefen bei 0,7 m und weniger. Die Trophieparameter des Jahres 2000 weisen den polymiktischen Flachsee nach LAWA-Bewertungsansatz (LAWA 1998) ebenso wie die Untersuchungsergebnisse von 1996 und 1997 als polytrope (p1) aus. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den See nach (LAWA 1998) als natürlicherweise schwach polytrope (p1) aus.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,0</td>
<td>576</td>
<td>66,2</td>
<td>0,8</td>
<td>2,4</td>
<td>171</td>
<td>117</td>
</tr>
</tbody>
</table>
1.6.4 Flora und Fauna

Der Schilfgürtel ist unterschiedlich stark entwickelt und im Norden stärker ausgeprägt.

Die Phytoplanktonentwicklung zeigte im Bützower See in den Jahresverläufen 1996 und 1997 starke Ähnlichkeit. Im Frühjahr 1997 wurde eine Diatomeenblüte bis in den Mai hinein bei Biomassekonzentrationen von 78,3 mg FM/l beobachtet. Die zunächst sehr diverse Planktongemeinschaft wurde dabei zunehmend von der centrischen Diatomeen-Art *Cyclostephanos dubius* und von *Fragilaria ulna angustissima* dominiert. Im Mai traten bereits schon größere Mengen an Cyanobakterien auf. Während der Juni-Beprobung wurde eine deutliche Abnahme der Phytoplanktonbiomasse, deren Zusammensetzung nun durch die Chlorophyceen-Arten *Tetraedron minimum* und *Scenedesmus* spp. neben *Cyclostephanos dubius* geprägt war, auf 3,0 mg/l registriert. Im Anschluss kam es zu einer massiven Cyanobakterienentwicklung, an der vor allem die fädige Art *Aphanizomenon flos-aquae* beteiligt war. Diese führte zu einem zweiten enormen Biomassepeak von insgesamt 95,7 mg/l, an dem die Cyanobakterien einen Anteil von 91,9 % hatten. Ab September entwickelten sich wieder verstärkt Diatomeen. Unter diesen dominierte zunächst die kettenbildende Form *Aulacoseira granulata*, im Oktober wurde diese Art dann von *Stephanodiscus hantzschii* abgelöst, die auch im November dominant war. Die Biomassekonzentration erreichte dabei Anfang Oktober den Extremwert von 102,3 mg/l, der zu 94 % von Diatomeen verursacht war.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>s</td>
<td>Meerforelle</td>
<td>Salmo</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus</td>
</tr>
<tr>
<td>s</td>
<td>Neunstachliger Stichling</td>
<td>Pungitius</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Lachs</td>
<td>Salmo</td>
</tr>
<tr>
<td>s</td>
<td>Döbel</td>
<td>Leuciscus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
</tr>
<tr>
<td>s</td>
<td>Moderlieschen</td>
<td>Leucaspius</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius</td>
</tr>
<tr>
<td>s</td>
<td>Flunder</td>
<td>Platichthys</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys</td>
</tr>
<tr>
<td>s</td>
<td>Bachforelle</td>
<td>Salmo</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>s</td>
<td>Regenbogenforelle</td>
<td>Salmo</td>
</tr>
<tr>
<td>s</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Aland</td>
<td>Leuciscus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
</tbody>
</table>

Die insgesamt geringe Zooplanktonbiomasse (FM) erreichte 1997 in den Monaten April und Oktober Konzentrationen um 1 mg/l und im August ein Maximum von
3 mg/l, lag zu allen weiteren Untersuchungsterminen jedoch bei 0,5 mg/l oder darunter. Ähnlich wie im Vorjahr dominierten fast ausschließlich Rotatorien, die sich ganzjährig durch eine hohe Artenvielfalt auszeichneten. Die maximale Konzentration der Zooplanktonbiomasse im August wurde ebenfalls durch Rotatorien hervorgerufen, Hauptvertreter waren die Arten Synchaeta pectinata, Polynarthra dolichoptera und Filinia longiseta. Calaniden und Cladoceren waren deutlich unterrepräsentiert.

Der See zeichnet sich durch einen großen Fischreichtum aus. Erwähnenswert sind das Vorkommen der unterschiedlichen Forellenarten, des Lachses und der Flunder (marin) sowie des Neunstachligen Stichlings.

1.6.5 Nutzung, anthropogener Einfluss

1.7 Cambser See
1.7.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 10: Cambser See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.7.2 Topographie und Morphometrie

Die s-förmig gekrümmte Seerinne besteht aus zwei etwa flächengleichen Becken, die durch beidseitige Landvorsprüinge und Untiefen in Höhe des Ortes Zittow gegen- einander abgegrenzt sind. Das südliche Becken weist mit 24,6 m die Maximaltiefe des Sees auf.
Tab. 18: Topographie und Morphometrie des Cambser Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,43</td>
<td>2,43</td>
<td>24,6</td>
<td>8,4</td>
<td>2417</td>
<td>1036</td>
<td>2,0</td>
<td>3,6</td>
<td>6,8</td>
<td></td>
</tr>
</tbody>
</table>

1.7.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th>pH-Wert [-]</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>TP_{Früh} [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS, Nord</td>
<td>9,0</td>
<td>30,1</td>
<td>1,5</td>
<td>1,1</td>
<td>55,0</td>
<td>100</td>
</tr>
<tr>
<td>CS, Süd</td>
<td>8,9</td>
<td>20,4</td>
<td>1,8</td>
<td>1,1</td>
<td>73,3</td>
<td>80,0</td>
</tr>
</tbody>
</table>

1.7.4 Flora und Fauna

In der Zusammensetzung des Zooplanktons dominierten insbesondere in der ersten Jahreshälfte und dann erst wieder im Herbst Copepoden das Plankton. Im Verlauf des Sommers erreichten bis Ende August auch Rotatorien und Cladoceren gleichwertige Biomasseanteile.

Im Gewässer würden folgende fünf Fischarten aufgefunden: Blei, Hecht, Karpfen, Aal, Schleie (MVweb GmbH & Co.KG 3 A.D.).

1.7.5 Nutzung, anthropogener Einfluss

1.8 Carwitzer See/Zansen

1.8.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 11: Carwitzer See/Zansen (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
1.8.2 Topographie und Morphometrie

| Tab. 20: Topographie und Morphometrie des Carwitzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) |
|---|---|---|---|---|---|---|---|---|---|
| V [Mio. m³] | A [km²] | z_max [m] | z_mean [m] | L_eff [m] | B_eff [m] | U_E [-] | F [-] | z_epi [m] | t_R [a] |
| 66,11 | 7,22 | 42,2 | 9,2 | 2660 | 2360 | 3,3 | 5,6 | 7,5 | 11,6 |

1.8.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiefste Stelle</td>
<td>8,4</td>
<td>391</td>
<td>2,7</td>
<td>7,5</td>
<td>1,4</td>
<td>22</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordteil</td>
<td>8,4</td>
<td>391</td>
<td>3,4</td>
<td>7,1</td>
<td>1,0</td>
<td>30</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Südtiefe</td>
<td>8,3</td>
<td>392</td>
<td>2,4</td>
<td>7,0</td>
<td>0,6</td>
<td>49</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falladaab.</td>
<td>8,3</td>
<td>391</td>
<td>1,9</td>
<td>7,1</td>
<td>1,1</td>
<td>35</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fischereib.</td>
<td>8,3</td>
<td>390</td>
<td>2,1</td>
<td>6,7</td>
<td>1,0</td>
<td>54</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostteil</td>
<td>8,3</td>
<td>391</td>
<td>2,6</td>
<td>GS</td>
<td>1,2</td>
<td>36</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Die 1995 ermittelten Nährstoffkonzentrationen ließen im gesamten Seensystem nicht auf eine Limitierung der autotrophen Produktion schließen. Bei relativ hohen Sichttiefen (Frühjahr: um 3 m, Sommer: um 2 m) wurde Ende Juni im gesamten See ein Klarwasserstadium mit Sichttiefen von 5 – 7 m registriert.

Die einzelnen Seeteile wiesen einen sehr ähnlichen Chemismus auf. Die Gesamtphosphorkonzentrationen varierten im Bereich der tiefsten Stelle/Zansen zwischen April und Oktober 1998 an der Oberfläche zwischen 6 µg/l und 32 µg/l, über dem Grund stiegen sie bis Oktober auf maximal ca. 201 µg/l an. Einen entscheidenden Anteil daran hatten die SRP-Konzentrationen, die oberflächennah zwischen 5 µg/l und 24 µg/l schwankten und über Grund 173 µg/l erreichten (Oktober). Im Bereich der Südtiefe wurden die grundnahen Messwerte mit 256 µg TP/l und 204 µg SRP/l im Oktober noch übertroffen. Zeitgleich zeigten auch die Ammonium-N-Konzentrationen grundnah ein Maximum von 0,6 mg/l (tiefste Stelle/Zansen) bzw. 1,2 mg/l (Südtiefe). Oberflächennah betrugen diese meist unter 0,03 mg/l. In den tiefsten Bereichen kann eine Phosphor-Rücklösung aus den Sedimenten im Zuge von zunehmendem Sauerstoffmangel angenommen werden.

Abb. 12: Zeitliche Entwicklung der Trophieparameter vom Carwitzer See, Südtiefe Carwitz (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
Die oberflächennahen Nitrat-N-Konzentrationen lagen in allen Seeteilen meist unter 0,01 mg/l, lediglich im Bereich der Südtiefe waren sie im Frühjahr mit 0,1 mg/l und in der Falladabucht im Oktober mit 0,4 mg/l vergleichsweise erhöht. Im Juni fielen die oberflächennahen Konzentrationen an Gesamtstickstoff im Nordteil mit 2,9 mg/l (tiefste Stelle) gegenüber den Carwitzer Seeteilen höher aus, ab September zeigten diese mit maximal 2,0 mg/l (Falladabucht) dagegen relativ höhere TN-Konzentrationen als der Zansen. Maximale Chlorophyll-a-Konzentrationen wurden im April mit 16,2 µg/l in der Fischereibucht ermittelt, das Vegetationsmittel fiel dagegen wesentlich geringer aus (s. Tab. 21). Die Calcium-Konzentrationen lagen im Bereich von 43 -50 mg/l.

1.8.4 Flora und Fauna

Im Ostteil des Carwitzer Sees wurden im Sommer größere Makrophytenbestände (*Potamogeton* spp.) bis in 3,5 m Wassertiefe nachgewiesen.

Im Gewässer wurden bei Fischerbefragungen 23 Fischarten ermittelt. Dabei kamen 16 Fischarten häufig vor und 7 eher selten (siehe Tab. 22).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h Quappe</td>
<td>Lota</td>
<td>lota</td>
</tr>
<tr>
<td>h Ukelei</td>
<td>Alburnus</td>
<td>alburnus</td>
</tr>
<tr>
<td>s Bachneunauge</td>
<td>Lampetra</td>
<td>planeri</td>
</tr>
<tr>
<td>h Karpfen</td>
<td>Cyprinus</td>
<td>carpio</td>
</tr>
<tr>
<td>h Wels</td>
<td>Silurus</td>
<td>glanis</td>
</tr>
<tr>
<td>h Blei</td>
<td>Abramis</td>
<td>broma</td>
</tr>
<tr>
<td>s Regenbogenforelle</td>
<td>Salmo</td>
<td>gairdneri</td>
</tr>
<tr>
<td>h Hecht</td>
<td>Esox</td>
<td>lucius</td>
</tr>
<tr>
<td>h Rotfeder</td>
<td>Scardinius</td>
<td>erythrophthalmus</td>
</tr>
<tr>
<td>h Schleie</td>
<td>Tinca</td>
<td>tinca</td>
</tr>
<tr>
<td>h Aal</td>
<td>Anguilla</td>
<td>anguilla</td>
</tr>
<tr>
<td>h Kaulbarsch</td>
<td>Gymnocephalus</td>
<td>cernua</td>
</tr>
<tr>
<td>s Zwergwels</td>
<td>Ameiurus</td>
<td>nebulosus</td>
</tr>
<tr>
<td>s Gründling</td>
<td>Gobio</td>
<td>gobio</td>
</tr>
<tr>
<td>h Karausche</td>
<td>Carassius</td>
<td>carassius</td>
</tr>
<tr>
<td>h Barsch</td>
<td>Perca</td>
<td>fluviatilis</td>
</tr>
<tr>
<td>s Graskarpfen</td>
<td>Ctenopharyngod</td>
<td>idella</td>
</tr>
<tr>
<td>s Silberkarpfen</td>
<td>Hypophthalmichthys</td>
<td>molitrix</td>
</tr>
<tr>
<td>h Plötze</td>
<td>Rutilus</td>
<td>rutilus</td>
</tr>
<tr>
<td>h Dreistachliger Stichling</td>
<td>Gasterosteus</td>
<td>aculeatus</td>
</tr>
<tr>
<td>s Zander</td>
<td>Stizostedion</td>
<td>lucioperca</td>
</tr>
<tr>
<td>h Kleine Maräne</td>
<td>Coregonus</td>
<td>albula L.</td>
</tr>
<tr>
<td>h Güster</td>
<td>Blicca</td>
<td>bjoerka</td>
</tr>
</tbody>
</table>

1.8.5 Nutzung, anthropogener Einfluss

abwechslungsreiches Wasserwandergebiet. In diesem Zusammenhang ist er oft
Bestandteil von mehrtätigen Bootstouren und wird von Seglern und Paddlern
befahren. Sportbootverkehr ist nicht erlaubt (MVweb GmbH & Co.KG 3 A.D.).
1.9 Conventer See

1.9.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 13: Conventer See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.9.2 Topographie und Morphometrie

Die Längenausdehnung des Gewässers erstreckt sich in Ost-West-Richtung. Der extrem flache See weist drei Inseln auf. Bei einem sehr geringen Tiefengradienten und einer theoretischen Epilimniontiefe, die die reale Tiefe bei Weitem überschreitet, kann eine stabile Schichtung ausgeschlossen werden.
Tab. 23: Topographie und Morphometrie des Conventer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_{max}</th>
<th>z_{mean}</th>
<th>L_{eff}</th>
<th>B_{eff}</th>
<th>U_{E}</th>
<th>F</th>
<th>z_{epi}</th>
<th>t_{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[-]</td>
<td>[-]</td>
<td>[m]</td>
<td>[a]</td>
</tr>
<tr>
<td>0,92</td>
<td>0,91</td>
<td>1,7</td>
<td>1,0</td>
<td>1700</td>
<td>790</td>
<td>1,7</td>
<td>0,3</td>
<td>6,2</td>
<td></td>
</tr>
</tbody>
</table>

1.9.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th>pH-Wert [-]</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>TP_{Früh} [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6</td>
<td>789</td>
<td>61,3</td>
<td>0,2</td>
<td>4,6</td>
<td>122</td>
<td>305</td>
</tr>
</tbody>
</table>

1.9.4 Flora und Fauna

Diatomeen beobachtet, der typisch für flache, ständig durchmischte Seen ist und unter den planktischen Diatomeen wurden vereinzelt halophile Arten angetroffen.

Die durchschnittliche Zooplanktonbiomasse betrug im Untersuchungszeitraum 1997 (mit Ausnahme des Frühsommers) 3 mg FM/l. Das Zooplanktonmaximum im Frühsommer mit 18 mg FM/l wurde zu 90 % von Cladoceren der Arten *Bosmina longirostris* und *Chydorus sphaericus* gestellt. Im Spätsommer dominierten Rotatorien (vor allem *Brachionus calyciflorus* und *B. diversicornis*). Copepoden konnten an allen Untersuchungsterminen nur in geringen Dichten nachgewiesen werden.

Im See wurden bei Fischerbefragungen 15 Fischarten ermittelt. Dabei kamen 7 Fischarten häufig vor und 8 eher selten (siehe Tab. 25).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>s</td>
<td>Moderlieschen</td>
<td>Leucaspis</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Rofeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>s</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
</tbody>
</table>

1.9.5 Nutzung, anthropogener Einfluss

Der Conventer See unterliegt einer Vielzahl von Nutzungsansprüchen (Naturschutzgebiet, Reservoir für Beregnungswasser, Fischerei). Im Zeitraum 1976 -1979 wurden dem See ca. 875.000 m³ Schlamm entnommen und 250.000 m³ Ostseewasser eingepumpt. Anlass hierzu gaben Verlandungserscheinungen aufgrund von Meliorationsmaßnahmen im Einzugsbereich und veränderten Vorflutverhältnissen (Schöpferwerke, Randkanal) sowie der damals schon polytrophe Zustand des Sees. Allerdings führte diese Maßnahme zu keiner Trophieverminderung und die Verlandungsneigung blieb weiterhin bestehen. Um eine Verbesserung der Wasserqualität zu erreichen, sollte wieder ein annähernd naturliches Durchflussregime hergestellt werden (LUNG 1999). Als eingedeichtes Gewässer wird der See in seinen natürlichen Gegebenheiten empfindlich gestört.
1.10 Dabelowsee

1.10.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 14: Dabelowsee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.10.2 Topographie und Morphometrie

Die Hauptachse des Gewässers erstreckt sich in Nord-Süd-Richtung (Hauptteil). Die Maximaltiefe von 30 m beschränkt sich hier auf einen relativ engen Bereich. Das sich in östlicher Richtung anschließende Becken (Ostteil) weist eine weit geringere Tiefe von maximal 6 m auf.

Tab. 26: Topographie und Morphometrie des Dabelowsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_max</th>
<th>z_mean</th>
<th>L_eff</th>
<th>B_eff</th>
<th>U_E</th>
<th>F</th>
<th>z_epi</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,69</td>
<td>1,01</td>
<td>30,5</td>
<td>6,6</td>
<td>1507</td>
<td>1424</td>
<td>1,8</td>
<td>4,7</td>
<td>6,5</td>
<td></td>
</tr>
</tbody>
</table>
1.10.3 Chemische und trophische Charakteristik des Sees

Aufgrund der Ausrichtung der Hauptachse entgegen der Hauptwindrichtung ist der See schon früh im Jahr stabil geschichtet. Im Untersuchungsjahr 1995 zeigte sich laut Gewässergütebericht (LAUN M-V & STAUN M-V 1995) bereits im Juni eine deutliche Abnahme der Sauerstoffvorräte im Hypolimnion. Im August war ab 7 m kein Sauerstoff mehr vorhanden und es bildete sich ein ausgedehntes schwefelwasserstoffreices Hypolimnion heraus. Unter diesen anaeroben Bedingungen erfolgte eine Mobilisierung des Phosphors aus dem Sediment, was sich in erhöhten SRP-Konzentrationen in den Tiefenproben niederschlug.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptteil</td>
<td>8,6</td>
<td>384</td>
<td>6,4</td>
<td>4,1</td>
<td>1,2</td>
<td>29,5</td>
<td>13,0</td>
</tr>
<tr>
<td>Ostteil</td>
<td>8,5</td>
<td>322</td>
<td>5,1</td>
<td>4,0</td>
<td>1,3</td>
<td>17,5</td>
<td>11,0</td>
</tr>
</tbody>
</table>

Abb. 15: Zeitliche Entwicklung der Trophieparameter vom Dabelowsee, Hauptteil (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
Der anorganische Stickstoff lag ausschließlich als Ammonium vor. Bis in den Herbst hinein hatte sich dieser Zustand nur geringfügig verändert. In 1 m Tiefe lagen die SRP-Konzentrationen im Hauptteil des Sees bei geringen 1 - 4 µg/l und die Gesamtphosphorkonzentrationen bei 30 µg/l. Die Gesamtstickstoffkonzentrationen schwankten hier zwischen 0,4 mg/l und 0,8 mg/l. Bei Sichttiefen zwischen 2,3 m und 4,8 m konnte von einer meist guten Durchlichtung des Epilimnions ausgegangen werden. Die in 1,0 m Tiefe gemessenen Chlorophyllkonzentrationen bewegten sich in einem Bereich von 2 –13 µg/l, möglicherweise lagen die Wasserschichten mit maximalen Phytoplanktonkonzentrationen jedoch unterhalb der beprobten Tiefen. In der Ostbucht kam es aufgrund der geringen Tiefe und der ausgeprägten Windexposition nur zu vorübergehenden Schichtungen. Im Vergleich zum Hauptbecken waren die Sichttiefen mit 2,0 - 4,0 m etwas geringer. Sowohl die oberflächennahen TP- und TN-Konzentrationen fielen mit maximal 70 µg TP/l im August/Oktober und maximal 1,4 mg TN/l im Oktober etwas höher aus als auch die Chlorophyllkonzentrationen, die hier im Oktober ein Maximum von 72 µg/l erreichten.

1.10.4 Flora und Fauna

Der Schilfgürtel ist meist sehr schmal. Am Abfluss Mühlenfließ wurden in Flachwasserbereichen ausgedehnte Bestände an Hornkraut (Ceratophyllum sp.) sowie in tieferen Bereichen Krebsschere (Stratiotes aloides) beobachtet.

An 4 Probenahmeterminen zwischen März und November 1999 zeigte das Phytoplankton eine sehr moderate Entwicklung. Das durch eine Diatomeenblüte verursachte Biomassmaximum wurde in beiden Seeteilen im März registriert und war im Hauptteil mit 5,1 mg FM/l etwas stärker ausgeprägt als im Ostteil. Hauptbiomassebildner waren zu dieser Zeit centrische Diatomeen unterschiedlichen Durchmessers. Im Juni dominierte der Dinoflagellat Ceratium hirundinella in Begleitung von den Diatomeenarten Fragilaria crotonensis und Asterionella formosa, im Ostteil waren außerdem Cryptophyceen mit der Hauptart Rhodomonas minuta entscheidende Planktonvertreter. Im August stellten neben Dinophyceen auch fädige Cyanobakterien unterschiedlicher Arten mit allerdings relativ geringen FM-Anteilen von 17,5 % (Ostteil) und 15,6 % (Hauptteil) die Hauptbiomasse, im Ostteil waren weiterhin auch Cryptophyceen dominant. Diese (vor allem Cryptomonas spp.) bestimmten dann zu 97 % (Ostteil) bzw. 79 % (Hauptteil) den Spätherbstaspekt (November). Im Untersuchungsjahr 1995 waren Cyanobakterien im August stärkste Biomassebildner, ihr Frischmasseanteil lag im Hauptteil bei 56 % und noch im Oktober bei 42 %.

Die Zooplanktonbiomasse (FM) schwankte im Untersuchungszeitraum 1999 zwischen 1,8 mg/l und 5,2 mg/l im Hauptteil, im Ostteil waren die Biomassen etwas geringer. In beiden Seeteilen dominierten im März calanoide und cyclopoide Copepoden (vor allem Adulte und Copepodite) zunächst noch in Begleitung von Rotatorien (vor allem Synchaeta pectinata und Conochilus natans) und im Juni dann ausschließlich Copepoden bei einem maximalen FM-Anteil von 91,5 % im Ostteil.
Diese blieben im Hauptteil auch im weiteren Jahresverlauf Hauptbiomassebildner bei einem relativ ausgeglichenen Verhältnis zwischen calanoiden Adulten und cyclopoiden Copepoditen. Im Ostteil bestimmten Rotatorien, Claodoceren und Copepoden die Zooplanktonstruktur und -biomasse. Innerhalb der Rotatorien dominierte *Asplanchna priodonta*, während die Cladoceren in erster Linie durch *Eubosmina coregoni*, im August auch durch *Ceriodaphnia* sp. repräsentiert waren.

Tab. 28: Makrozoobenthosvorkommen im oberen Sublitoral außerhalb der Makrophytenzone während einer Frühjahrsbeprobung mittels Bodengreifer (Mischprobe aus allen Hols von 12 Sektoren). Siebmaschenweite: 200 µm (Institut für angewandte Ökologie GmbH 2001).

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax.Oberbegriff</th>
<th>Ordnung</th>
<th>Fam./Gatt./Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6.2001</td>
<td>Schlick, Schill,</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Dreissena polymorpha</td>
<td>1807</td>
</tr>
<tr>
<td></td>
<td>vereinz. H₂S-</td>
<td></td>
<td></td>
<td>Sphaeriidae</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastropoda</td>
<td>Bithynia tentaculata</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gyraulus albus</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hippeutis complanatus</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Potamopyrgus antipodarum</td>
<td></td>
<td>222</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radix ovata</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valvata piscinalis</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Schlick, Schill,</td>
<td>Annelida</td>
<td>Oligochaeta</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>vereinz. H₂S-</td>
<td></td>
<td>Naididae</td>
<td>Tubificidae</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crustacea</td>
<td>Isopoda</td>
<td>Asellus aquaticus</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td>1852</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ephemeroptera</td>
<td>Caenis horaria</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caenis luctuosa</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trichoptera</td>
<td>indet.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leptocerus tineiformis</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cyrnus flavidus</td>
<td>30</td>
</tr>
<tr>
<td>Anzahl Arten/Taxa</td>
<td>17</td>
<td></td>
<td></td>
<td>Summe Ind./m²</td>
<td>5527</td>
</tr>
</tbody>
</table>

Der Dabelowsee ist durch einen großen Artenreichtum und hohe Individuendichten innerhalb des Makrozoobenthos gekennzeichnet. Dabei waren vor allem die Gastropoden artenreich, während die nicht näher determinierten Chironomiden und die Dreikantmuschel *Dreissena polymorpha* die höchsten Individuendichten bildeten.
Im Dabelowsee wurden bei Fischerbefragungen 21 Fischarten ermittelt. Dabei kamen 10 Fischarten häufig vor und 11 eher selten (siehe Tab. 29).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Bitterling</td>
<td>Rhodeus sericeus amarus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Binnenstint</td>
<td>Osmerus esperlanus</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus glanis</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus albumus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>s</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>s</td>
<td>Döbel</td>
<td>Leuciscus cephalus</td>
</tr>
<tr>
<td>s</td>
<td>Moderlieschen</td>
<td>Leucaspius delineatus</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
</tbody>
</table>

1.10.5 Nutzung, anthropogener Einfluss

Der Dabelowsee wird zur Naherholung genutzt. Miteingeschlossen ist das Befahren mit Paddelbooten.
1.11 Damerower See

1.11.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Damerower See liegt nordöstlich des gleichnamigen Ortes im Naturpark Nossentiner Heide in einem Sander- und Heidegebiet. Der See hat ein zum Teil landwirtschaftlich genutztes oberirdisches Einzugsgebiet von 55 km² und wird von der Mildenitz durchflossen, die aus Richtung Osten kommend den See im Westen verlässt und zum Goldberger See entwässert. Der langjährig gemessene mittlere Abfluss ist mit 0,38 m³/s angegeben. Ein weiterer Zulauf aus dem Penzliner See mündet am Südufer. Das Ufer ist fast vollständig bewaldet.

Abb. 16: Damerower See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.11.2 Topographie und Morphometrie

Tab. 30: Topographie und Morphometrie des Damerower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_max</th>
<th>z_mean</th>
<th>L_eff</th>
<th>B_eff</th>
<th>U_E</th>
<th>F</th>
<th>z_epi</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td></td>
<td>[+]</td>
<td>[m]</td>
<td>[a]</td>
</tr>
<tr>
<td>5,81</td>
<td>2,85</td>
<td>7,0</td>
<td>2,0</td>
<td>2607</td>
<td>1793</td>
<td>1,3</td>
<td>1,0</td>
<td>7,3</td>
<td>0,5</td>
</tr>
</tbody>
</table>
1.11.3 Chemische und trophische Charakteristik des Sees

Der Damerower See zählt zu den polymiktischen Flachgewässern. Im Untersuchungsjahr 1995 (April - Oktober, STAUN Schwerin) wies der Damerower See Schwankungen des pH-Wertes im engen Bereich zwischen 8,4 und 8,7 und der Leitfähigkeit zwischen 463 µS/cm und 519 µS/cm auf. Im Frühsommer wurden maximale Sauerstoffsättigungen von 127 % registriert, während Anfang August trotz der ständigen Winddurchmischung anaerobe Zustände in Sedimentnähe angetroffen wurden. Die Gesamtphosphorkonzentrationen variierten in 1 m Wassertiefe zwischen 60 µg/l und 110 µg/l. Die Konzentrationen an Gesamtstickstoff lagen zwischen 0,9 mg/l und 1,7 mg/l, dabei betrugen die oberflächennahen Nitrat-N-Konzentrationen im Minimum < 0,05 mg/l und im Maximum 1,1 mg/l, die Ammonium-N-Konzentrationen im Minimum < 0,05 mg/l und im Maximum 0,5 mg/l. Die SRP-Konzentrationen stiegen auf maximal 32 µg/l im Oktober. Hohe Phytoplanktonbiomassen (s.1.11.4) und maximale Chlorophyll a-Konzentrationen von 54,0 µg/l im August ließen auf eine hohe planktische Primärproduktion schließen, die zu keiner Zeit phosphorlimitiert war. Entsprechend gering fielen die Sichttiefen mit Werten um 0,5 m aus.

<table>
<thead>
<tr>
<th>pH-Wert</th>
<th>Leitf.</th>
<th>Chl a</th>
<th>ST</th>
<th>TN</th>
<th>TP</th>
<th>TPFrüh</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-]</td>
<td>[µS/cm]</td>
<td>[µg/l]</td>
<td>[m]</td>
<td>[mg/l]</td>
<td>[µg/l]</td>
<td>[µg/l]</td>
</tr>
<tr>
<td>8,6</td>
<td>471</td>
<td>32,2</td>
<td>0,4</td>
<td>1,5</td>
<td>100</td>
<td>60,0</td>
</tr>
</tbody>
</table>

1.11.4 Flora und Fauna

Das Seeufer ist zu etwa 90 % von einem 2 – 10 m breiten Schilfgürtel umgeben, vor dem Nymphaea alba und Nuphar lutea vorkommen.

Im Untersuchungsjahr 1995 (April - Oktober) bildete das Phytoplankton seine maximale Biomasse (FM) von 27,9 mg/l im Frühjahr. Der Peak wurde zu 43,3 % von Diatomeen (vor allem Vertreter der Gattung Synedra und centrische Arten), aber auch zu 19,1 % von fädigen Cyanobakterien (Aphanizomenon, Limnothrix und Microcystis) und zu 15 % von Dinoflagellaten gebildet. Letztere dominierten im Frühsommer mit mehreren Arten der Gattung Peridinium, daneben bestimmten auch Diatomeen und Chlorophyceen mit je 23 % FM-Anteil die Phytoplanktonzusammensetzung. Die Cyanobakterienpräsenz (vorwiegend fädige Formen wie Aphanizomenon) war insbesondere von August bis Oktober ausgeprägt, die maximalen FM-Anteile lagen bei 58,1 % im August. Daneben trugen weiterhin auch Chlorophyceen entscheidende Anteile zur Biomasse bei. Im Herbst war das Phytoplankton unter Beteiligung von Diatomeen, Dino- und Chrysophyceen sowie Cyanobakterien sehr divers zusammengesetzt. Die Biomasse-Konzentration war zu dieser Zeit mit 25,9 mg/l fast so hoch wie im Frühjahr. Lediglich im August wurden deutlich geringere Werte von 10,4 mg/l ermittelt.

Im Gewässer wurden bei Fischerbefragungen 21 Fischarten ermittelt. Dabei kamen 13 Fischarten häufig vor und 8 eher selten (siehe Tab. 32).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albumus</td>
</tr>
<tr>
<td>s</td>
<td>Moderlieschen</td>
<td>Leucaspius</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
</tbody>
</table>

h = häufig, s = selten
1.11.5 Nutzung, anthropogener Einfluss

1.12 Die Lieps

1.12.1 Genese, Lage, Einzugsgebiet und Hydrologie

Die Lieps befindet sich am Nordrand der Mecklenburgischen Seenplatte südwestlich von Neubrandenburg südlich des Tollensesees, zu dem eine Wasserverbindung besteht. Zwischen der Lieps und dem Tollensesee liegt die 1,91 km² große Landbrücke des Nonnenhofes. Diese Landbrücke, die Lieps und der Südtale des Tollensesees mit der Fischerinsel bilden das 698 ha große Naturschutzgebiet "Nonnenhof". Das Einzugsgebiet der Lieps weist eine Größe von 82,6 km² auf und wird teilweise intensiv landwirtschaftlich genutzt. Aus der landwirtschaftlichen Bewirtschaftung resultieren die hohen Nährstoffeinträge. Während im Norden Wiesen und Weiden an den See grenzen, befindet sich im Westen die Ortschaft Prillwitz und im Osten der Ort Usadel. Abflusswerte liegen nicht vor.

Abb. 17: Tiefenkarte der Lieps (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.12.2 Topographie und Morphometrie

Im Norden ragt eine Landzunge weit in das ansonsten eher rundliche Seebecken hinein. Es handelt sich bei der Lieps um einen Flachsee, dessen maximale Tiefe die mittlere kaum übertrifft.

Tab. 33: Topographie und Morphometrie der Lieps (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_max [m]</th>
<th>Z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,70</td>
<td>4,31</td>
<td>3,8</td>
<td>2,3</td>
<td>2899</td>
<td>2470</td>
<td>1,9</td>
<td>0,5</td>
<td>7,7</td>
<td></td>
</tr>
</tbody>
</table>
1.12.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,8</td>
<td>543</td>
<td>65,1</td>
<td>0,3</td>
<td>1,7</td>
<td>70,0</td>
<td>80,0</td>
</tr>
</tbody>
</table>

Abb. 18: Zeitliche Entwicklung der Trophieparameter vom Die Lieps (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Insbesondere zeigen die Chlorophyll a-Konzentrationen eine starke Zunahme, so wurden 1998 maximal 107 µg/l (im August) ermittelt. Entsprechend gering fielen die Vegetationsmittelwerte der Sichttiefe mit Werten < 0,5 m aus. Daten von 4 Beprobungsterminen (STAUN Schwerin) zwischen März und Oktober 1998 ergaben außerdem oberflächennahe Schwankungen der TP-Konzentrationen zwischen 59 µg/l (Oktober) und 180 µg/l (März), die SRP-Konzentrationen erreichten maximal 19 µg/l während des Sommers. Die TN-Konzentrationen betrugen in 1m Tiefe zwischen 1,1 mg/l und 2,4 mg/l, dabei wurden die Nitrat-N-Konzentrationen während des Sommers weitgehend aufgezehrt, höhere Werte wurden im März und Oktober mit 0,5 mg/l bzw. 0,7 mg/l ermittelt. Für Ammonium-N ergab sich ein Minimum von 0,04 mg/l und ein Maximum von 0,2 mg/l im März. Die Calciumkonzentrationen lagen im Bereich von 33,0 - 69,0 mg/l.

1.12.4 Flora und Fauna

Das artenreiche Phytoplankton bildet hohe Biomassen und wurde im Frühjahr und Sommer 1993 im wesentlichen von coccalen Chlorophyceen dominiert. In Relation zum polytropen Charakter des Sees gesehen, entwickelte das Phytoplankton im Untersuchungsjahr 1998 (März - Oktober, 4 Probenahmetermine) allerdings relativ moderate Biomassen (FM). So wurde eine maximale Frischmasse von 12,7 mg/l im August registriert, die sich zu 78 % aus Cyanobakterien zusammensetzte. Deren FM-Anteil stieg im Oktober auf 92 % an. Dabei dominierten im August Anabaena solitaria und im Oktober Lyngbya limnetica jeweils zusammen mit Aphanizomenon gracile. Im März führte eine Diatomeenblüte zu einer ähnlich hohen Biomasse (10,8 mg/l). Diese bestand vorwiegend aus centrischen Formen und Fragilaria ulna var. acus. Auch im Frühsommer prägten in erster Linie centrische Diatomeen das Phytoplanktonbild, daneben trugen auch Chloro- (coccale Formen und Scenedesmus spp.), Crypto- (Cryptomonas spp.) und Desmidiaceen (Closterium acutum) größere Anteile zur Biomasse bei.

Bis zu 170 Brutvogelarten, darunter Bekassine, Eisvogel, Kormoran, Rohrweihe, Schwarz- und Mittelspecht, Kranich, Große Rohrdommel, Gänseägern, Sumpfohr-eule und Blaukehlchen, sowie unter anderem See- und Fischadler und der Schwarzstorch als Nahrungsgäste kommen im NSG vor. Zur Zugzeit rasten hier bis zu 17.000 Saat- und Blessgänse sowie verschiedene Entenarten. Mauseransammlungen von
bis zu 3.000 Graugänsen unterstreichen die Bedeutung des Gebietes als beruhigter Rückzugsraum. (http://www.mv-regierung.de/laris/pages/navigat/791.htm)

Angaben zur Fischfauna lagen nicht vor.

1.12.5 Nutzung, anthropogener Einfluss

1.13 Dobbertiner See

1.13.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der etwa 5,4 km lange Dobbertiner See erstreckt sich mit seiner Längsachse südlich des Ortes Dobbertin in Ost-West-Richtung zwischen diluvialen Heidesanden im Norden und Geschiebemergel am Südufer. Der See liegt in einem Landschaftsschutzgebiet und erhält den Hauptzufluss durch die Mildenitz, die aus dem Goldberger See kommend, Goldberg passiert und - bis in die jüngste Vergangenheit mit den Abwässern der Stadt belastet - den Dobbertiner See im Südtel erreicht. Ein weiterer Zulauf aus der Lüschow mündet im Nordosten in den See. Der maximal 11,8 m tiefe See entwässert über die ablaufende Mildenitz am Nordufer. Der mittlere Abfluss ist mit 1,25 m³/s (langjährig) angegeben. Die Einzugsgebietsgröße beträgt 210 km².

Abb. 19: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.13.2 Topographie und Morphometrie

Tab. 35: Topographie und Morphometrie des Dobbertiner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,4</td>
<td>3,64</td>
<td>11,8</td>
<td>4,8</td>
<td>2783</td>
<td>851</td>
<td>2,6</td>
<td>1,6</td>
<td>6,9</td>
<td>0,44</td>
</tr>
</tbody>
</table>
1.13.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptteil</td>
<td>8,1</td>
<td>460</td>
<td>17,1</td>
<td>1,4</td>
<td>1,6</td>
<td>111</td>
<td>36,0</td>
</tr>
<tr>
<td>Jarger T.</td>
<td>8,1</td>
<td>461</td>
<td>17,0</td>
<td>1,3</td>
<td>1,2</td>
<td>99,3</td>
<td>40,0</td>
</tr>
<tr>
<td>Z.-Bucht</td>
<td>8,2</td>
<td>458</td>
<td>28,8</td>
<td>1,0</td>
<td>1,4</td>
<td>122</td>
<td>50,0</td>
</tr>
</tbody>
</table>

Der Dobbertiner See (Hauptteil und Jarger Tannen) wurde nach den Untersuchungsergebnissen von 1995 nach LAWA-Bewertungsansatz (LAWA 1998) als hoch eutrophes (e2) Gewässer und die Bucht Zidderich als polytroph (p1) eingeschätzt. Die Trophieparameter des Jahres 2000 weisen dagegen den Hauptteil als eutroph (e1), den Bereich Jarger Tannen weiterhin als hoch eutroph (e2) und die Bucht Zidderich an der Grenze zu eutroph (e2) aus. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den geschichteten See nach (LAWA 1998) als natürlicherweise mesotroph (m) aus.
1.13.4 Flora und Fauna

Der See war 1995 ganzjährig vegetationsgefärbt, die Phytoplanktonbiomassewerte lagen von Frühjahr bis zum Spätsommer bei etwa 10 - 25 mg FM/l. Die Sichttiefen schwankten um 0,5 - 0,7 m - auch Ende Oktober, als die Biomassewerte des Phytoplanktons auf 5 mg/l zurückgingen. Ein Klarwasserstadium wurde nicht erfasst. In der Phytoplanktonzusammensetzung spielten vor allem coccale Cyanobakterien, in der ersten Jahreshälfte aber auch centrische Diatomeen eine Rolle, ohne dass eine Art dominant war.

Im Dobbertiner See wurden bei Fischerbefragungen 15 Fischarten ermittelt. Dabei kamen 10 Fischarten häufig vor und 5 eher selten (siehe Tab. 37).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albumus albumus</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
</tbody>
</table>

1.13.5 Nutzung, anthropogener Einfluss

1.14 Döpe

1.14.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der See befindet sich östlich von Hohen Viecheln auf Höhe des Nordteils des Schweriner Sees. Der See ist ringsherum von Wiesen und Weiden umgeben. Das Einzugsgebiet weist eine relativ geringe Größe von 12,9 km² auf, Abflusswerte liegen nicht vor.

![Tiefenkarte der Döpe](image)

Abb. 21: Tiefenkarte der Döpe (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.14.2 Topographie und Morphometrie

Der längliche See ist in Nord-Südrichtung orientiert. Die mittlere Tiefe wird im zentralen Bereich überschritten.

Tab. 38: Topographie und Morphometrie der Döpe (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,29</td>
<td>0,77</td>
<td>10,2</td>
<td>3,0</td>
<td>1918</td>
<td>578</td>
<td>1,8</td>
<td>1,7</td>
<td>6,2</td>
<td></td>
</tr>
</tbody>
</table>

1.14.3 Chemische und trophische Charakteristik des Sees

Der Tiefengradient von 1,7 lässt darauf schließen, dass der See im Sommer zumindest in den tiefen Bereichen eine stabile thermische Schichtung aufweist. Daten von 4 Beprobungsterminen (Staatliches Amt für Umwelt und Natur (StAUN
2002) zwischen April und November 1996 (Oberfläche) ergaben Schwankungen des pH-Wertes zwischen 7,1 und 8,5 und der relativ hohen Leitfähigkeit zwischen 510 µS/cm und 545 µS/cm. Die Gesamtphosphorkonzentrationen variierten an der Oberfläche zwischen 100 µg/l (April und Juni) und 150 µg/l (November). Die Konzentrationen an Gesamtnitrat lagen zwischen 1,2 mg/l (Juni) und 2,3 mg/l (November), dabei betrugen die oberflächennahen Nitrat-N-Konzentrationen im Minimum < 0,05 mg/l und im Maximum 0,2 mg/l, die Ammonium-N-Konzentrationen im Minimum ebenfalls < 0,05 mg/l und im Maximum 0,9 mg/l. Auch diese Maximalwerte wurden im November registriert. Die SRP-Konzentrationen erreichten oberflächennah Spitzenwerte von 146 µg/l. Sauerstoffübersättigungen wurden im April (151 %) und August (162 %) gemessen. Auch für die Chlorophyll a-Konzentrationen ergab sich im August zeitgleich mit dem Biomassepeak des Phytoplanktons ein Maximum von 31,1 µg/l. Die Trophieparameter des Jahres 1996 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) als eutroph (e2) aus. Aus der Morphometrie ist für den geschichteten See als potentiell natürlicher Trophiezustand schwache Eutrophie (e1) abzuleiten (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7,8</td>
<td>523</td>
<td>21,4</td>
<td>1,1</td>
<td>1,4</td>
<td>105</td>
<td>100</td>
</tr>
</tbody>
</table>

114.4 Flora und Fauna

Im Untersuchungszeitraum April - November 1996 lag die Phytoplanktonbiomasse (FM) bis zum Hochsommer bei Konzentrationen im Bereich 4,3 - 4,8 mg/l, im August wurde dann ein Spitzenwert von 16,4 mg/l registriert. Das Phytoplankton setzte sich im April aus centrischen Diatomeen und Cryptophyceen (Cryptomonas spp.) zusammen. Im Juni war der Dinoflagellat Ceratium hirundinella Hauptbestandteil der Phytoplanktongesellschaft, daneben dominierten weiterhin auch Diatomeen (vor allem Asterionella formosa und Melosira granulata) sowie Cryptomonas spp.. Das Biomassemaximum verursachten Cyanobakterien mit einem FM-Anteil von 75 % unter Hauptbeteiligung von Anabaena flos-aquae. An einer sehr geringen Biomasse im November waren dann hauptsächlich Cryptophyceen beteiligt.

Im Zooplankton dominierten im gesamten Untersuchungszeitraum 1996 Copepoden und bis August auch die artenreichen Rotatorien. Diese waren vor allem in zeitlicher Abfolge durch Polyarthra major, Synchaeta spp. und Keratella quadrata vertreten. An Copepoden fielen Cyclops spp. und Eudiaptomus spp. ins Gewicht, im August wurden vermehrt Nauplien registriert. Cladoceren traten ab August verstärkt auf und erreichten ihren maximalen Biomasse-Anteil im November (78 %). Hauptzooplankter waren zu diesem Zeitpunkt Daphnia spp. und Bosmina coregoni. Hohe Biomassekonzentrationen wurden im April mit 6,2 mg FM/l und im November mit 4,3 mg FM/l gebildet.
Angaben zur Fischfauna lagen nicht vor.

1.14.5 Nutzung, anthropogener Einfluss

1.15 Drewitzer See

1.15.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 22: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.15.2 Topographie und Morphometrie

Das Gewässer besteht aus mindestens 6 hintereinandergereihten Seebecken und erstreckt sich über ca. 7 km Länge in SO-NW-Richtung. Die Maximaltiefe findet sich im südlichen Bereich des Sees. Alte Uferterrassen in Form eines besonders im Nordteil ausgeprägten breiten Sandvorlandes rings um den See lassen den Schluss zu, dass der Wasserstand früher ca. 3 m höher lag. Im Folgenden wird der See als eine morphometrische Einheit betrachtet (bei ähnlichem Chemismus der Becken).
Tab. 40: Topographie und Morphometrie des Drewitzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

![Table](image)

1.15.3 Chemische und trophische Charakteristik des Sees

Der Drewitzer See ist in Stagnationsperioden thermisch stabil geschichtet. Im Jahr 1995 kam es bereits kurz nach der Temperatureinschichtung im Tiefenbereich des Sees zu Sauerstoffdefiziten bei Sättigungen von 40 – 60 %. Im Spätsommer war der Sauerstoffvorrat im gesamten Hypolimnion aufgebraucht, so dass unterhalb von 10 m Wassertiefe anaerobe Bedingungen herrschten. Die daraus resultierende Phosphorrücklösung aus dem Sediment führte zur leichten Erhöhung der Phosphorkonzentrationen im Tiefenwasser auf 120 – 140 µg/l im Vergleich zu den Konzentrationen der oberflächennahen Wasserschichten von durchschnittlich 80 µg/l.

![Table](image)

Abb. 23: Zeitliche Entwicklung der Trophieparameter vom Drewitzer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.15.4 Flora und Fauna

Die Phytoplanktonzusammensetzung wurde während des gesamten Untersuchungszeitraums von kleinzelligen Phytoflagellaten aus unterschiedlichen taxonomischen Gruppen dominiert. Im September traten Cyanobakterien (Microcystis, Anabaena) in den Vordergrund.

1.15.5 Nutzung, anthropogener Einfluss

1.16 Dümmersee

1.16.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Dümmersee befindet sich ca. 10 km südwestlich von Schwerin und ist ein typischer Rinnensee. Im Osten liegt die Ortschaft Dümer, im Westen ein Landschaftsschutzgebiet. Den Zulauf erhält der Dümer aus einem relativ geringen Einzugsgebiet von 24,6 km² über einen Bach aus dem Ort Perlin sowie aus einem nördlich gelegenen Niedermoorgebiet, das als Quellgebiet der Sude gelten kann. Die Sude entwässert den See im Osten als zum Teil künstlich angelegte Verbindung zwischen weiteren Niedermoorgebieten in Richtung Elbe. Der langjährige, mittlere Abfluss ist mit 0,171 m³/s angegeben.

1.16.2 Topographie und Morphometrie

Der typische Rinnensee besteht aus mehreren hintereinander liegenden Becken und zwei flachen westlichen Ausbuchtungen und ist relativ steilufrig. Im Folgenden wird der See jedoch als eine morphometrische Einheit betrachtet.

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,81</td>
<td>1,63</td>
<td>21,3</td>
<td>7,9</td>
<td>2670</td>
<td>710</td>
<td>2,6</td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.16.3 Chemische und trophische Charakteristik des Sees

Der Dümmer See ist nach seinem Tiefengradienten als im Sommer thermisch stabil geschichtet zu beurteilen. Im Untersuchungsjahr 1996 (LUNG 1999) wurde zu allen Terminen eine stabile thermische Schichtung beobachtet, was auf die besonderen metereologischen Bedingungen dieses Messjahres zurückzuführen war (lange Eisbedeckung, schnell ansteigende Wassertemperaturen im Frühsommer). Möglicherweise waren hierdurch die angespannten Sauerstoffverhältnisse bedingt, die sich in hypolimnischer Sauerstoffabnahme bis zur Anaerobie ab 5 m Wassertiefe während des Sommers äußerten. In den oberflächennahen Wasserschichten traten hingegen starke Sauerstoffübersättigungen auf, der maximale Sättigungswert wurde im Juni im Nordteil mit 182 % registriert. Die Sichttiefen lagen zwischen 1,3 m und 1,5 m, abgesehen von einem Klarwasserstadium in den ersten Junitagen als Werte um 2 m gemessen wurden. Die pH-Werte waren im Frühjahr mit 9,2 maximal, im weiteren Jahresverlauf unterschritten sie nie 8,0. Die Leitfähigkeit varierte im gesamten See zwischen 484 µS/cm und 521 µS/cm. Die oberflächennahen Gesamtphosphor-Konzentrationen schwankten im Nordteil zwischen 50 µg/l und 260 µg/l mit höchsten Werten im September, im Südteil zwischen 50 µg/l und 140 µg/l mit einem Maximum im April. Vor allem im tieferen Nordteil kam es über dem Sediment zu TP-Akkumulationen bis zu 530 µg/l. Zugleich zeigten auch die Ammonium-N-Konzentrationen im Tiefenbereich des Nordteils im Zuge des sommerlichen Sauerstoffdefizits einen erheblichen Anstieg. Die oberflächennahen SRP-Konzentrationen erreichten im Nordteil maximal 53 µg/l im Juni, im Südteil maximal 31 µg/l im August. Die Gesamtstickstoffkonzentrationen betrugen in 1 m Tiefe meist zwischen 1,0 mg/l und 1,2 mg/l und waren demgegenüber nur kurzfristig (April) im Nordteil erhöht. Maximale Chlorophyll a-Konzentrationen von 36 µg/l (Nordteil) bzw. 31 µg/l (Südteil) wurden in beiden Seeteilen im September registriert. Für die Calcium-Konzentrationen ergab sich ein Schwankungsbereich von 75 - 87 mg/l. Der Dümmersee zeigte in den letzten Jahren eine kontinuierliche Trophieabnahme. So wiesen die Trophieparameter den See nach LAWA-Bewertungsansatz im Jahr 1996 noch als hoch eutroph (e2), im Jahr 1999 als schwach eutroph (e1) und im Jahr 2001 als mesotroph aus. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den geschichteten See nach (LAWA 1998) als natürlicherweise mesotroph (m) aus.

Tab. 43: Vegetationsmittelwerte (April - Oktober) chemischer und trophie-relevanter Parameter des Jahres 2001 (Ausnahme TPFrüh: Mittelwert der Monate März und April 2001)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,2</td>
<td>494</td>
<td>8,4</td>
<td>3,8</td>
<td>1,3</td>
<td>54,0</td>
<td>133</td>
</tr>
</tbody>
</table>

1.16.4 Flora und Fauna

Topografischen Angaben zu Folge (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ist der See ringsherum mit Schilfrohr bestanden. Die Phytoplanktonzusammensetzung war im Untersuchungszeitraum März - Oktober 1999 zunächst durch centrische Diatomeen und Asterionella formosa geprägt. Die Frischmasse blieb dabei in beiden Seeteilen auf relativ niedrigem Niveau von 1,6 mg/l und stieg im Nordteil auf maximal 8,1 mg/l im September, im Südteil auf 4,2 mg/l im Juni an. Im Frühsommer überwog die Cryptophyceenart Cryptomonas sp.

Innerhalb des Zooplanktons dominierten im März 1999 Copepoden mit FM-Anteilen > 95 %. Im Südteil waren Cladoceren im Juni die stärkste Fraktion und behielten auch bis Oktober ähnlich hohe FM-Anteile wie Copepoden bei. Im Nordteil entwickelten Cladoceren nur im Oktober bedeutung FM-Anteile. Rotatorien waren hier mit ca. 13 % FM-Anteil zwischen April und Oktober stärker präsent als im Südteil. Als bedeutendste Copepoden sind Eudiaptomus sp. und Cyclops sp. sowie ihre Entwicklungsstadien zu nennen, Hauptvertreter der Cladoceren waren hingegen Bosmina coregoni, Daphnia sp. und Diaphanosoma brachyurum. Als maximale Zooplankton-Frischmasse wurde im September ein Wert von 4,7 mg/l registriert, dabei war die Zooplanktonbiomasse im Südteil während der Vegetationsperiode gegenüber dem Nordteil erhöht.

Im Juni 1999 wurden Entwicklungsstadien der Dreikantmuschel Dreissena polymorpha registriert.

Angaben zur Fischfauna lagen nicht vor.

1.16.5 Nutzung, anthropogener Einfluss

Der Dümmerei See hat eine große territoriale Bedeutung für die Erholungsnutzung. Entsprechend ist er Ziel für sowohl kurz- als auch langfristig verbleibende Erholungs- suchende, die am Gewässer unter anderem Angelmöglichkeiten, ein Strandbad sowie einen Campingplatz (Perlin) mit Bootsverleih vorfinden. Für Motorboote mitVerbrennungsmotor ist der Dümmerei See gesperrt. Die Wasserbeschaffenheit wurde in der Vergangenheit durch Belastungen aus der Landwirtschaft, aber auch durch die Fischwirtschaft (intensive Forellenproduktion in Netzkäfigen, Besatz mit Silberkarpfen) geprägt, was wiederholt zu Badeverboten führte.
1.17 Feisnecksee

1.17.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Feisnecksee befindet sich südlich von Waren und östlich der Binnenmüritz. Im Süden ist der See von Nadelwald umgeben. Das Einzugsgebiet weist eine Größe von 31,9 km² auf, der mittlere Abfluss ist nicht bekannt.

![Abb. 25: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)](image)

1.17.2 Topographie und Morphometrie

Der See ist in einen Nord- und Südteil untergliedert, wird jedoch im Folgenden als eine morphometrische Einheit betrachtet. In der Seemitte befindet sich eine Insel.

Tab. 44: Topographie und Morphometrie des Feisnecksees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,57</td>
<td>1,94</td>
<td>14,0</td>
<td>7,5</td>
<td>3100</td>
<td>600</td>
<td>1,63</td>
<td>2,0</td>
<td>6,9</td>
<td></td>
</tr>
</tbody>
</table>

1.17.3 Chemische und trophische Charakteristik des Sees

In Bezug auf die Trophie und planktische Besiedlung sowie die meisten chemischen Parameter waren sich 1996 der Nord- und Südteil sehr ähnlich. Der Tiefengradient von 2,0 weist den See als im Sommer thermisch stabil geschichtet aus. Nach Daten zwischen Mai und Oktober 1996 (4 Beprobungstermine, StAUN Schwerin) lag die Sprungschicht im Juli zwischen 7 m und 10 m, im August begann sie schon bei ca. 5 m. Im Juli/August wurden starke metalimnische Sauerstoffdefizite registriert, das Hypolimnion war zu dieser Zeit bereits anaerob. Mitte Oktober führte die Auflösung der Schichtung zu einer annähernd 100 %igen Sauerstoffsättigung bis in ca. 10 m Wassertiefe. Die Gesamtphosphorkonzentrationen variierten an der Oberfläche zwischen minimal 69 µg/l (Oktober) und maximal 424 µg/l (Nordteil) bzw. ca. 126 µg/l (Südteil) im August. Die oberflächennahen Konzentrationen an Gesamtstickstoff...
lagen minimal bei 0,7 mg/l - 0,9 mg/l und erreichten maximal zunächst im Nordteil 1,2 mg/l (Mai) und später im Südteil 1,1 mg/l (Juli). Im Hypolimnion kam es im August zu maximalen Anstiegen der Nährstoffkonzentrationen, die im Südteil mit 524 µg TP/l, 228 µg SRP/l, 2,2 mg TN/l und 1,3 mg NH₄-N/l höher als im Nordteil ausfielen. Die Nitrat-N-Konzentrationen waren in beiden Seeteilen und in allen Tiefen stets <= 0,1 mg/l. Die maximalen Chlorophyll a-Konzentrationen im Oktober waren ebenfalls in beiden Seeteilen mit 4,1 µg/l (Süd) bzw. 4,7 µg/l (Nord) vergleichbar. Für die Calcium-Konzentrationen ergab sich insgesamt eine Schwankungsbreite von 83 - 97 mg/l. Die Trophieparameter des Jahres 1996 kennzeichnen den See nach LAWA-Bewertungsansatz (LAWA 1998) als mesotroph. Dies spiegelt auch den trophischen Referenzzustand wieder, welcher auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient ermittelt wurde (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,3</td>
<td>563</td>
<td>2,5</td>
<td>2,2</td>
<td>1,0</td>
<td>120</td>
<td>124</td>
</tr>
</tbody>
</table>

1.17.4 Flora und Fauna

Die Phytoplanktonzusammensetzung war im saisonalen Verlauf (Mai - Oktober 1996) im Nord- und Südteil vergleichbar. Unterschiede zeigten sich lediglich in der Ausbildung der Biomasse (FM). So ergab sich im Nordteil ein Minimum von 3,2 mg/l im Juli, im August dagegen ein Peak von 16,9 mg/l. Im Südteil fiel die Biomasseentwicklung mit 5,0 - 9,5 mg/l moderater aus, auch hier wurde das Maximum im August registriert. Im Mai dominierten centrische Diatomeen mit FM-Anteilen von 95 %. Im Juli und August war der Dinoflagellat Ceratium hirundinella absolut vorherrschend, der maximale FM-Anteil der Dinophyceen lag im August bei 96 % (Nordteil) bzw. 91 % (Südteil). Daneben erreichte im Juli auch die Chrysophyceenart Dinobryon divergens vor allem im Nordteil etwas höhere FM-Anteile, ohne codominant zu sein (FM-Anteil < 15 %). Den Herbstaspekt bestimmten Cryptophyceen (Crypromonas spp.) zusammen mit centrischen Diatomeen.

Bedeutendste Zooplankter waren im gesamten Untersuchungszeitraum 1996 Copepoden (vor allem Adulte), wobei die calanoiden Copepoden stärker ins Gewicht fielen. Rotatorien waren im Mai (Nord-/Süd) und Juli (Südteil) durch Keratella quadrata und im Südteil vor allem durch Asplanchna priodonta etwas häufiger vertreten, Cladoceren dagegen im August (nur Südteil beprobt). Die Zooplanktonbiomasse erreichte im Südteil maximal 10,6 mg/l (Mai) und im Nordteil 7,2 mg/l (Juli).

Im Gewässer wurden bei Fischerbefragungen 14 Fischarten ermittelt. Dabei kamen 12 Fischarten häufig vor und nur 2 eher selten (siehe Tab. 46).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus alburnus</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluvialitis</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
</tbody>
</table>

1.17.5 Nutzung, anthropogener Einfluss

Der Feisnecksee gehört zum Müritz-Nationalpark und wird von Angelsportlern (mit Sondergenehmigung auch Raubfischangeln) sowie Badegästen genutzt. Letztere finden im Bereich Waren eine ausgewiesene Badestelle.
1.18 Feldberger Haussee

1.18.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Feldberger Haussee liegt unmittelbar im nordöstlichen Stadtgebiet von Feldberg in einem Endmoränengebiet und ist Bestandteil des Naturparks Feldberger Seenlandschaft. Bei einem relativ kleinen Einzugsgebiet von 5,3 km² entwässert der See zum Breiten Luzin, nachdem 1969 die Verbindung zum Schmalen Luzin (Seerosenkanal) künstlich unterbrochen worden ist.

Abb. 26: Feldberger Haussee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.18.2 Topographie und Morphometrie

Der See setzt sich aus mehreren Becken zusammen und besitzt im Nordteil 2 kleine Inseln, auf denen früher Seekreide abgebaut worden ist. Die Maximaltiefe befindet sich im nördlichen Bereich. Die Längenausdehnung verläuft von Norden nach Süden, wobei sich der See in Richtung Süden gabelt.

Tab. 47: Topographie und Morphometrie des Feldberger Haussees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_{max} [m]</th>
<th>Z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_{E} [-]</th>
<th>F [-]</th>
<th>Z_{epi} [m]</th>
<th>t_{R} [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,34</td>
<td>1,31</td>
<td>12,5</td>
<td>4,9</td>
<td>1911</td>
<td>861</td>
<td>2,6</td>
<td>2,0</td>
<td>6,4</td>
<td>3,8</td>
</tr>
</tbody>
</table>
1.18.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th>pH-Wert</th>
<th>Leitf.</th>
<th>Chl a</th>
<th>ST</th>
<th>TN</th>
<th>TP</th>
<th>TP Früh</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,9</td>
<td>381</td>
<td>18,7</td>
<td>2,3</td>
<td>1,2</td>
<td>83</td>
<td>140</td>
</tr>
</tbody>
</table>

Im Vergleich zu den Befunden vor 1985 (mit epilimnischen Phosphorkonzentrationen über 1 mg/l) hat sich der trophische Zustand also deutlich gebessert. Bereits 1997 wurden nur noch ca. 10 % der epilimnischen TP-Vorjahreskonzentrationen vorgefun- den und auch der hypolimnische Maximalwert lag unter 500 µg/l. Nachdem der Feld-

Daten von 5 Beprobungsterminen (LUNG 1999) zwischen April und November 1997 (Oberfläche) ergaben Schwankungen des pH-Wertes zwischen 7,5 und 9,2 und der Leitfähigkeit zwischen 342 µS/cm und 402 µS/cm. Die epilimnischen TP-Konzentrationen varierten zwischen 40 µg/l und 154 µg/l, im Hypolimnion erreichten sie im September maximal 480 µg/l. Die Konzentrationen an Gesamtstickstoff lagen oberflächennah zwischen 1,2 mg/l und 1,8 mg/l, dabei betrugen die Nitrat-N-Konzentrationen im Minimum 0,003 mg/l und im Maximum 0,078 mg/l, die Ammonium-N-Konzentrationen im Minimum 0,002 mg/l und im Maximum 0,744 mg/l. Im Hypolimnion erreichten diese allerdings im September Spitzenwerte von ca. 2,8 mg/l. Die oberflächennahen SRP-Konzentrationen waren mit maximal 119 µg/l im Vergleich zu 2000 (s.o.) noch sehr hoch.

Abb. 27: Zeitliche Entwicklung der Trophieparameter vom Feldberger Haussee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.18.4 Flora und Fauna

Seit 1993 ist im Feldberger Haussee ein deutlicher Rückgang der Phytoplanktonbiomasse zu beobachten, der sich ab 1996 auf einem Niveau von ca. einem Drittel der zuvor im Mittel erreichten Werte einzupegeln scheint. Im Zusammenhang mit der Veränderung chemischer Parameter (Rückgang des Phosphorgehaltes, Anstieg der

Das Crustaceenplankton zeigte im Jahr 2000 einen dreigipfligen Entwicklungszyklus, wobei sich die Zusammensetzung der Gemeinschaft und der sommerliche Rückgang der Bestände nach dem Beginn der Biomanipulation als typische Merkmale des Gewässers herausgestellt haben. Ein erstes Crustaceenmaximum von ca. 0,4 mg C/l ergab sich im Februar. Es wurde nahezu ausschließlich von cyclopoiden Copepoden gebildet. Das typische Frühjahrsmaximum wurde im Mai angetroffen. Die Gesamtbiomasse des Crustaceenplanktons erreichte zu dieser Zeit 0,9 mg C/l. Bestandsbildende Formen waren Daphnia spp. (0,5 mg C/l) und Eudiaptomus gracilis (0,2 mg C/l). Im Vergleich dazu fielen die Frühjahrsmaxima 1998 und 1999 mit 0,6 mg C/l und 0,4 mg C/l wesentlich niedriger aus. Anschließend ging die Biomasse des Crustaceenplanktons stark zurück und lag während der Sommermonate zumeist deutlich unter 0,2 mg C/l und damit deutlich unter den Werten der beiden Vorjahre. Im Zeitraum Oktober - November wurde ein dritter Wachstumszyklus beobachtet, der zu einer Gesamtbiomasse von ca. 0,4 mg C/l führte, an der Daphnia spp., E. gracilis und cyclopoide Copepoden etwa gleiche Anteile hatten. Die durchschnittliche Biomasse von Daphnia spp. lag im Zeitraum Mai - September bei 0,07 mg C/l und damit unter dem Bereich des langfristigen Mittelwertes seit dem Beginn der Biomanipulation (0,08 mg C/l). Eudiaptomus gracilis erreichte in der gleichen Periode etwa 0,09 mg C/l und blieb im Bereich des Langfristmittels von 0,09 mg C/l. Cyclopoide Copepoden erreichten mit 0,03 mg C/l weit geringere Biomassen als sich aus dem langjährigen Mittelwert (0,09 mg C/l).
nach dem Beginn der Biomanipulation ergeben (Koschel et al. 2000). Im Jahr 2001 fielen die maximalen Biomassewerte deutlich geringer als im Vorjahr aus.

Im Rahmen des Biomanipulationsexperimentes im Feldberger Haussee wurden 1985 ff. zunächst die dominierenden zooplanktivoren und benthivoren Cypriniden (Plötze, Blei) intensiv befischt. Seit 1988 erfolgte jährlich der Besatz mit juvenilen Zandern (Sander lucioperca) und seit 1994 zusätzlich mit Hechten (Esox lucius), Welsen (Silurus glanis), Aalen (Anguilla anguilla) und Barschen (Perca fluviatilis) zur Anhebung des internen piscivoren Fraßdrucks (Wysujack et al. 2000).

1.18.5 Nutzung, anthropogener Einfluss

1.19 Flacher See Klocksin

1.19.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der See befindet sich ca. 0,5 km südlich von Klocksin und südwestlich von Vollrathsruhe in einem Landschaftsschutzgebiet (Lütgendorf). Das relativ kleine Einzugsgebiet weist eine Größe von 11,4 km² auf. Im Südwesten besteht eine Verbindung zum Tiefen See. Abflusswerte zu dem Gewässer liegen nicht vor.

Abb. 28: Tiefenkarte des Flachen See Klocksin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.19.2 Topographie und Morphometrie

Der See weist eine längliche Gestalt auf und ist in Nord-Südrichtung orientiert. Im Süden zeigt der Seeverlauf eine scharfe LinksKrümmung.

Tab. 49: Topographie und Morphometrie des Flachen See Klocksin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_{E} [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_{R} [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,57</td>
<td>1,30</td>
<td>31,9</td>
<td>9,7</td>
<td>2446</td>
<td>618</td>
<td>2,4</td>
<td>4,9</td>
<td>6,6</td>
<td></td>
</tr>
</tbody>
</table>
1.19.3 Chemische und trophische Charakteristik des Sees

Der Tiefengradient von 2,4 lässt darauf schließen, dass der See im Sommer eine stabile thermische Schichtung aufweist. Daten von 4 Beprobungsterminen (STAUN Schwerin) zwischen April und November 1996 (1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 7,9 und 8,8 und der relativ hohen Leitfähigkeit zwischen 470 µS/cm und 679 µS/cm. Die Gesamtphosphorkonzentrationen variierten zwischen 98 µg/l (Juli) und 170 µg/l (November). Die Konzentrationen an Gesamtstickstoff lagen zwischen 0,9 mg/l (November) und 1,4 mg/l (April, Juli), dabei betrugen die oberflächennahen Nitrat-N-Konzentrationen im Minimum 0,04 mg/l und im Maximum 0,2 mg/l (April), die Ammonium-N-Konzentrationen im Minimum 0,1 mg/l und im Maximum 0,6 mg/l (November). Die SRP-Konzentrationen erreichten ebenfalls im November oberflächennah Spitzenwerte von 48 µg/l. Sauerstoffübersättigungen wurden nur im April mit 118 % gemessen. Für die Chlorophyll-a-Konzentrationen ergab sich im November ein Maximum von 6,8 µg/l. Die Sichttiefen schwankten im Bereich von 2,2 - 3,2 m. Charakteristisch waren hohe Calcium-Konzentrationen von 78,6 - 90,1 mg/l. Die Trophieparameter des Jahres 1996 kennzeichnen den See nach LAWA-Bewertungsansatz (LAWA 1998) als mesotroph. Dies spiegelt auch den morphometrischen Referenztrophiegrades für den See wieder (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6</td>
<td>619</td>
<td>3,0</td>
<td>2,6</td>
<td>1,3</td>
<td>103</td>
<td>116</td>
</tr>
</tbody>
</table>

1.19.4 Flora und Fauna

Das Phytoplankton bildete im Untersuchungszeitraum (April - November 1996) meist nur geringe Biomassen (FM) von 0,9 mg/l im April und 0,3 mg/l im November. Maximale Konzentrationen wurden im September mit 6,6 mg/l registriert. Im Mai dominierten Diatomeen, im Juli und September Dinophyceen mit maximalen FM-Anteilen von 98 % (September). Im November waren Diatomeen zu 71 % und Cryptophyceen zu 22 % an der Biomasse beteiligt.

Im Zooplankton dominierten im gesamten Untersuchungszeitraum Copepoden. Im April und November waren daneben auch Rotatorien dominant, im September auch Cladoceren. Die Copepoden erreichten maximale FM-Anteile von 97 % im Juli. Ihr Anteil ging dann im September, als das Biomassmaximum von 6,6 mg/l registriert wurde, auf 69 % zurück.

Im Gewässer wurden bei Fischerbefragungen 18 Fischarten ermittelt. Dabei kamen 12 Fischarten häufig vor und 6 eher selten (siehe Tab. 51).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td></td>
<td>Stichling</td>
<td>aculeatus</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albomus</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td></td>
<td></td>
<td>erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cernua</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
</tbody>
</table>

1.19.5 Nutzung, anthropogener Einfluss

Der Flache See Klocksin ist als Angelgewässer in Mecklenburg-Vorpommern ausgegeben und unterliegt einer entsprechenden Nutzung.
1.20 Fleesensee

1.20.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 29: Tiefenkarte des Fleesensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.20.2 Topographie und Morphometrie

Tab. 52: Topographie und Morphometrie des Fleesensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>66,02</td>
<td>10,78</td>
<td>26,3</td>
<td>6,1</td>
<td>4900</td>
<td>3200</td>
<td>1,5</td>
<td>3,1</td>
<td>8,6</td>
<td>0,7</td>
</tr>
</tbody>
</table>
1.20.3 Chemische und trophische Charakteristik des Sees

Der Tiefengradient von 3,1 weist den See als im Sommer thermisch stabil geschichtet aus. Beprobungen im Juli und September 1993 bis in 20 m Tiefe wiesen allerdings keine stabilen Schichtungsverhältnisse nach (Gewässergütebericht 1993). Daten von 4 Beprobungsterminen (STAUN Schwerin) zwischen März und November 1997 (1 m Tiefe) ergaben nur minimale Schwankungen des pH-Wertes um 8,4 und Schwankungen der relativen hohen Leitfähigkeit im Bereich zwischen 518 µS/cm und 686 µS/cm. Die Gesamtphosphorkonzentrationen variierten zwischen 80 µg/l (Frühjahr/Herbst) und 200 µg/l (Juli). Die Konzentrationen an Gesamtstickstoff lagen zwischen 0,9 mg/l (September) und 1,2 mg/l (Frühjahr/Herbst), dabei betrugen die oberflächennahen Nitrat-N-Konzentrationen im Minimum 0,005 mg/l und im Maximum 0,2 mg/l (März), die geringen Ammonium-N-Konzentrationen im Minimum 0,02 mg/l und im Maximum 0,09 mg/l (März). Die SRP-Konzentrationen stiegen im November auf 44 µg/l an. Maximale Sauerstoffsättigungen wurden im Juli gemessen und lagen bei 111 %. Für die Chlorophyll a-Konzentrationen ergab sich im September ein Maximum von 16,6 µg/l. Die Sichttiefen schwankten im Bereich von 1,8 - 2,8 m. Charakteristisch waren Calcium-Konzentrationen von 62,5 - 73,7 mg/l. Die Trophieparameter des Jahres 1997 kennzeichnen den See nach LAWA-Bewertungsansatz (LAWA 1998) als eutroph (e1). Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den geschichteten See nach (LAWA 1998) als natürlicherweise mesotroph (m) aus.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,5</td>
<td>536</td>
<td>11,3</td>
<td>2,3</td>
<td>1,0</td>
<td>169</td>
<td>80,0</td>
</tr>
</tbody>
</table>

1.20.4 Flora und Fauna

Das Phytoplankton bildete im Untersuchungszeitraum (März - November 1997) während der eigentlichen Vegetationsperiode relativ geringe Biomassen (FM) von 2,5 mg/l (im Juli) oder weniger. Erst Anfang November wurden maximale Konzentrationen von 9,0 mg/l registriert. Diatomeen bildeten dabei im Frühjahr und Spätherbst (November) Blüten aus. Im Juli dominierten hingegen Cryptophyceen und im September Cyanobakterien vollständig das Phytoplanktonbild.

Das Zooplankton setzte sich im März zu 84 % aus Copepoden zusammen. Im weiteren Jahresverlauf blieben diese dominant, aber auch Cladoceren entwickelten ab September höhere Biomassen, so dass im November etwa gleiche FM-Anteile auf Cladoceren und Copepoden entfielen. Rotatorien waren im Untersuchungszeitraum 1997 unterrepräsentiert.

Fischerbefragungen insgesamt 21 Fischarten ermittelt. Dabei kamen 13 Fischarten häufig vor und 8 eher selten (siehe Tab. 54).

Tab. 54: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand November 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod idella</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Binnenstint</td>
<td>Osmerus esperlanus</td>
</tr>
<tr>
<td>s</td>
<td>Regenbogen-forelle</td>
<td>Salmo gairdneri</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys nobilis</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpetziger</td>
<td>Misgumus fossilis</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
</tbody>
</table>

1.20.5 Nutzung, anthropogener Einfluss

1.21 Galenbecker See

1.21.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Galenbecker See befindet sich ca. 18 km westlich von Torgelow, etwa 20 km von der Oderhaffküste entfernt und gehört seit 1939 zu einem 1015 ha großen Naturschutzgebiet. Das Gewässer und die es umgebenden Landschaftselemente entstanden während der Weichselkaltzeit vor etwa 15000 Jahren, wobei der Galenbecker See und das Gebiet der sich im Südosten anschließenden Friedländer Großen Wiese als Zungenbecken von einer vorstoßenden Gletscherzunge ausge schürft wurden. Im Postglazial existierten vermutlich zwei Seen, welche in der Folgezeit bis auf eine ehemals tiefe Rinne - den heutigen Galenbecker See - weitgehend verlandeten. Der Zulauf des südwestlich gelegenen Golmer Mühlbaches führt über eine Fließstrecke von ca. 6 km Wasser aus der Talsperre Brohm heran, als Ablauf fungiert der Weiße Graben im Nordosten (Schönberger et al. 1999) und auch über die Zarow entwässert der See in das Stettiner Haff. Das Einzugsgebiet weist eine Größe von 148,0 km² auf, der mittlere Seeabfluss betrug 1997 0,18 m³/s.

Abb. 30: Tiefenkarte des Galenbecker Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.21.2 Topographie und Morphometrie

Der Galenbecker See ist mit einer durchschnittlichen Tiefe < 1 m extrem flach. Er gliedert sich durch eine Halbinsel und eine vorgelagerte kleinere Insel, die Teufelsinsel, in zwei etwa gleich große Becken, den sogenannten Obersee (Westteil)
und den Untersee (Ostteil), die jedoch nach Trophie und biologischen Kriterien vergleichbar sind und im Folgenden als morphometrische Einheit betrachtet werden.

Tab. 55: Topographie und Morphometrie des Galenbecker Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,50</td>
<td>5,90</td>
<td>1,85</td>
<td>0,76</td>
<td>4250</td>
<td>2080</td>
<td>1,7</td>
<td>0,2</td>
<td>8,0</td>
<td></td>
</tr>
</tbody>
</table>

1.21.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostteil</td>
<td>9,1</td>
<td>711</td>
<td>133</td>
<td>0,2</td>
<td>4,0</td>
<td>120</td>
</tr>
<tr>
<td>Westteil</td>
<td>9,1</td>
<td>706</td>
<td>129</td>
<td>0,2</td>
<td>4,4</td>
<td>135</td>
</tr>
</tbody>
</table>
Daten von 7 Beprobungsterminen (LUNG 1999) zwischen März und September 1995 (Oberfläche) ergaben im Ostteil Veränderungen des pH-Wertes zwischen 8,2 und 9,9 und der Leitfähigkeit zwischen 624 µS/cm und 874 µS/cm. Die extrem hohen Konzentrationen an Gesamtstickstoff (TN) zeigten eine große Schwankungsbreite und lagen zwischen 1,9 mg/l (Juni) und 8,5 mg/l (August), dabei betrugen die Nitrat-N-Konzentrationen im Minimum 0,005 mg/l (Juni) und im Maximum 6,7 mg/l (März), die Ammonium-N-Konzentrationen im Minimum 0,03 mg/l (März, Mai) und im Maximum 0,46 mg/l (Juni).

Abb. 31: Zeitliche Entwicklung der Trophieparameter vom Galenbecker See, Ostteil (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
auch die maximale Chlorophyll a-Konzentration von 272,3 µg/l. Auffallend hoch waren in beiden Seeteilen auch die Calciumkonzentrationen mit maximal 126 mg/l. Im Vergleich zu diesen Werten ergab sich 1998 keine so drastische Erhöhung der TN-Konzentrationen, diese schwankten mit 2,5 - 6,5 mg/l in beiden Seeteilen aber immer noch in einem sehr hohen Bereich. Einen Rückgang zeigten aber die Ammonium-N-Konzentrationen, die maximal bei 0,05 mg/l im Westbecken lagen. Auch die maximalen Chlorophyll a-Konzentrationen gingen 1998 nicht über 100 µg/l hinaus (Daten von Juli fehlen allerdings).

1.21.4 Flora und Fauna

Im Phytoplankton des Galenbecker Sees herrschten nach Angaben des LUNG (1999) zwischen 1995 und 1997 Cyanobakterien, Diatomeen und Cryptophyceen vor. So kam es im März 1995 zunächst zu einer Diatomeenblüte (Synedra, Diatoma), die mit Biomasseanteilen von 81,5 % an der Gesamtbiomassekonzentration von 19,3 mg FM/l im Westteil ausgeprägter war als im Ostteil, wo Diatomeen 50,9 % an der Gesamtbiomassekonzentration von 10,8 mg FM/l erreichten. Im Anschluss waren die Phytoplanktonbiomassen dann im Ostteil mit ca. 12 mg/l bis Mitte Juni höher als im Westteil, im August lagen sie in beiden Seeteilen bei 3,1 mg/l. Daneben waren mit Ausnahme Juni/Juli (Westbecken) bzw. Juli (Ostbecken) Cyanobakterien dominant, ihr maximaler Biomasseanteil lag im Ostbecken bei 59,7 % im Juni, im Westbecken dagegen bei 35,5 % im August. Als Hauptvertreter der Cyanobakterien sind die Arten Planktothrix limnetica und Aphanizomenon flos-aquae zu nennen. Lediglich im Juni/Juli wurden diese nochmals durch Diatomeen verdrängt, die in beiden Seeteilen Anteile von 78 % erreichten, gefolgt von Chlorophyceen mit 21,4 %. Cryptophyceen waren in beiden Seeteilen sowohl im April als auch August stärkste Biomassebildner. Im August waren weiterhin auch Chlorophyceen eine dominante Phytoplanktonklasse. Im gesamten Untersuchungszeitraum 1999 (März - Oktober) entwickelte das Phytoplankton in beiden Seeteilen noch höhere Biomassen als 1995 mit minimalen Konzentrationen von 11,1 mg/l (Ostteil) bzw. 10,2 mg/l (Westteil) im Juni und maximalen Konzentrationen von 47,9 mg/l (Ostteil) und 45,4 mg/l (Westteil) im August. Die Phytoplanktonzusammensetzung war in beiden Seeteilen vergleichbar und wurde durchgehend von Diatomeen, die im März und Oktober maximale FM-Anteile von zeitweilig > 90 % bildeten und von Cyanobakterien geprägt. Diese waren von März/April bis einschließlich September codominant und etwa zur Hälfte am
sommerlichen Biomassepeak beteiligt. Daneben trugen lediglich Chrysophyceen im April bedeutsame FM-Anteile von ca. 15 % zur Biomasse bei. Innerhalb der Diatomeen war Fragilaria ulna var. acus bzw. Fragilaria spp. vorherrschend, innerhalb der Cyanobakterien dominierte zunächst Limnothrix redekei; im Juni zusammen mit Planktothrix agardhii und von Juli - September Planktolyngbya limnetica, während die Chrysophyceen durch Dinobryon spp. vertreten waren.

Die Zooplanktongesellschaft der Jahre 1996 bis 1998 setzte sich aus Cladoceren (Bosmina longirostris), Copepoden sowie Rotatorien zusammen.

Nach 1989 brach der Markt für Weißfische zusammen und in der Folge verblieben diese seither im Gewässer bzw. wurden zurückgesetzt. Die Friedfische üben einen starken Fraßdruck auf das Zooplankton aus und bewirken so eine Verschiebung der Zooplanktonstruktur hin zu kleineren Formen. Die besonders effektiv algenfiltrierenden Daphnien sind infolgedessen fast verschwunden. Der Fischbestand des Gewässers wird von Plötze (Rutilus rutilus), Blei (Abramis brama), Güster (Blicca bjoerka), Aal (Anguilla anguilla), Karpfen (Cyprinus carpio), Hecht (Esox lucius), Schlei (Tinca tinca) und Barsch (Perca fluviatilis) gebildet. Inzwischen erfolgt laut Angaben des Fischereibetriebes kein Karpfenbesatz mehr (Schönberger et al. 1999).

1.21.5 Nutzung, anthropogener Einfluss

1.22 Goldberger See

1.22.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 32: Goldberger See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
1.22.2 Topographie und Morphometrie

Das Gewässer weist eine rundlich-ovale Gestalt auf, was die Uferentwicklung von 1,2 bestätigt. Die Längenachse des Sees erstreckt sich von Norden nach Süden. Die berechnete theoretische Epilimniontiefe von 8,2 m ist doppelt so groß wie die maximale Tiefe, d.h. das Gewässer ist thermisch nicht stabil geschichtet.

Tab. 57: Topographie und Morphometrie des Goldberger Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,28</td>
<td>7,70</td>
<td>4,1</td>
<td>2,1</td>
<td>3945</td>
<td>2805</td>
<td>1,2</td>
<td>0,5</td>
<td>8,2</td>
<td>0,5</td>
</tr>
</tbody>
</table>

1.22.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,8</td>
<td>459</td>
<td>28,3</td>
<td>0,3</td>
<td>2,0</td>
<td>118</td>
<td>50,0</td>
</tr>
</tbody>
</table>

1.22.4 Flora und Fauna

Die Ufer sind von einem fast geschlossenen Schilfgürtel gesäumt.

Bereits im Frühjahr 1995 erreichte das Phytoplankton ein Biomassenmaximum, das sich vorwiegend aus Cyanobakterien der Gattung *Microcystis*, aber auch fäden Arten zusammensetzte und durch Diatomeen (zentrische Formen und *Synedra*-Arten) ergänzt wurde. Im Frühsommer dominierten die zentrischen Diatomeen bei ähnlicher Phytoplanktonzusammensetzung. Nach verhältnismäßig geringen Phytoplanktonbiomassen im Sommer wurde im Herbst ein Wiederanstieg registriert, der hauptsächlich auf fäden Cyanobakterien (*Limnothrix redekei* u.a.) sowie auf Dinoflagellaten (*Peridinium spp.*.) zurückzuführen war.

Die im Goldberger See aufgefundenen Fischarten belaufen sich auf 17 Arten. Bis auf zwei kommen alle Fischarten häufig vor (siehe Tab. 59).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>h</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Marmorkarpfen</td>
<td>Aristichthys</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
</tbody>
</table>

1.22.5 Nutzung, anthropogener Einfluss

1.23 Gothensee

1.23.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 33: Gothensee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
1.23.2 Topographie und Morphometrie

Die Längenausdehnung verläuft von Norden über Südwesten nach Osten hin. Dabei weist der See eine sichelförmige Gestalt auf. Mit 2,2 m Tiefe ist er ein sehr flacher See, gehört aber zu den großen Seen Mecklenburg-Vorpommerns.

Tab. 60: Topographie und Morphometrie des Gothensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>Seeteil</th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>nördl. Teil</td>
<td>3,4</td>
<td>2,62</td>
<td>2,2</td>
<td>1,3</td>
<td>3936</td>
<td>1001</td>
<td>1,8</td>
<td>0,3</td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td>südl. Teil</td>
<td>3,4</td>
<td>2,94</td>
<td>2,1</td>
<td>1,2</td>
<td>2749</td>
<td>1488</td>
<td>1,5</td>
<td>0,3</td>
<td>7,2</td>
<td></td>
</tr>
</tbody>
</table>

1.23.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th>pH-Wert [-]</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>(\text{TP}_{\text{Früh}}) [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,3</td>
<td>624</td>
<td>98,3</td>
<td>0,2</td>
<td>3,8</td>
<td>2112</td>
<td>118</td>
</tr>
</tbody>
</table>
Abb. 34: Zeitliche Entwicklung der Trophieparameter vom Gothensee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.23.4 Flora und Fauna

Hinter einem weitgehend geschlossenen Schilfsaum folgt ein Baumgürtel, der im südlichen Seeteil in einen Laubmischwald übergeht. Schwimmblatt- und Unterwasserpflanzen sind bedingt durch die hohe Trübung aus dem See bereits nahezu verschwunden.

Das Phytoplankton wurde das ganze Jahr 1997 über durch Cyanobakterien geprägt. Im Frühling machte diese Klasse 89 % am Gesamtbiovolumen aus, im Juni und Oktober waren auch Diatomeen an der Phytoplanktonbiomasse beteiligt.

Das Zooplankton war überwiegend durch Copepoden und Cladoceren vertreten. Eine vorwiegend aus Cladoceren zusammengesetzte extrem hohe Zooplanktonbiomasse von 15,4 mg FM/l wurde im Juni erreicht.

Im Gothensee wurden bei Fischerbefragungen nur 13 Fischarten ermittelt. Dabei kamen 7 Fischarten häufig und 6 eher selten vor (Tab. 62).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>s</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Hasel</td>
<td>Leuciscus leuciscus</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Albumus albumus</td>
</tr>
</tbody>
</table>

1.23.5 Nutzung, anthropogener Einfluss

1.24 Groß Labenzer See
1.24.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 35: Tiefenkarte des Groß Labenzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
1.24.2 Topographie und Morphometrie

Der See besteht aus zwei benachbarten Seebecken: dem tieferen nördlichen Labenzer See und dem deutlich flacheren Friedrichswalder See in der Südwestecke. In der Mitte zwischen beiden Becken liegt eine Halbinsel, die den See in zwei Teile teilt. Dennoch wird der See im Folgenden als eine morphometrische Einheit betrachtet.

Tab. 63: Topographie und Morphometrie des Groß Labenzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>23,59</td>
<td>2,30</td>
<td>34,9</td>
<td>10,2</td>
<td>2500</td>
<td>1400</td>
<td>1,9</td>
<td>5,0</td>
<td>7,0</td>
<td>2,8</td>
</tr>
</tbody>
</table>

1.24.3 Chemische und trophische Charakteristik des Sees

Während der Wasserkörper des Groß Labenzer Sees im Untersuchungszeitraum 1995 Anfang April noch voll zirkulierte, konnte im Juni in beiden Seebecken eine stabile Temperaturstruktur nachgewiesen werden. Im flacheren Südseebecken lag eine scharfe Sprungschicht in 5 m Wassertiefe vor, unter der ab 8 m bereits anaerobe Verhältnisse herrschten und in 10 m schon Schwefelwasserstoff registriert wurde. Im Nordseebecken hatte sich bis zum jeweiligen Zeitpunkt zunächst ein Metalimnion bei 6–10 m gebildet, wobei in 33 m Wassertiefe noch 2,7 mg/l Sauerstoff vorlagen. Ende August lag die Sprungschicht in beiden Becken bei 5 m, der Wasserkörper darunter war weitgehend sauerstofffrei und in den sedimentnahen Wasserschichten wurden Schwefelwasserstoff nachgewiesen. Die Konzentrationen des Gesamtphosphors (TP) stiegen im Hypolimnion auf 600 µg/l im Südseebecken bzw. auf 300 µg/l im Nordseebecken, während die epilimnischen TP-Konzentrationen maximal 330 µg/l im August erreichten, im Untersuchungszeitraum April-November nach Angaben des STAUN Schwerin meist jedoch bei 140 µg/l und weniger lagen. Die SRP-Konzentrationen erreichten im November oberflächennah Spitzenwerte von 47 µg/l. Mitte November war der See dann wieder durchmischt, bis auf ein Sprungschichtfragment im tieferen Nordseebecken in 19 m Wassertiefe, unter dem allerdings noch anaerobe Zustände und eine TP-Konzentration von 360 µg/l registriert wurden. Zu diesem Zeitpunkt wies der Oberflächennahm Wasser der See auch tagsüber Sauerstoffuntersättigungen bis zu 57 % auf, die sich aus der Einmischung des anaeroben Tiefenwassers ergaben. Die Konzentrationen der Gesamtstickstoff lagen im Untersuchungszeitraum in 1 m Tiefe zwischen 1,2 mg/l (August) und 2,3 mg/l (April), dabei betrugen die Nitrat-N-Konzentrationen im Minimum < 0,05 mg/l (August) und im Maximum 1,6 mg/l (April), die Ammonium-N-Konzentrationen im Minimum < 0,05 mg/l (April) und im Maximum 0,3 mg/l (November).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,3</td>
<td>509</td>
<td>12,3</td>
<td>2,0</td>
<td>1,3</td>
<td>63,0</td>
<td>65,0</td>
</tr>
</tbody>
</table>

Abb. 36: Zeitliche Entwicklung der Trophieparameter vom Groß Labenzer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.24.4 Flora und Fauna

Im Frühjahr 1995 kam es zu einer Blüte centrischer Diatomeen (u.a. Stephanodiscus neoastraea) bei Anteilen von 95,8 % an der Phytoplankton-Frischmasse (FM), die im April bei einer Konzentration von 4,6 mg/l lag. Im Juni wurde ein Biomasse-Peak von 22,4 mg/l gemessen, der in beiden Becken bis zu 93 % von Dinoflagellaten der Art Ceratium hirundinella gebildet wurde. Auch im August war diese Art noch aspektbestimmend, der FM-Anteil dieser Klasse ging dabei auf 68,1 % zurück, während zeitgleich Cyanobakterien ein stärkeres Aufkommen zeigten. Im November verteilten sich die FM-Anteile etwa gleichermaßen auf Crypropyceen, Diatomeen und Cyanobakterien. Die Biomasse zeigte bis November einen Rückgang auf minimale Konzentrationen von 0,2 mg/l.
Im Zooplankton dominierten im gesamten Untersuchungszeitraum (April - November 1995) Copepoden bei FM-Anteilen zwischen 70 % und maximal 91,2 % im Juni. Lediglich im August waren auch Cladoceren codominant. Die Biomasse war mit Werten meist unter 1 mg/l relativ gering und stieg maximal auf 3,1 mg/l im August an. Angaben zur Fischfauna lagen nicht vor.

1.24.5 Nutzung, anthropogener Einfluss

Mit seinen sich tief in den Wald ziehenden Buchten stellt der Groß Labenzer See ein Naturkleinod dar, welches unter anderem einer Erholungsnutzung durch Badegäste, Angelsportler, Ruder- und Paddelfreunde unterliegt. Auf einer Anhöhe am Gewässer befindet sich der Ferienhof „Bronzener Hirsch“.
1.25 Großer Brückentinsee

1.25.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 37: Großer Brückentinsee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.25.2 Topographie und Morphometrie

Durch eine 6 ha große Insel und eine Bodenschwelle wird das Gewässer in zwei etwa gleich große Becken geteilt, wobei das Nordbecken die tiefste Stelle aufweist, während das Südbecken flacher ist.
Tab. 65: Topographie und Morphometrie des Großen Brückentinsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,51</td>
<td>1,34</td>
<td>29,4</td>
<td>11,6</td>
<td>2273</td>
<td>804</td>
<td>1,7</td>
<td>4,5</td>
<td>6,6</td>
<td></td>
</tr>
</tbody>
</table>

1.25.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th>pH-Wert [-]</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>TP_{Früh} [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordteil</td>
<td>8,4</td>
<td>347</td>
<td>5,7</td>
<td>4,0</td>
<td>0,5</td>
<td>29,0</td>
</tr>
<tr>
<td></td>
<td>342</td>
<td></td>
<td>3,5</td>
<td>0,4</td>
<td>30,0</td>
<td>48,0</td>
</tr>
</tbody>
</table>

1.25.4 Flora und Fauna

Der See wird von einem schmalen Schilfgürtel mit angrenzendem Saum aus Laubbäumen umgeben.

Im Frühjahr 1995 dominierten Diatomeen, während im Sommer Crypto- und Dinoflagellaten und im Herbst Chlorophyceen biomassebestimmend waren. Die Phytoplanktonbiomasse war im Vegetationsmittel mit 4,0 mg/l im Nordbecken und 3,1 mg/l im Südbeken ähnlich gering.

Für die Zooplanktonbiomassen waren während des gesamten Untersuchungszeitraums große Copepoden ausschlaggebend. Daneben waren im Sommer Cladoceren von Bedeutung, während der Biomasseanteil der Rotatorien gering war.

Für die Zooplanktonbiomassen waren während des gesamten Untersuchungszeitraums große Copepoden ausschlaggebend. Daneben waren im Sommer Cladoceren von Bedeutung, während der Biomasseanteil der Rotatorien gering war. Im Gewässer wurden bei Fischerbefragungen 18 Fischarten recherchiert. Dabei kamen 11 Fischarten häufig vor und 7 eher selten (siehe Tab. 67).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Bitterling</td>
<td>Rhodeus sericeus amarus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>s</td>
<td>Binnenstint</td>
<td>Osmerus esperlanus</td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Moderlieschen</td>
<td>Leucaspius delineatus</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>s</td>
<td>Döbel</td>
<td>Leuciscus cephalus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus alburnus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
</tbody>
</table>

1.25.5 Nutzung, anthropogener Einfluss

1.26 Großer Dambecker See

1.26.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 38: Großer Dambecker See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.26.2 Topographie und Morphometrie

1.26.3 Chemische und trophische Charakteristik des Sees

1.26.4 Flora und Fauna
Die Seeufer sind mit einem breiten Schilfgürtel bewachsen und die Seefläche ist mit zahlreichen Makrophyteninseln durchsetzt, die besonders günstige Lebensbedingungen für brütende, mausernde und ziehende Wasservögel bieten.

Das Phytoplankton war 1996 im April durch verhältnismäßig hohen Artenreichtum gekennzeichnet und wurde im Juni durch hohe Biomasseanteile von ins Freiwasser verfrachteten benthischen Zieralgen der Gattung Spirogyra weitgehend verdrängt. Die Phytoplanktonbiomasse ist im Vegetationsmittel mit 10,2 mg/l angegeben. Obwohl die geplante Probenahme im August wegen Unzugänglichkeit der Uferregion ausfallen musste, konnte augenscheinlich von ähnlichen Planktonverhältnissen ausgegangen werden, wie sie zu diesem Zeitpunkt im benachbarten Kleinen Dambecker See vorlagen. Dort bestimmte eine Massenentwicklung von Cyanobakterien (Aphanizomenon flos-aquae) die Phytoplanktonzusammensetzung, was zu enormen Chlorophyll a-Konzentrationen, pH-Werterhöhungen um 9,2 und Sauerstoffsättigungen über 250 % führte.

Tab. 68: Topographie und Morphometrie des Großen Dambecker Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,71</td>
<td>0,94</td>
<td>2,1</td>
<td>0,8</td>
<td>1984</td>
<td>901</td>
<td>1,8</td>
<td>0,3</td>
<td>6,4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9,2</td>
<td>425</td>
<td>3,8</td>
<td>0,5</td>
<td>2,2</td>
<td>580</td>
<td>710</td>
</tr>
</tbody>
</table>
Das Zooplankton setzte sich 1996 überwiegend aus Kleinkrebsen zusammen. Die höchste Zooplanktonbiomasse wurde im April durch cyclopoide Copepoden gebildet. Im Sommer und Herbst dominierten Cladoceren mit Vertretern der Gattung *Daphnia*. Rotatorien hatten für die Zooplanktonbiomasse keine Bedeutung.

Im Großen Dambecker See wurden bei Fischerbefragungen 18 Fischarten ermittelt. Dabei kamen 12 Fischarten häufig vor und 6 eher selten (siehe Tab. 70).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>s</td>
<td>Bitterling</td>
<td>Rhodeus</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>s</td>
<td>Moderlieschen</td>
<td>Leucaspius</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
</tbody>
</table>

1.26.5 Nutzung, anthropogener Einfluss

Der Große Dambecker See wird unter anderem als Badegewässer genutzt.
1.27 Großer Fürstenseer See

1.27.1 Genese, Lage, Einzugsgebiet und Hydrologie

![Ausschnitt aus topographischer Karte](image)

Abb. 39: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.27.2 Topographie und Morphometrie

Der See wird durch eine schmale Halbinsel, dem Pankower Ort, in zwei langgestreckte Teile gegliedert, die als parallele Rinnen in Nord-Süd-Richtung verlaufen und im Süden durch eine größere Seefläche verbunden sind. Hier befindet sich auch die derzeit bekannte maximale Wassertiefe.

Tab. 71: Topographie und Morphometrie des Großen Fürstenseer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_max [m]</th>
<th>Z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,11</td>
<td>2,12</td>
<td>25,0</td>
<td>4,3</td>
<td>1800</td>
<td>450</td>
<td>2,5</td>
<td>4,2</td>
<td>6,0</td>
<td></td>
</tr>
</tbody>
</table>
1.27.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,1</td>
<td>252</td>
<td>6,5</td>
<td>4,7</td>
<td>0,7</td>
<td>79,0</td>
<td>64,0</td>
</tr>
</tbody>
</table>

1.27.4 Flora und Fauna

Das Phytoplankton setzte sich hauptsächlich aus kleinzelligen Phytoflagellaten zusammen. Cyanobakterien (*Anabaena, Gomphosphaeria*) bildeten nur einen geringen Biomasseanteil und Diatomeen (*Fragilaria, Asterionella*) traten auch nur im Frühjahr vereinzelt auf.

Die Biomassewerte des Zooplanktons waren ebenfalls gering. Copepoden dominierten in allen Entwicklungsstadien während des gesamten Untersuchungszeitraumes. Im Sommer traten Cladoceren (*Daphnia cucullata*, im August auch *Diaphanosoma brachyurum*) mit Biomasseanteilen um 20 % auf. Rotatoren konnten nur in sehr geringen Abundanzen nachgewiesen werden und spielten für die Zooplanktonbiomasse keine wesentliche Rolle.

Im Gewässer wurden bei Fischerbefragungen 22 Fischarten ermittelt. Dabei kamen 11 Fischarten häufig und ebenfalls 11 eher selten vor (siehe Tab. 73).
Tab. 73: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand August 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td></td>
<td>lota</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td></td>
<td>brama</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus</td>
</tr>
<tr>
<td></td>
<td>glanis</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td></td>
<td>albumus</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td></td>
<td>bjoerkna</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td></td>
<td>cernua</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
</tr>
<tr>
<td></td>
<td>idella</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td></td>
<td>tinca</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td></td>
<td>erythrophthalmus</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td></td>
<td>lucius</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td></td>
<td>carassius</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td></td>
<td>carpio</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Moderlieschen</td>
<td>Leucaspius</td>
</tr>
<tr>
<td></td>
<td>delineatus</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Binnenstint</td>
<td>Osmerus</td>
</tr>
<tr>
<td></td>
<td>esperlanus</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td></td>
<td>anguilla</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td></td>
<td>aculeatus</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td></td>
<td>rutilus</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
</tr>
<tr>
<td></td>
<td>albula L.</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td></td>
<td>fluviatilis</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus</td>
</tr>
<tr>
<td></td>
<td>fossilis</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Bitterling</td>
<td>Rhodeus</td>
</tr>
<tr>
<td></td>
<td>sericeus amarus</td>
<td></td>
</tr>
</tbody>
</table>

1.27.5 Nutzung, anthropogener Einfluss

1.28 Großer Labussee

1.28.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 40: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.28.2 Topographie und Morphometrie

Der See hat eine annähernd dreieckige Gestalt, wobei der Uferverlauf sehr unregelmäßig ist.

Tab. 74: Topographie und Morphometrie des Großen Labussee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,68</td>
<td>3,33</td>
<td>11,9</td>
<td>4,1</td>
<td>2460</td>
<td>2279</td>
<td>1,5</td>
<td>1,6</td>
<td>7,4</td>
<td></td>
</tr>
</tbody>
</table>

1.28.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,3</td>
<td>446</td>
<td>21,4</td>
<td>1,3</td>
<td>0,8</td>
<td>40,0</td>
<td>20,0</td>
</tr>
</tbody>
</table>

Abb. 41: Zeitliche Entwicklung der Trophieparameter vom Großen Labussee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.28.4 Flora und Fauna

Im Großen Labussee wurde bei Fischerbefragungen eine große Artenvielfalt festgestellt. Insgesamt wurden 24 Fischarten ermittelt. Dabei kamen 15 Fischarten häufig und 9 eher selten vor (siehe Tab. 76).
h = häufig, s = selten

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Döbel</td>
<td>Leuciscus cephalus</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod idella</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Neunstachliger Stichling</td>
<td>Pungitius pungitius</td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus glanis</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Binnenstint</td>
<td>Osmerus esperlanus</td>
</tr>
<tr>
<td>s</td>
<td>Moderlieschen</td>
<td>Leucaspius delineatus</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus fossilis</td>
</tr>
</tbody>
</table>

1.28.5 Nutzung, anthropogener Einfluss
1.29 Großer See bei Pinnow

1.29.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 42: Großer See bei Pinnow (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.29.2 Topographie und Morphometrie

Das Gewässer weist eine sehr unregelmäßige Form auf und erstreckt sich in seiner Längenausdehnung von Norden nach Süden und Westen. Dabei bildet der südöstliche Bereich das Hauptbecken des Sees mit der tiefsten Stelle.

Tab. 77: Topographie und Morphometrie des Großen Sees bei Pinnow (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_max [m]</th>
<th>Z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,50</td>
<td>0,64</td>
<td>15,2</td>
<td>5,4</td>
<td>1343</td>
<td>687</td>
<td>1,5</td>
<td>2,6</td>
<td>5,8</td>
<td></td>
</tr>
</tbody>
</table>
1.29.3 Chemische und trophische Charakteristik des Sees

Der See ist als dimiktisch anzusehen. Im Sommer 1997 wurde bei hohen Sichttiefen von 4,8 - 5,2 m eine stabile thermische Schichtung in etwa 4 m Tiefe festgestellt. Während dieser Schichtung sank die Sauerstoffsättigung im Tiefenwasser, das im August ab 9 m Tiefe anoxisch war. Im Epilimnion wurden hingegen leichte Sauerstoffübersättigungen gemessen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,5</td>
<td>356</td>
<td>3,8</td>
<td>3,2</td>
<td>1,1</td>
<td>53,3</td>
<td>70,0</td>
</tr>
</tbody>
</table>

Abb. 43: Zeitliche Entwicklung der Trophieparameter vom Großen See bei Pinnow (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Die Gesamtphosphorkonzentrationen des Oberflächenwassers lagen meist zwischen 20 µg/l und 46 µg/l und waren damit relativ gering, während sie im August unterhalb der Sprungschicht und zur Herbstzirkulation (Oktober) im gesamten Wasserkörper auf > 200 µg/l anstiegen. Daten von 4 Beprobungsterminen (StAUN Schwerin) zwischen April und Oktober 1997 (1 m Tiefe) ergaben weiterhin Schwankungen der
Gesamtstickstoff-Konzentrationen zwischen 0,1 mg/l (April) und 1,0 mg/l (August),
dabei waren die oberflächennahen Nitrat-N-Konzentrationen mit maximal 0,07 mg/l
(April) ebenso wie die Ammonium-N-Konzentrationen mit maximal 0,06 mg/l
(Oktober) insgesamt sehr gering. Die SRP-Konzentrationen erreichten oberflächen-
nah zum Ende der Vegetationsperiode als Höchstwert 20 µg/l. Die Chlorophyll a-
Konzentrationen zeigten im Frühjahr und Herbst eine leichte Erhöhung, blieben dabei
aber unterhalb 8 µg/l. Die Calcium-Konzentrationen lagen im mittleren Bereich von
42,1 - 49,3 mg/l. Obwohl im Spätsommer 1997 im Hypolimnion Sauerstoffmangel
auftrat, wurde der See nach den Untersuchungsergebnissen als mesotrophes
Gewässer eingestuft. Auch die Trophieparameter des Jahres 2001 weisen den See
nach LAWA-Bewertungsansatz (LAWA 1998) weiterhin als mesotroph aus. Hinsichtlich
des morphometrischen Referenztrophiegrades ergibt sich für den See
ebenfalls Mesotrophie (m) (LAWA 1998).

1.29.4 Flora und Fauna

Im Osten und Norden befindet sich ein Schilfgürtel, um den gesamten See herum
hauptsächlich von Birken dominierten Laubmischwald. In Ufernähe traten während
des Sommers einzelne Bestände von Cerastium sp. und Potamogeton cf. lucens auf.

Die Phytoplanktonbiomasse lag im gesamten Untersuchungszeitraum 1997 unterhalb
von 1 mg/l. Während sich das Phytoplankton im Frühjahr zu ca. 96 % aus centri-
schen Diatomeen zusammensetzte, herrschten im Herbst pennate Diatomeen zu-
sammen mit Cryptophyceen vor. Das Sommerplankton wurde zunächst von Dinoflag-
gellaten (vor allem Ceratium hirundinella) in Begleitung von Cryptophyceen geprägt
und diese dann zunehmend durch codominante Chlorophyceen zurückgedrängt.

Die Zooplanktondichten waren ebenfalls nur gering. Das Biomassenmaximum wurde
im Frühjahr mit 2,7 mg FM/l erreicht und zu 91 % von Copepoden gebildet. Auch an
den anderen Untersuchungssterminen dominierten Copepoden mit FM-Anteilen
zwischen 56 % und 68 %. Im Sommer war besonders wenig Zooplankton vorhanden
(0,5 - 1,2 mg FM/l). Cladoceren entwickelten im Juni und Oktober FM-Anteile > 20 %,
Rotatorien waren ab August (maximal 25 %) stärker vertreten.

Angaben zur Fischfauna lagen nicht vor.

1.29.5 Nutzung, anthropogener Einfluss

Am Südufer liegt ein öffentliches Schwimmbad.
1.30 Großer Sternberger See

1.30.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Große Sternberger See liegt unmittelbar nördlich an der Stadt Sternberg und bildet zusammen mit dem Trenntsee einen Seenverbund, der von der Mildenitz durchflossen wird und in den über Zulaufe weitere Seen (Luckower, Radener, Obere Seen) entwässern. Das Einzugsgebiet weist eine Größe von 520 km² auf und wurde in früherer Zeit intensiv landwirtschaftlich genutzt. Im Süden und Osten grenzen Wiesen und Weiden an den See. Der mittlere Abfluss ist mit 3,4 m³/s (langjährig) angegeben.

Abb. 44: Großer Sternberger See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.30.2 Topographie und Morphometrie

Der See hat eine sternförmig ausgeprägte Oberflächenform und ist sehr buchtenreich. Die fünf Ausbuchtungen gliedern sich von der Mitte des Sees, der zugleich tiefsten Stelle, ab. Der Tiefengradient von 1,1 weist darauf hin, dass das Gewässer nicht stabil geschichtet ist.

Tab. 79: Topographie und Morphometrie des Großen Sternberger Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,57</td>
<td>2,5</td>
<td>7,9</td>
<td>3,0</td>
<td>2670</td>
<td>2100</td>
<td>2,2</td>
<td>1,1</td>
<td>7,4</td>
<td>0,1</td>
</tr>
</tbody>
</table>
1.30.3 Chemische und trophische Charakteristik des Sees

Der See weist nur an relativ windstillen Hochsommertagen im Bereich der tiefsten Stelle eine instabile Temperaturstratifikation auf und ist ansonsten polymiktisch. Infolge der relativ hohen Wassertemperaturen im Hochsommer 1995 kam es im Großen Sternberger See laut Gewässergütebericht zu angespannten Verhältnissen im Sauerstoffhaushalt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,7</td>
<td>484</td>
<td>79,7</td>
<td>0,5</td>
<td>1,9</td>
<td>247</td>
<td>105</td>
</tr>
</tbody>
</table>

Abb. 45: Zeitliche Entwicklung der Trophieparameter vom Großer Sternberger See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Am 24.08.1995 war bereits in den Vormittagsstunden unterhalb von 3 m Wassertiefe kein Sauerstoff mehr vorhanden. An der Oberfläche wurde hingegen eine Sauerstoff-sättigung von 112 % registriert. Zwischen März und November (4 Probenahmetermine) waren die Nährstoffkonzentrationen insbesondere im August, abgesehen von den Nitrat-N-Konzentrationen, die während der Vegetationsperiode auf < 0,05 mg/l abnahmen, überaus hoch. So wurden Maximalwerte von 247 µg SRP/l bei Gesamtphosphorkonzentrationen von 560 µg/l im August ermittelt. Im Minimum

1.30.4 Flora und Fauna

Im Zooplankton spielten Rotatorien insbesondere im Frühjahr und bei den Planktonkrebsen im wesentlichen kleinere Formen eine Rolle.

Der See zeichnet sich durch ein reiches Fischvorkommen aus. Insgesamt wurden 31 Fischarten ermittelt (siehe Tab. 81).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgumus fossilis</td>
</tr>
<tr>
<td>h</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molutrix</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius auratus</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>h</td>
<td>Aland</td>
<td>Leuciscus idus</td>
</tr>
<tr>
<td>s</td>
<td>Flußneunauge</td>
<td>Lampetra fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys nobilis</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>s</td>
<td>Bachforelle</td>
<td>Salmo trutta f.fario</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod idella</td>
</tr>
<tr>
<td>s</td>
<td>Meerforelle</td>
<td>Salmo trutta f.trutta</td>
</tr>
<tr>
<td>h</td>
<td>Wels</td>
<td>Silurus glanis</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Döbel</td>
<td>Leuciscus cephalus</td>
</tr>
<tr>
<td>h</td>
<td>Regenbogenforelle</td>
<td>Salmo gairdneri</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
</tr>
<tr>
<td>h</td>
<td>Zwergwels</td>
<td>Ameiurus nebulosus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
</tbody>
</table>
1.30.5 Nutzung, anthropogener Einfluss

Durch das relativ große, in früherer Zeit intensiv landwirtschaftlich genutzte Einzugsgebiet und die jahrelange Einleitung der nur biologisch gereinigten Abwässer von Sternberg bedingt, wurde und wird das Gewässer reichlich mit Nährstoffen versorgt und weist demzufolge eine hohe Bioproduktion auf (Gewässergütebericht 1995).
1.31 Großer Wariner See

1.31.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Wariner See liegt in einem Sandergebiet unmittelbar nordöstlich am Ort Warin und ist vorwiegend durch glaziale Erosionsprozesse entstanden. Trotz der breiten seitlichen Ausuferungen zeigt die Tiefenkarte des Wariner Sees den typischen Charakter eines Rinnensees. Im Süden und Osten grenzen Wiesen und Weiden an den See, im Westen Nadelwald. Der Ablauf des Sees führt über den Glammsee und Tempziner See schließlich als Brüeler Bach in die Warnow. Obwohl das 114,1 km² große Einzugsgebiet weitgehend landwirtschaftlich genutzt wurde und wird, fallen die Belastungen für den Wariner See wegen der Vorsperrenwirkung des im Hauptzulauf gelegenen Neuklostersees relativ gering aus. Der mittlere Abfluss ist mit 0,71 m³/s angegeben.

Abb. 46: Großer Wariner See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.31.2 Topographie und Morphometrie

Der See ist mit einem kleinen Tiefenbereich um 9 m insgesamt verhältnismäßig flach. Im nordöstlichen Bereich des Sees liegt eine kleine Torfinsel. Die Längenausdehnung verläuft von Nordwesten nach Südosten. Das Ostufer ist steiler als das Westufer.
Tab. 82: Topographie und Morphometrie des Großer Wariner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,21</td>
<td>2,6</td>
<td>9,5</td>
<td>4,7</td>
<td>2800</td>
<td>1350</td>
<td>1,4</td>
<td>1,3</td>
<td>7,1</td>
<td>0,54</td>
</tr>
</tbody>
</table>

1.31.3 Chemische und trophische Charakteristik des Sees

Aufgrund der geringen Tiefe des Sees sind die thermischen Schichtungen instabil und nur in dem kleinen Tiefenbereich bei ruhigen Wetterlagen möglich. Die 1995 durchgeführten Untersuchungen (STAUN Schwerin) ergaben trotz der ständigen Durchmischung des Wasserkörpers einen relativ angespannten Sauerstoffhaushalt im Sommer: Während die oberflächennahen Wasserschichten Übersättigungen bis 190 % aufwiesen, wurden unmittelbar über dem Sediment nur geringe Sauerstoffkonzentrationen registriert. Daten von 4 Beprobungsterminen zwischen April und November 1995 (1 m Tiefe) ergaben Konzentrationen an Gesamtstickstoff zwischen 1,3 mg/l (August) und 3,5 mg/l (April), dabei betrugen die oberflächennahen Nitrat-N-Konzentrationen im Minimum < 0,05 mg/l (August) und im Maximum 2,7 mg/l (April), die Ammonium-N-Konzentrationen im Minimum ebenfalls < 0,05 mg/l und im Maximum 0,6 mg/l (Juni, November). Die SRP-Konzentrationen erreichten im November Höchstwerte von 79 µg/l. Die Gesamtphosphorkonzentrationen variierten oberflächennah zwischen 70 µg/l zu Beginn der Vegetationsperiode und 220 µg/l zum Ende derselben. Eine Nährstofflimitierung der Bioproduktion lag nicht vor. Charakteristisch waren hohe Calcium-Konzentrationen, die eine weite Spanne von 55,3 - 104 mg/l aufwiesen. Die Chlorophyll a-Konzentrationen bewegten sich im moderaten Bereich um 10 µg/l, die sommerlichen Sichttiefen zwischen 0,9 m und 1,3 m. Insgesamt wird der Große Wariner See anhand der Trophieparameter von 1995 nach LAWA-Bewertungsansatz (LAWA 1998) als eutrophes (e2) Gewässer klassifiziert. Aus der Morphometrie ist für den See als potentiell natürlicher Trophiezustand schwache Eutrophie (e1) abzuleiten (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n.b.</td>
<td>n.b.</td>
<td>9,7</td>
<td>1,1</td>
<td>2,0</td>
<td>145</td>
<td>70,0</td>
</tr>
</tbody>
</table>

1.31.4 Flora und Fauna

Im Frühjahr 1995 wurde eine Diatomeenblüte (96,3 % FM-Anteil) erfasst, die aus vorwiegend centrischen Arten, aber auch aus Asterionella formosa bestand. Diatomeen dieser und anderer Arten bestimmten neben fädigen Cyanobakterien und
Dinoflagellaten auch noch Ende Juni den Planktonaspekt. Die Biomassen (FM) blieben bis dahin im moderaten Bereich um 6 mg/l. Im August wurde dann eine Massenentwicklung des Dinoflagellaten *Ceratium hirundinella* beobachtet, die durch eine extrem hohe Phytoplanktonbiomasse-Konzentration von 59,9 mg/l bei einer vergleichsweise geringen Chlorophyllkonzentration charakterisiert war. Der FM-Anteil der Dinophyceen lag zu diesem Zeitpunkt bei 94,3 %. Im November war bei voller Durchmischung des Wasserkörpers nur wenig Phytoplankton vorhanden, die Biomasse-Konzentration betrug nur 0,5 mg/l. Cyanobakterien waren daran zu ca. 50 % beteiligt, daneben dominierten auch weiterhin Dinophyceen.

Das Zooplankton wies Vertreter aller wichtigen Gruppen - einschließlich der Larven der Wandermuschel (*Dreissena polymorpha*) - auf, wobei hauptsächlich die Copepoden mit maximalen FM-Anteilen von 81,4 % im April dominierten. Im Sommer stieg die Biomasse-Konzentration auf 4,2 mg/l an und blieb auch im November auf diesem Niveau. Im Juni waren dagegen verschiedene Arten von Rotatorien zu insgesamt 75,2 % an der Biomasse beteiligt, ab August kamen Cladoceren stärker auf und im November lag deren FM-Anteil bei 76,1 %. *Bosmina longirostris* dominierte zu dieser Zeit als Vertreter der Cladoceren.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax.Oberbegriff</th>
<th>Ordnung</th>
<th>Fam. / Gatt. / Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.5.2001</td>
<td>Schlick</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Pisidium sp.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastropoda</td>
<td>Bithynia tentaculata</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Potamopyrgus antipodarum</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valvata piscinalis</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td>Hydrozoa</td>
<td>Hydra sp.</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Annelida</td>
<td></td>
<td>Oligochaeta</td>
<td>indet.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Insecta</td>
<td></td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>Anzahl Arten/Taxa</td>
<td></td>
<td>Summe Ind./m²</td>
<td>475</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Innerhalb des Makrozoobenthos wurden nur wenige Taxa nachgewiesen, wobei die Chironomiden nicht näher bestimmt wurden. Auch die Individuendichten waren im regionalen Vergleich eher gering. Am zahlreichsten waren die Chironomidenlarven vertreten. Bezüglich des weiteren Insektenvorkommens kann der See als verarmt bezeichnet werden.

Im Gewässer wurden bei Fischerbefragungen 19 Fischarten ermittelt. Dabei kamen 10 Fischarten häufig und 9 eher selten vor (siehe Tab. 85).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>s</td>
<td>Neunstachliger Stichling</td>
<td>Pungitius</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
</tbody>
</table>

1.31.5 Nutzung, anthropogener Einfluss
Der Große Wariner See unterliegt der Erholungsnutzung. Im Uferbereich befindet sich ein Badestrand. Durch seine Anbindung an umgebende Gewässer sind von ihm aus Wasserwandertouren bis nach Rostock möglich.
1.32 Großer Wostevitzer Teich

1.32.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 47: Großer Wostevitzer Teich (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.32.2 Topographie und Morphometrie

Der See zählt zu den Flachseen Mecklenburg-Vorpommerns. Es ist ein relativ schmales Gewässer, mit einer Längenausdehnung von Nordwesten nach Südosten, wobei der See in Richtung Südosten schmaler wird.

Tab. 86: Topographie und Morphometrie des Großer Wostevitzer Teichs (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_max [m]</th>
<th>Z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,71</td>
<td>0,76</td>
<td>1,90</td>
<td>0,93</td>
<td>1700</td>
<td>690</td>
<td>1,47</td>
<td>0,31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.32.3 Chemische und trophische Charakteristik des Sees

Der geringe Tiefengradient lässt darauf schließen, dass der See nicht stabil geschichtet ist. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den See nach (LAWA 1998) als natürlicherweise schwach polytroph (p1) aus.

1.32.4 Nutzung, anthropogener Einfluss
Der Große Wostevitzer Teich gehört zum Naturpark „Rügen“ und gilt als bekanntes Angelrevier. Ein kleiner, aber schöner Strand lädt zum Baden ein.
1.33 Hohen Sprenzer See
1.33.1 Genese, Lage, Einzugsgebiet und Hydrologie

![Tiefenkarte des Hohen Sprenzer Sees](image)

Abb. 48: Tiefenkarte des Hohen Sprenzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.33.2 Topographie und Morphometrie

Der Hohen Sprenzer See lässt sich in drei Bereiche gliedern. Im Nordosten des Sees befindet sich eine lange, schmale und flache Seitenbucht. Der Hauptteil (Zentralteil) befindet sich im Zentrum des Gewässers mit der tiefsten Stelle am östlichen Ufer, welches sehr steil ist. Im Südwesten lässt sich eine schmale, aber tiefere Bucht (Hohen Sprenz) abgrenzen. Weiterhin befinden sich in dem See mehrere Inseln. Im Folgenden wird der See jedoch als eine morphologische Einheit betrachtet.
Tab. 87: Topographie und Morphometrie des Hohen Sprenzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,78</td>
<td>2,25</td>
<td>17,3</td>
<td>7,0</td>
<td>2800</td>
<td>1300</td>
<td>1,9</td>
<td>2,4</td>
<td>7,1</td>
<td></td>
</tr>
</tbody>
</table>

1.33.3 Chemische und trophische Charakteristik des Sees

Im Jahr 1995 war der See schon ab Anfang Mai geschichtet und zeigte ab Juli anaerobe Verhältnisse über dem Gewässergrund. Im Mai waren die Schichtungsverhältnisse an der tiefen Stelle durch ein metalimnisches Sauerstoffmaximum gekennzeichnet, bei dem unterhalb der Sprungschicht Übersättigungen bis zu 157 % nachgewiesen wurden, während im Epilimnion lediglich ein Sauerstoffsättigungsindex von 70 - 79 % gemessen worden ist. Die Gesamtphosphor-(TP)-, SRP-, Gesamtstickstoff-(TN)- und Ammonium-N-Konzentrationen stiegen bereits im Juli deutlich an und erreichten am Ende der Stagnationsperiode (September) im Hypolimnion des Zentralteils Maximalwerte von 1000 µg TP/l, 701 µg SRP/l, 4,1 mgTN/l und 2,8 mg NH₄-N/l. In 1 m-Tiefe schwankten die TP-Konzentrationen zwischen 12 µg/l und 167 µg/l, die TN-Konzentrationen zwischen 0,7 mg/l und 1,1 mg/l, Nitrat-N zwischen 0,03 mg/l und 0,09 mg/l und Ammonium-N zwischen 0,04 mg/l und 0,6 mg/l. Die SRP-Konzentrationen erreichten oberflächennah maximal 46 µg/l im September. Im Vergleich dazu fielen die oberflächennahen TN-Konzentrationen im Nordteil und der Bucht Hohen Sprenz etwas höher, die TP-Konzentrationen eher etwas niedriger aus. Die Wasserhärte war bei Calcium-Konzentrationen (1 m-Tiefe) im Bereich von 14,4 mg/l und 34,6 mg/l ebenso wie die Alkalinität gering. Im Zuge der hohen Produktivität des Gewässers wurden im Frühjahr pH-Werte > 9 gemessen. Die Chlorophyll-a-Konzentrationen waren allerdings zumindest während der Vegetationsperiode mit Werten zwischen 3,4 - 4,4 µg/l eher gering, so dass die ebenfalls geringen Sichttiefen zwischen 0,8 m und 1,0 m vermutlich nicht allein durch Planktontrübe hervorgerufen wurden. Insgesamt weisen die Trophieparameter des Jahres 1999 den Zentralteil des Sees nach LAWA-Bewertungsansatz (LAWA 1998) als schwach eutrophes (e1) Gewässer aus. Hinsichtlich des morphometrischen Referenztrophiegrades ergibt sich für den See Mesotrophie (m) (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6</td>
<td>304</td>
<td>5,8</td>
<td>0,9</td>
<td>1,1</td>
<td>48,5</td>
<td>135</td>
</tr>
</tbody>
</table>

1.33.4 Flora und Fauna

Durch die erste Probenahme im Mai 1995 wurden das Diatomeen-Maximum im Frühjahr nicht mehr erfasst. So wurde zu diesem Zeitpunkt vor allem die Cyanobakterienart *Snowella lacustris* neben den Chlorophyceenarten

Die Zooplanktonbiomassen waren allgemein mit Konzentrationen zwischen 1 mg FM/l und 2,0 mg FM/l und insbesondere im Herbst (0,04 mg FM/l) sehr niedrig. Im Mai hatten calanoide und cyclopoide Copepoden FM-Anteile von 83,4 %. Der Anteil der Rotatorien betrug im Juli unter 2 %, dagegen machten Cladoceren, hauptsächlich vertreten durch Daphnia cucullata und gefolgt von Copepoden, zu diesem Probenahmetermin den Hauptteil der Biomasse aus. Im September war das Verhältnis von Cladoceren zu Copepoden ausgeglichen, innerhalb der Cladoceren überwog nun Bosmina coregoni. An der sehr geringen Biomasse Ende Oktober waren vor allem Copepoden beteiligt, aber auch Rotatorien codominant.

Angaben zur Fischfauna lagen nicht vor.

1.33.5 Nutzung, anthropogener Einfluss

1.34 Inselsee

1.34.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Inselsee befindet sich südlich des Ortes Güstrow. Das 79,1 km² große Einzugsgebiet wurde in der Vergangenheit landwirtschaftlich intensiv genutzt. Im Osten, Süden und Südwesten grenzen Wiesen und Weiden an den See. Der See entwässert im Norden in Richtung Nebel. Der mittlere Abfluss ist nicht angegeben.

Abb. 49: Tiefenkarte des Inselsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.34.2 Topographie und Morphometrie

Der Inselsee weist eine gekrümmte Gestalt auf und lässt sich grob in den nördlichen Güstrower und den südlichen Gutower Seeteil unterteilen. Während der erstere bei einer Teilfläche von 3 km² vorwiegend flach ist, ist der stärker untergliederte Gutower Seeteil im Durchschnitt 6,3 m tief und weist auch die tiefste Stelle des Sees auf. Im südwestlichen Teil befindet sich die Schöninsel.

Tab. 89: Topographie und Morphometrie des Inselsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,31</td>
<td>4,58</td>
<td>14,8</td>
<td>3,6</td>
<td>4100</td>
<td>980</td>
<td>2,3</td>
<td>2,0</td>
<td>7,6</td>
<td></td>
</tr>
</tbody>
</table>
1.34.3 Chemische und trophische Charakteristik des Sees

Der See gilt nach seinem Tiefengradienten als im Sommer thermisch stabil geschichtet, im Jahr 1994 konnte eine deutliche Temperaturschichtung laut Gewässergütebericht (LAUN M-V & StAUN M-V 1994) jedoch nicht beobachtet werden. Im Juli 1994 trat aber ab 5 m Tiefe in beiden Seeteilen ein Sauerstoffschwund auf, der im September nur noch in Sedimentnähe im Bereich der tiefsten Stelle nachgewiesen wurde.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Güstrow</td>
<td>8,4</td>
<td>467</td>
<td>11,8</td>
<td>2,4</td>
<td>1,1</td>
<td>20,0</td>
<td>20,0</td>
</tr>
<tr>
<td>Gutow</td>
<td>8,3</td>
<td>552</td>
<td>13,2</td>
<td>1,5</td>
<td>1,1</td>
<td>38,3</td>
<td>20,0</td>
</tr>
</tbody>
</table>

Abb. 50: Zeitliche Entwicklung der Trophieparameter vom Inselsee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Daten von 5 Beprobungsterminen (StAUN Schwerin) zwischen April und Oktober 1995 (1 m Tiefe, Seeteil Gutow) ergaben Schwankungen des pH-Wertes zwischen 6,8 und 8,2 und der Leitfähigkeit zwischen 430 µS/cm und 543 µS/cm. Die Gesamt-
phosphorkonzentrationen variierten zwischen 27 µg/l (Oktober) und 118 µg/l (September). Die Konzentrationen an Gesamtstickstoff lagen im April noch bei 1,7 mg/l und ab Juli bei 0,7 mg/l, dabei betrugen die oberflächennahen Nitrat-N-Konzentrationen im Minimum 0,03 mg/l und im Maximum 1,4 mg/l (Mai), die Ammonium-N-Konzentrationen im Minimum 0,01 mg/l und im Maximum 0,5 mg/l (September). Die SRP-Konzentrationen erreichten im Juli Höchstwerte von 34 µg/l. Sauerstoffübersättigungen wurden nur im April mit 118 % gemessen, zwischen Juli und Oktober ergaben sich Sättigungswerte von 80 - 90 %. Als maximale Chlorophyll a-Konzentration wurde im Oktober ein Wert von 11,2 µg/l registriert. Die Sichttiefen lagen meist bei 1 m, maximal bei 2,5 m im Mai. Relativ hohe Schwankungen zeigten die Calcium-Konzentrationen im Bereich zwischen 52,6 mg/l und 78,3 mg/l. Die Trophieparameter des Jahres 1995 wiesen den Seeteil Gutow als mesotrophes Gewässer aus, im Jahr 2001 wurden die Seeteile Gutow und Güstrow nach LAWA-Bewertungsansatz (LAWA 1998) hingegen als schwach eutroph (e1) klassifiziert. Dabei gilt der Güstrower Seeteil als makrophytenbeinflusst, was die etwas geringeren sommerlichen TP-Konzentrationen und höheren Sichttiefen im Vegetationsmittel erklärt. Aus der Morphometrie ist für den geschichteten See als potentiell natürlicher Trophiezustand ebenfalls schwache Eutrophie (e1) abzuleiten (LAWA 1998).

1.34.4 Flora und Fauna

Im April 1995 setzte sich das Phytoplankton vorwiegend aus Diatomeen zusammen, die Arten Cyclotella ocellata und Cyclostephanos dubius bildeten dabei Anteile von 27 % und 42 % am Gesamtbiovolumen von 9,5 mm³/l, das dem Jahresmaximum entsprach, aus. Im Mai waren die Cryptophyceanenart Cryptomonas erosa und C. ovata, die Cyanobakterienart Anabaena sp. sowie Monoraphidium arcuatum als Vertreter der Chlorophyceanen bestandsbildend. Das Biovolumen lag zu dieser Zeit nur bei einer geringen Konzentration von 0,6 mm³/l. Einen zweiten Biovolumenpeak von 5,4 mm³/l verursachte im Juli der Dinoflagellat Ceratium hirundinella mit 83 % Anteil. Im September waren Cryptophyceanen mit Cryptomonas ovata, Diatomeen mit Fragilaria fasciculata und Cyanobakterien mit Chroococcus turgidus dominierend, im Oktober waren es die Cryptophyceanen mit C. erosa und Rhodomonas lacustris sowie die Cyanobakterienart Aphanizomenon flos-aquae bei einer Biovolumen-Konzentration von jeweils 1,1 mm³/l (Daten nach T. Hübener, 1995 im Rahmen des Seenprojekts Mecklenburg-Vorpommern).

Das Zooplankton entwickelte im April 1995 mit 8,8 mg FM/l die höchste Biomasse. Bis Oktober ging diese auf Konzentrationen von 1,4 mg FM/l zurück. An der Zooplanktonzusammensetzung waren im April und September jeweils Cladoceren zur Hälfte beteiligt, im April machten Copepoden die andere Hälfte aus und im September waren außerdem Copepoden und Rotatorien codominant. Im Herbst überwogen dann Copepoden mit einem FM-Anteil von 73,5 %.
Im See wurden bei Fischerbefragungen 16 Fischarten ermittelt. Dabei kamen 5 Fischarten häufig und 11 eher selten vor (siehe Tab. 91).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>s</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Moderlieschen</td>
<td>Leucaspius delineatus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus glanis</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Albumus albumus</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>s</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
</tbody>
</table>

1.34.5 Nutzung, anthropogener Einfluss

1.35 Jabeler See

1.35.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 51: Tiefenlinien des Jabeler See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.35.2 Topographie und Morphometrie

Tab. 92: Topographie und Morphometrie des Nordbeckens (JABN), des Mittelbeckens (JABM), des Südbeckens (JABS) sowie des gesamten Jabeler Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).

<table>
<thead>
<tr>
<th></th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_{R} [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>JABN</td>
<td>6,35</td>
<td>0,82</td>
<td>23,0</td>
<td>7,8</td>
<td>1350</td>
<td>650</td>
<td>3,9</td>
<td>5,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JABM</td>
<td>5,63</td>
<td>1,21</td>
<td>18,0</td>
<td>4,6</td>
<td>1400</td>
<td>1400</td>
<td>2,8</td>
<td>6,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JABS</td>
<td>0,92</td>
<td>0,41</td>
<td>6,0</td>
<td>2,3</td>
<td>1150</td>
<td>550</td>
<td>1,1</td>
<td>5,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>12,90</td>
<td>2,44</td>
<td>22,6</td>
<td>5,3</td>
<td>3800</td>
<td>1400</td>
<td>2,0</td>
<td>3,0</td>
<td>7,6</td>
<td>1,1</td>
</tr>
</tbody>
</table>

1.35.3 Chemische und trophische Charakteristik des Sees

Das Nord- und Mittelbecken sind dimiktisch, das Südbecken aufgrund der geringen Tiefe polymiktisch. In beiden tiefen Becken des Sees setzte die thermische Schichtung 1999 bereits im April ein, sie war jedoch im flächenmäßig größeren und flacheren Mittelbecken nicht so stabil und langanhaltend wie im Nordbecken. Bereits ab Mitte Mai (Mittelbecken) bzw. Anfang Juni (Nordbecken) war das Hypolimnion bis auf Höhe des Metalimnions in 6 m Tiefe anaerob (O₂-Sättigung ≤ 15 %). Als Ergebnis der intensiven, hypolimnischen Sauerstoffzehrung während der Sommerstagnation wurde im gesamten Hypolimnion des Mittelbeckens ab August bis zur Herbstvollzirkulation Schwefelwasserstoff mit Maximalwerten von 1,5 mg/l unterhalb von 15 m nachgewiesen. Im Nordbecken wurde die Sulfidbildung durch erhöhte Nitratzufuhr aus dem Grabowhöfer Grenzgraben offensichtlich wirkungsvoll unterdrückt. Es wurde hier nur einmalig Schwefelwasserstoff in einer Konzentration von 0,09 mg/l in Sedimentnähe zum Ende der Sommerstagnation festgestellt.

<table>
<thead>
<tr>
<th></th>
<th>pH-Wert</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>TP_{Früh} [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>JABN</td>
<td>8,2</td>
<td>714</td>
<td>28,3</td>
<td>1,2</td>
<td>4,5</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td>JABM</td>
<td>8,6</td>
<td>657</td>
<td>31,3</td>
<td>1,0</td>
<td>3,06</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>JABS</td>
<td>8,7</td>
<td>620</td>
<td>41,4</td>
<td>1,0</td>
<td>2,3</td>
<td>106</td>
<td>106</td>
</tr>
</tbody>
</table>
Die interne Phosphor-Freisetzungsrate aus den Sedimenten des Nordbeckens lag im Jahr 1999 bei ca. 6,0 mg P/(m² d), die des Mittelbeckens war deutlich geringer (Hämmerling & Kleeberg 2000). Die Sauerstoffzehrung (24 h) in der gesamten Wassersäule betrug von Juli bis Oktober 1999 im Nordbecken 0,056 mg O₂/(l h), im Mittelbecken 0,053 mg O₂/(l h) und im Südbecken 0,052 mg O₂/(l h). Auch im Untersuchungsjahr 1997 (LUNG 1999) war bereits im Juni das gesamte Hypolimnion des Nord- und Mittelbeckens sauerstofffrei. Dieses Defizit dehnte sich dann im August jeweils bis in 4 m Wassertiefe aus. Oberflächennah wurden im Mai und August leichte Sauerstoffübersättigungen registriert. Zwischen April und Oktober 1997 (1 m Tiefe) schwankten die pH-Werte im gesamten See zwischen 7,7 und 9,1 und die Leitfähigkeit zwischen 526 µS/cm und 679 µS/cm. Die epilimnischen und hypolimnischen Nährstoffkonzentrationen waren jeweils im Nordbecken am größten. Dabei reichte die Schwankungsbreite der oberflächennahen Konzentrationen im gesamten See von 29 - 120 µg TP/l, 1,2 - 4,1 mg TN/l, < 0,2 - 2,5 mg NO₃-N/l, < 0,03 - 0,6 mg NH₄-N/l und < 5 - 98 µg SRP/l. Im Hypolimnion des Nordbeckens stiegen die TP-Konzentrationen im Oktober sogar auf maximal 1800 µg/l und die Ammonium-N-Konzentrationen auf 5,3 mg/l an. Spitzenwerte der Chlorophyll a-Konzentrationen wurden im April und Oktober bei maximal 44 µg/l im Nordbecken zum Zeitpunkt der Frühjahrsblüte registriert. Die Sichttiefen varierten zwischen 1 m und 2,5 m.

Die Calcium-Konzentrationen lagen meist im Bereich von 60 - 86 mg/l, ein Peak von 100,6 mg/l wurde jedoch im April (Nordbecken) gemessen. Die Klassifikation des Ist-
Zustand des Trophie im Jahr 1997 ergab nach dem LAWA-Bewertungsansatz einen Trophiebereich von (hoch-) eutroph (e2) für das Nord- und Südbecken, während das Mittelbecken als schwach eutroph (e1) bewertet wurde. Im Jahr 1999 befand sich das Nordbecken im Übergang zu e1, im Mittelbecken zeigte sich dagegen eine Trophieerhöhung auf e2, während das Südbecken seinen hoch eutrophen Status beibehielt. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den gesamten See nach (LAWA 1998) als natürlicherweise mesotroph (m) aus.

1.35.4 Flora und Fauna

Die Entwicklung der Phytoplanktonbiomasse und ihre Zusammensetzung war 1998 vergleichbar mit 1996. Die Dynamik verlief in allen 3 Becken sehr ähnlich und ohne zeitliche Verschiebungen. 1996 war die Frühjahrsblüte von centrischen Diatomeen (*Synedra acus*, *Asterionella formosa* und solitär centrische Diatomeen) geprägt, daneben traten schon Anfang Mai feinfädige Cyanobakterien, Vertreter der Chlorophyceen (*Schroederia, Scenedesmus*) und Cryptophyceen (*Cryptomonas, Rhodomonas*) auf. In den Monaten Mai und Juni kam es zur Ausbildung eines Klarwasserstadiums bei entsprechend geringen Biovolumina < 1 mm³/l. Ab Juli bis September wurde das Phytoplankton eindeutig von Cyanobakterien dominiert, neben feinfäden Vertretern, die taxonomisch nicht näher zugeordnet wurden, konnten *Aphanizomenon flos-aquae*, *Planktothrix agardhii* und *Microcystis* nachgewiesen werden. Die maximalen Biovolumina der Phytoplankter lagen in allen 3 Becken zwischen 8 mm³/l und 9 mm³/l. Im September wurden die Cyanobakterien zunehmend von Diatomeen und Cryptophyceen verdrängt, im Oktober lag ihr Anteil am Biovolumen jedoch wieder bei 40 % (Hämmerling & Kleeberg 1999). Auch im Untersuchungszeitraum April - November 1999 war die Phytoplanktongyndynamik im Nord-, Südbecken und der Seemitte ähnlich. Das Gesamtbiovolumen lag abgesehen von einem Klarwasserstadium im Mai bei minimal 0,3 mm³/l (Nordbecken) bzw. 1,5 mm³/l (Südbecken) im November und maximal bei 6,1 mm³/l im August (Südbecken) bzw. September (Nordbecken). Im April dominierten vor allem Cryptophyceen mit *Cryptomonas* spp. (Chlorophyceen) und *Rhodomonas* spp. (Nordbecken) sowie heterotrophe Flagellaten mit der Art *Gymnodinium helveticum* und die Chlorophyceenart *Monoraphidium kormakova*. Im Nordbecken machten unbestimmte trichale Cyanobakterien im Juni und August den größten Anteil mit 52 % bzw. 40 % aus, daneben waren hier im Juni die Chlamydophyceenart *Phacotus* sp. (die schon im Mai 30 % Anteil am Gesamtbiovolumen hatte) und *Coelastrum* spp. (Chlorophyceen) vertreten. Im Juli überwogen hier dagegen die Chrysophyceenart *Dinobryon* spp. und der Dinoflagellat *Ceratium hirundinella*. Im Südbecken traten die unbestimmten trichalen Cyanobakterien erst im August stärker in den Vordergrund, während im Juni vor allem *Rhodomonas* spp. und *Coelastrum* spp. dominierten. Der September war zumindest im Nordbecken durch eine Massenvermehrung von *Limnothrix redekei* geprägt, deren Anteil am Gesamtbiovolumen hier 85 % erreichte. Der Spätherbastaspekt war bei geringen Biovolumina durch centrische Diatomeen bzw. auch *Fragilaria* spp. (Südbecken) und Cryptophyceen sowie weiterhin durch fädige Cyanobakterien gekennzeichnet (Daten nach W. Arp, 1999, von der BTU Cottbus zur Verfügung gestellt).

Die mittlere Gesamtbiomasse (FM) des Zooplanktons war im Untersuchungszeitraum April - Oktober 1997 (LUNG 1999) mit 2,7 mg/l (Nordbecken), 2,3 mg/l (Mittelbecken) und 3,2 mg/l (Südbecken) in allen 3 Seeteilen ähnlich. Im Nordteil wurden Maximalwerte von 4,2 mg/l im April registriert, im Mittel- und Südbecken dagegen im
Oktober, im Südbecken erreichte der absolute Spitzenwert dabei 7,8 mg/l und lag damit deutlich über dem vorhergehenden Niveau. Den größten Anteil an der Biomasse hatten stets die Copepoden mit Maxima von 94 % (Nord- und Mittelbecken) bzw. 75 % (Südbecken) im Juni. Die Rotatorien waren vor allem im August mit FM-Anteilen um 30 % in allen Seeteilen und im Oktober im Mittel- (34 %) und Südbecken (40 %) vertreten. Der Cladocerenanteil an der Biomasse war im Nord- und Mittelbecken im Oktober mit ca. 20 % am größten, im Sübecken im Juni mit 17 %.

Im Jabeler See wurden bei Fischerbefragungen 20 Fischarten ermittelt. Dabei kamen 11 Fischarten häufig und 9 eher selten vor (siehe Tab. 94).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgumus</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>s</td>
<td>Ostseeschnäpel</td>
<td>Coregonus</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
</tbody>
</table>

h = häufig, s = selten
1.35.5 Nutzung, anthropogener Einfluss

1.36 Käbelicksee

1.36.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 53: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.36.2 Topographie und Morphometrie

Der Käbelicksee lässt sich in einen tieferen Nord- und flacheren Südteil unterscheiden. Im Folgenden wird der See jedoch als eine morphometrische Einheit betrachtet.

Tab. 95: Topographie und Morphometrie des Käbelicksees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_{max} [m]</th>
<th>Z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,9</td>
<td>2,64</td>
<td>12,6</td>
<td>3,4</td>
<td>2510</td>
<td>1508</td>
<td>1,54</td>
<td>1,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.36.3 Chemische und trophische Charakteristik des Sees

Laut Tiefengradienten ist davon auszugehen, dass zumindest der Nordteil des Sees im Sommer thermisch stabil geschichtet ist. Daten von 4 Beprobungsterminen (StAUN Schwerin) zwischen April und Oktober 1998 ergaben im gesamten See oberflächennah Schwankungen der Gesamtporphor-(TP)-Konzentrationen zwischen 21 µg/l und 48 µg/l, im Hypolimnion des Nordbeckens stiegen sie auf maximal 57 µg/l im September an.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordteil</td>
<td>8,2</td>
<td>440</td>
<td>11,9</td>
<td>1,4</td>
<td>0,9</td>
<td>40,0</td>
<td>40,0</td>
</tr>
<tr>
<td>Südteil</td>
<td>8,7</td>
<td>405</td>
<td>25,5</td>
<td>1,4</td>
<td>1,0</td>
<td>38,5</td>
<td>50,0</td>
</tr>
</tbody>
</table>

Die SRP-Konzentrationen lagen um 10 µg/l, in der Tiefe erreichten sie maximal 20 µg/l im Juni. Die Konzentrationen an Gesamtstickstoff betrugen im gesamten See
zwischen 0,7 mg/l und 1,5 mg/l (Ausnahme April, 9 m Tiefe: 2,3 mg/l), dabei waren die Ammonium-N- und Nitrat-N-Konzentrationen in 1 m Tiefe mit meist < 0,03 mg NH₄-N/l und < 0,01 mg NO₃-N/l relativ niedrig. Lediglich im Oktober zeigten sie dort einen leichten Anstieg und im Juni wurde im Südbecken ein höherer Wert von 0,4 mg NO₃-N/l ermittelt. Im Hypolimnion waren Maximalwerte von 0,6 mg NO₃-N/l (10 m Tiefe) und 0,8 mg NH₄-N/l (12 m Tiefe) im Juni zu verzeichnen. Die Chlorophyll a-Konzentrationen lagen im gesamten Untersuchungszeitraum bei > 15 µg/l, zeigten aber im September in beiden Seeteilen vergleichbare Maxima von ca. 27 - 28 µg/l. Der Sauerstoffsättigungsindex schwankte zwischen 84 - 111 %. Für die Calcium-Konzentrationen lässt sich in beiden Seeteilen ein enger Bereich zwischen 59 mg/l und 62 mg/l angeben.

1.36.4 Flora und Fauna

Die Phytoplanktonentwicklung von April - Oktober 1998 war in beiden Seeteilen vergleichbar. Höchste Biomassen (FM) wurden im April mit 12 mg/l (Nordteil) ermittelt, als sich die Gemeinschaft jeweils zur Hälfte aus Diatomeen und Cyanobakterien (Limnothrix redekei, Aphanizomenon flos-aquae) zusammensetzte. Innerhalb der Diatomeen überwog dabei Asterionella formosa gegenüber Fragilaria ulna var. acus und centrischen Diatomeen. Im Juni waren dann Cyanobakterien mit FM-Anteilen > 95 % vor allem mit der Art Limnothrix redekei aspektbestimmend. Auch im September setzte sich das Phytoplankton zur Hälfte aus Cyanobakterien dieser Art zusammen, die andere Hälfte bestand zu gleichen Anteilen aus Dinophyceen (Ceratium hirundinella, Gymnodinium helveticum, Peridinium sp.) und Cryptophyceen (Cryptomonas sp.). Im Oktober waren die Cryptophyceen vorherrschend, der Anteil von Dinoflagellaten nahm zu Gunsten von Diatomeen (im Nordteil vor allem Asterionella formosa, im Südteil vor allem Aulacoseira / Melosira) ab. Die Biomasse sank im Oktober auf 2,0 mg/l (Nordteil).

Im Zooplankton waren im gesamten Untersuchungszeitraum 1998 cyclopoide Copepoden stärkste Biomassebildner. Zunächst dominierten Copepoden gemeinsam mit Rotatorien (Asplanchna priodonta), deren FM-Anteile jedoch geringer ausfielen, im Juni waren dann ausschließlich Copepoden dominant (92 % FM-Anteil) und bis Oktober nahm der Anteil der Cladoceren (Daphnia cucullata, Eubosmina coregoni) auf maximal 66 % im Südbecken zu. Im Nordteil trugen weiterhin vorrangig Copepoden zur Zooplanktonbiomasse bei. Im Untersuchungszeitraum ergaben sich im gesamten See Schwankungen in der Biomasse zwischen 1,4 mg/l und 4,4 mg/l.

Im Gewässer wurden bei Fischerbefragungen 21 Fischarten ermittelt. Dabei kamen 14 Fischarten häufig und 7 eher selten vor (siehe Tab. 97).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod idella</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus albuminus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus glanis</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>s</td>
<td>Bitterling</td>
<td>Rhodeus sericeus amarus</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus fossilis</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
</tbody>
</table>

1.36.5 Nutzung, anthropogener Einfluss

1.37 Klein Pritzer See

1.37.1 Genese, Lage, Einzugsgebiet und Hydrologie

![Diagram of the Dabeler See](Image)

Abb. 55: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.37.2 Topographie und Morphometrie

Der See ist buchtenreich und gliedert sich in mehrere Becken, von denen das vor der Halbinsel Schwedenschanze zentral gelegene die maximale Tiefe aufweist. Im Folgenden wird der See jedoch als eine morphometrische Einheit betrachtet.

Tab. 98: Topographie und Morphometrie des Klein Pritzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>Z_{max}</th>
<th>Z_{mean}</th>
<th>L_{eff}</th>
<th>B_{eff}</th>
<th>U_E</th>
<th>F</th>
<th>Z_{epi}</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[-]</td>
<td>[-]</td>
<td>[m]</td>
<td>[a]</td>
</tr>
<tr>
<td>18,64</td>
<td>2,42</td>
<td>22,3</td>
<td>7,7</td>
<td>2620</td>
<td>1490</td>
<td>1,9</td>
<td>3,1</td>
<td>7,1</td>
<td></td>
</tr>
</tbody>
</table>
1.37.3 Chemische und trophische Charakteristik des Sees

Das Gewässer besitzt in Stagnationsperioden eine stabile thermische Schichtung. Die Wasserqualität wurde in der Vergangenheit durch erhebliche Belastungen aus der Landwirtschaft (Ackerbau, Tierproduktion) und Kommunalentsorgung beeinträchtigt. Im Untersuchungsjahr 1995 (LUNG 1999) lagen die Sichttiefen im Klein Pritzer See sowohl im Zentralbecken als auch in den Buchten zu allen 4 Bereisungsterminen (April - Oktober) zwischen 1 m und 2 m, ein Klarwasserstadium konnte nicht nachgewiesen werden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,4</td>
<td>541</td>
<td>23,3</td>
<td>2,2</td>
<td>1,0</td>
<td>20,9</td>
<td>41,5</td>
</tr>
</tbody>
</table>

Abb. 56: Zeitliche Entwicklung der Trophieparameter vom Klein Pritzer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Die Chlorophyll a-Konzentrationen erreichten im Oktober Werte von 19,8 µg/l. Schon Anfang Juni lag im See eine Temperaturschichtung vor, die bis Ende August auf Grund der ungewöhnlich hohen Oberflächentemperaturen eine scharf ausgeprägte...
Sprungschicht in 5 - 6 m Wassertiefe zur Folge hatte. Der hypolimnische Sauerstoffvorrat war schnell verbraucht, so dass dort während des gesamten Sommers anaerobe Zustände auftraten. Während im Hypolimnion schon ab Juni starke Schwefelwasserstoffbildung nachgewiesen wurde, lagen in den Sommermonaten tagsüber im oberflächennahen Wasserkörper des gesamten Sees Sauerstoffübersättigungen bis 160 % vor. Bei mittelhohen epilimnischen Nährstoffkonzentrationen (Gesamtphosphor: 50-80 µg/l, Gesamtnitrit: 0,7-1,1 mg/l, Nitrat-N: < 0,05 - 0,3 mg/l, Ammonium-N: < 0,05 -0,4 mg/l, SRP: maximal 44 µg/l) wurde im Tiefenwasser bis Oktober ein kontinuierlicher Anstieg der Gesamtnährstoffkonzentrationen auf 390 µg/l und der Ammoniumkonzentrationen auf ca. 3,5 mg/l nachgewiesen. Der Klein Pritzer See wurde nach den Untersuchungen von 1995 als hoch eutroph (e2) eingeschätzt. Die Trophieparameter des Jahres 2001 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) hingegen als schwach eutrophes (e1) Gewässer aus. Ausschlaggebend scheint hierfür eine zwischenzeitliche Abnahme der TP-Konzentrationen zu sein. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den geschichteten See nach (LAWA 1998) als natürlicherweise mesotroph (m) aus.

1.37.4 Flora und Fauna

Im Jahr 1995 wurden nur relativ geringe Biomassekonzentrationen des Phytoplanktons (3,4 - 6,7 mg FM/l) erfasst. Cyanobakterien hatten zu allen 4 Beprobungsterminen (April - Oktober) FM-Anteile von über 30 %. Im Frühling dominierten Diatomeen (zentrische Arten und die Gattung Fragilaria) begleitet von Cyanobakterien (vor allem Aphanizomenon flos-aquae) und in weit geringerem Maße von Cryptophyceen und Dinoflagellaten (hauptsächlich Ceratium hirundinella). Die Gesamtbiozönose erreichte zu dieser Zeit ihre Maximalwerte. Im Juni und August prägten in erster Linie Cyanobakterien die Phytoplanktonzusammensetzung, wobei ihr FM-Anteil bei 59,6 % bzw. 54,1 % lag. Außerdem waren Diatomeen im Juni und August und Dinophyceen im Juni dominante Phytoplanktonklassen. Letztere traten zum Sommerende bis in den Herbst mit den Arten Ceratium hirundinella und Peridinium spp. gehäuft auf. Mit Biomasseanteilen von 42,7 % prägten sie im Oktober in etwa gleichem Maße wie Cyanobakterien das Phytoplanktonbild. Im Jahr 2001 nahm die Phytoplanktonbiomasse weiter ab. Fädige Cyanobakterien (Limnothrix, Aphanizomenon, Pseudanabaena) bildeten insbesondere während der Sommermonate hohe Abundanzen (bei bis zu 70 % Biomasseanteil) und beeinträchtigten besonders die Entwicklungsmöglichkeiten der größeren Zooplankter.

Auch das Zooplankton zeichnete sich 1995 durch relativ niedrige Biomassewerte (FM) zwischen 1,2 mg/l und 2,9 mg/l aus. Lediglich im Juni wurden höhere Konzentrationen von 8,8 mg/l nachgewiesen, die hauptsächlich auf das verstärkte Auftreten der Cladoceren-Art Daphnia cucullata zurückzuführen waren. Der Cladoceren-Anteil an der Gesamtbiozönose betrug zu diesem Zeitpunkt 89,9 %. Rotatorien traten das ganze Jahr in relativ geringen Abundanzen auf. Im Spätsommer und Herbst dominierten calanoide Copepoden (Eudiaptomus gracilis) mit Biomasseanteilen von 67,5 % im August und 71 % im Oktober. Auch im Jahr 2001 waren die Zooplankton-Biomassen sehr gering. Die Artenstruktur und Abundanzen der Zooplanktur spiegelten die hohe Trophie des Gewässers wider, dabei ergaben sich in der qualitativen Zusammensetzung vor allem in Hinblick auf die dominanten Arten im Vergleich zu früheren Untersuchungen kaum Unterschiede. Die Rotatorien dominierten 2001 ganzjährig mit höchsten Abundanzen im

Angaben zur Fischfauna lagen nicht vor.

1.37.5 Nutzung, anthropogener Einfluss

1.38 Kölpinsee

1.38.1 Genese, Lage, Einzugsgebiet und Hydrologie

![Tiefenkarte des Kölpinsees](image)

Abb. 57: Tiefenkarte des Kölpinsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.38.2 Topographie und Morphometrie

Der Kölpinsee erstreckt sich in seiner maximalen Längenausdehnung von Osten nach Westen. Im östlichen Bereich ist er sehr viel breiter als im westlichen Abschnitt. Er gliedert sich ebenso in zwei Tiefenbereiche, wobei sich im Osten der tiefste Punkt des Sees befindet.

Tab. 100: Topographie und Morphometrie des Kölpinsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_{max} [m]</th>
<th>Z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>71,88</td>
<td>20,29</td>
<td>30,0</td>
<td>3,5</td>
<td>7250</td>
<td>940</td>
<td>1,7</td>
<td>3,5</td>
<td>8,6</td>
<td></td>
</tr>
</tbody>
</table>
1.38.3 Chemische und trophische Charakteristik des Sees

Aufgrund seiner windexponierten Lage und geringen mittleren Tiefe ist der Kölopinsee entgegen seinem Tiefengradienten > 1,5 während des Sommers nicht durchgehend stabil geschichtet, sondern lediglich im Bereich seiner tiefen Stelle. Daten von 4 Beprobungsterminen (StAUN Schwerin) zwischen März und November 1997 (1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 8,2 und 8,6 und der Leitfähigkeit zwischen 518 µS/cm und 709 µS/cm. Die Gesamtphosphorkonzentrationen lagen im Bereich 50 - 220 µg/l mit Höchstwerten im März, die SRP-Konzentrationen bei 38 - 310 µg/l mit Höchstwerten im November. Die Oberflächennahen Konzentrationen an Gesamtphosphor an Gesamtstickstoff an Gesamtstickstoff betrugen im Untersuchungszeitraum ca. 1,0 mg/l, dabei waren die Ammonium-N-Konzentrationen mit 0,03 - 0,07 mg/l und die Nitrat-N-Konzentrationen mit 0,005 - 0,14 mg/l relativ niedrig. Die Chlorophyll a-Konzentrationen befanden sich mit maximal 6,8 µg/l im September im moderaten Bereich. Leichte Sauerstoffübersättigungen (106 %) ließen sich nur im Juli nachweisen. Im gesamten Untersuchungszeitraum lagen die Sichttiefen zwischen 1,4 m und 2,7 m. Für die Calcium-Konzentrationen lässt sich ein Schwankungsbereich zwischen 63,3 mg/l und 70,5 mg/l angeben. Die Trophieparameter des Jahres 1997 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) als schwach eutrophes (e1) Gewässer aus. Aus der Morphometrie ist für den See als potentiell natürlicher Trophiezustand Mesotrophie (m) abzuleiten (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,4</td>
<td>529</td>
<td>6,4</td>
<td>1,7</td>
<td>1,0</td>
<td>108</td>
<td>175</td>
</tr>
</tbody>
</table>

1.38.4 Flora und Fauna

Im Jahr 1993 zeigte das Phytoplankton laut Gewässergütebericht seine maximale Entwicklung im Frühjahr mit Biovolumina von 6,5 mm³/l. Die Diatomeen Asterionella formosa und Fragilaria crotonensis waren die dominierenden Arten mit bis zu 58 % Biovolumenanteil. Klein Flagellaten ergänzten das Bild. Im September und Oktober wurden nur sehr geringe Phytoplanktonwerte um 2 mm³/l ohne eindeutige Dominanzen festgestellt. Im Untersuchungszeitraum März - November 1997 (StAUN Schwerin) schwankten die Phytoplanktonbiomassen um geringe Konzentrationen von 0,5 mg FM/l. Im Frühjahr dominierten wiederum Diatomeen. Im September entfielen gleiche FM-Anteile auf Cyanobakterien und Cryptophyceen, Diatomeen waren die drittstärkste Fraktion. Im November wurden dann ausschließlich Cyanobakterien nachgewiesen.

Das Zooplankton setzte sich im Untersuchungszeitraum 1997 in einem ausgewogenen Verhältnis aus Rotatorien, Cladoceren und Copepoden zusammen, wobei Cladoceren im September mit 61 % und im November mit 48 % den größten Anteil an der Frischmasse hatten. Innerhalb der Cladoceren dominierten im September Daphnia cucullata und Pseudochoydoros globulosus, im November Bosmina coregoni. Die Rotatorien waren relativ divers zusammengesetzt. An
Copepoden wurde *Cyclops strenuus* sowie cyclopoide Copepoden und Nauplien nachgewiesen. Insgesamt war auch die Zooplanktonbiomasse sehr gering, das Maximum wurde im September registriert und lag bei 0,2 mg FM/l.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
</tr>
<tr>
<td></td>
<td>s Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td></td>
<td>s Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>h</td>
<td>Binnenstint</td>
<td>Osmerus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albuminus</td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
</tbody>
</table>

Quappe (*Lota lota*), Blei (*Abramis brama*) und Binnenstint (*Osmerus eperlanus*) vertreten (StAUN Schwerin 2001).

Bedeutende Fischерträge entfielen 2001 auf Aal, Futterfisch und Hecht.

1.38.5 Nutzung, anthropogener Einfluss

Die geringe Verbauung des Uferbereiches und der hohe Waldanteil am Ufer schließen lokale Verschmutzungen weitgehend aus und lassen eine Stabilität des bisherigen Zustands erwarten (Gewässergütebericht 1993).
1.39 Krakower See

1.39.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Krakower See wird von der Nebel - dem größten Nebenfluss der Warnow - durchflossen, die oberhalb ihrer Einmündung in den Krakower Obersee von landwirtschaftlichen Flächen, aber auch durch die Fischwirtschaft (Forellenmastanlagen) belastet wurde bzw. zur Zeit noch wird. Die Nebel, die zusammen mit einer Vielzahl weiterer Zuläufe von geringerer Wasserführung ein oberirdisches Einzugsgebiet von 165,9 km² entwässert, verlässt den See über den Krakower Untersee mit wesentlich besserer Wasserqualität. Das unterirdische Einzugsgebiet des Krakower Sees wird mit 270 km² angegeben. Der mittlere Abfluss des Obersees beträgt 1,47 m³/s.

Abb. 58: Krakower Obersee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Abb. 59: Krakower Untersee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.39.2 Topographie und Morphometrie

Tab. 103: Topographie und Morphometrie der Seeteile Krakower Ober- (KO) und Untersee (KU) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO</td>
<td>59,68</td>
<td>7,99</td>
<td>28,3</td>
<td>7,5</td>
<td>5181</td>
<td>2464</td>
<td>3,0</td>
<td>3,4</td>
<td>8,5</td>
<td></td>
</tr>
<tr>
<td>KU</td>
<td>51,28</td>
<td>7,08</td>
<td>22,0</td>
<td>7,2</td>
<td>3828</td>
<td>2310</td>
<td>3,7</td>
<td>2,8</td>
<td>8,0</td>
<td></td>
</tr>
</tbody>
</table>

1.39.3 Chemische und trophische Charakteristik des Sees

Die Trophieparameter des Jahres 1999 weisen den Krakower Obersee nach LAWA-Bewertungsansatz (LAWA 1998) als schwach eutroph (e1) und den Binnen- und Stadtsee (Krakower Untersee) nun sogar als mesotroph, die Nordtiefe (Krakower Untersee) hingegen als schwach eutroph (e1) und den Serrahner Seeteil (Krakower Untersee) als hoch eutroph (e2) aus. Ob sich die Trophieverminderung einzelner Teile des Untersees stabilisiert, bleibt abzuwarten. Der trophische Referenzzustand für beide Seeenteile, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist die Seen nach (LAWA 1998) als natürlicherweise mesotroph (m) aus.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KO</td>
<td>8,7</td>
<td>491</td>
<td>22,95</td>
<td>2,3</td>
<td>0,8</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>BS</td>
<td>8,7</td>
<td>557</td>
<td>10,20</td>
<td>3,0</td>
<td>1,24</td>
<td>60</td>
<td>39</td>
</tr>
<tr>
<td>StS</td>
<td>8,6</td>
<td>558</td>
<td>10,35</td>
<td>2,9</td>
<td>1,27</td>
<td>47</td>
<td>26</td>
</tr>
<tr>
<td>Nt</td>
<td>8,3</td>
<td>513</td>
<td>16,6</td>
<td>2,3</td>
<td>1,20</td>
<td>87</td>
<td>16</td>
</tr>
<tr>
<td>SS</td>
<td>8,7</td>
<td>692</td>
<td>46,15</td>
<td>1,0</td>
<td>1,6</td>
<td>51</td>
<td>21</td>
</tr>
<tr>
<td>St</td>
<td>8,1</td>
<td>510</td>
<td>21,3</td>
<td>2,5</td>
<td>0,97</td>
<td>86</td>
<td>14</td>
</tr>
</tbody>
</table>

Abb. 60: Zeitliche Entwicklung der Trophieparameter vom Krakower Obersee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1994 fanden Sedimentanalysen statt, bei denen keine Belastungen mit Schadstoffen festgestellt wurden. Der organische Gehalt der Sedimente (19 – 35 %) und die Gesamtphosphor- und Stickstoffkonzentrationen in der Trockensubstanz (0,9 -
1,55 g/kg bzw. 9 – 16 g/kg) nahmen im Untersee vom Stadtsee über die Burgwalltiefe bis zum Obersee ab.

1.39.4 Flora und Fauna

Bedeutendster Nutzfisch war 1999 der Hecht (Esox lucius), im Jahr 2001 entfiel dagegen auf den Aal (Anguilla anguilla) der mit Abstand höchste Fangertrag. In den Jahresfängen 2001 aufgeführt sind weiterhin Barsch (Perca fluviatilis), Blei (Abramis brama), Große und Kleine Maräne (Coregonus lavaretus und C. albula), Hecht, Karpfen (Cyprinus carpio), Schleie (Tinca tinca) und Zander (Stizostedion lucioperca).

1.39.5 Nutzung, anthropogener Einfluss

Zur Erhaltung der gegenwärtigen Wasserbeschaffenheit des Krakower Sees sind neben Maßnahmen am Obersee die Sanierung des in den Stadtsee einmündenden Krakower Mühlbachs, der Anschluss Krakows sowie der seenahen Gemeinden an die Kläranlage Charlottenthal und der Schutz vor erosionsbedingten Einträgen aus der Landwirtschaft (z.B. durch die Anlage von bewachsenen Uferschutzflächen) sowie die Sanierung des Möllner Sees notwendig (Gewässergütebericht 1995).
1.40 Krüselinsee

1.40.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Krüselinsee liegt etwa 8 km südlich von Feldberg in einem ausgedehnten Kiefernwaldgebiet, direkt an der Grenze zum Bundesland Brandenburg und ist im Westteil von kalkreichen Mooren umgeben. Der See bildet mit seinem Uferbereich ein ausgewiesenes Naturschutzgebiet in der Feldberger Seenlandschaft. Bei einem relativ unbedeutenden oberirdischen Zufluss wird der See hauptsächlich im Nordteil über eine Versickerungsstrecke aus dem Dreetzsee von ergiebigen Ufer- und Bodenquellen gespeist. Der Ablauf befindet sich am Südende und führt über die Krüseliner Mühle in den Kleinen Mechowsee. Der mittlere Abfluss ist mit 0,1 m³/s angegeben. Das Einzugsgebiet weist eine Größe von 3,0 km² auf.

Abb. 61: Krüselinsee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.40.2 Topographie und Morphometrie

Die Längsausdehnung verläuft von Norden nach Süden. Der See ist sehr schmal und im südlichen Bereich bis zu 18 m tief. Unmittelbar nördlich der tiefsten Stelle im See befindet sich eine Insel.

Tab. 105: Topographie und Morphometrie des Krüselinsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>(z_{\text{max}}) [m]</th>
<th>(z_{\text{mean}}) [m]</th>
<th>(L_{\text{eff}}) [m]</th>
<th>(B_{\text{eff}}) [m]</th>
<th>(U_E) [-]</th>
<th>F [-]</th>
<th>(z_{\text{epi}}) [m]</th>
<th>(t_R) [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,42</td>
<td>0,63</td>
<td>18,7</td>
<td>8,6</td>
<td>1740</td>
<td>679</td>
<td>1,7</td>
<td>3,1</td>
<td>6,1</td>
<td>1,7</td>
</tr>
</tbody>
</table>
1.40.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,3</td>
<td>388</td>
<td>2,9</td>
<td>6,1</td>
<td>0,7</td>
<td>28,0</td>
<td>32,0</td>
</tr>
</tbody>
</table>

Zum Sommerende sanken die Nitrat-N-Konzentrationen oberflächennah ausgehend von 0,2 mg/l auf < 0,01 mg/l ab und auch im Hypolimnion wurden diese aufgebraucht, so dass anorganischer Stickstoff hier fast ausschließlich als
Ammonium vorlag. Die Ammonium-N-Konzentrationen überschritten an der Oberfläche nicht 0,06 mg/l und die Gesamtstickstoffkonzentrationen lagen hier im engen Bereich von 0,4 - 1,4 mg/l. Eine verstärkte Phosphorremobilisierung aus dem Sediment konnte nicht mit Sicherheit nachgewiesen werden, jedoch lagen die hypolimnischen Phosphorkonzentrationen im Sommer deutlich über den Werten der Frühjahrszirkulation. In 1 m Tiefe schwankten die TP-Konzentrationen zwischen 12 µg/l und 43 µg/l, die SRP-Konzentrationen zwischen 9 µg/l und 21 µg/l. Die sommerlichen Sichttiefen waren mit Werten zwischen 5,4 m und 6,5 m verhältnismäßig hoch, die in 1 m Tiefe gemessenen Chlorophyllkonzentrationen von meist 2,8 µg/l und die mittlere Phytoplanktonbiomasse von 0,5 mg FM/l waren äußerst gering. Zusammenfassend wird der Krüselinsee nach den Untersuchungsergebnissen des Jahres 1995 und 1998 nach LAWA-Bewertungsansatz (LAWA 1998) als mesotrophes Gewässer ausgewiesen. Hinsichtlich des morphometrischen Referenztrophiegrades ergibt sich für den See ebenfalls Mesotrophe (m) (LAWA 1998).

1.40.4 Flora und Fauna

Das Phytoplankton bildete während des gesamten Untersuchungszeitraumes April - Oktober 1998 äußerst geringe Biomassen (maximal 0,8 mg/l im September) aus. Die Zusammensetzung wurde im April von Diatomeen, im Juni zusätzlich von Chlorophyceen und in geringerem Maße auch von Dinoflagellaten bestimmt. Cyanobakterien dominierten im September mit 59 % FM-Anteilen. Im Oktober waren in erster Linie Cryptophyceen, daneben auch Diatomeen und Dinophyceen an der Biomasse beteiligt.

Die Zooplanktonzusammensetzung wurde vor allem von calanoiden Copepoden dominiert, während die übrigen Gruppen nur von geringer Bedeutung waren.

Angaben zur Fischfauna lagen nicht vor.

1.40.5 Nutzung, anthropogener Einfluss

1.4.1 Kummerower See

1.4.1.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Kummerower See liegt etwa 60 km südlich von Stralsund. Er entstand als Zungenbeckensee im Rückland der Endmoräne des Pommerschen Stadiums der Weichseleiszeit in kuppiger Landschaft, die Höhenzüge bis 100 m aufweist. Nach der letzten Eiszeit war der See annähernd doppelt so groß wie heute, da vor ca. 7500 Jahren eine umfassende Verlandung einsetzte (Kalbe & Werner 1974).

1.41.2 Topographie und Morphometrie

Das flache länglich-ovale Becken des Kummerower Sees erstreckt sich von Nordosten in südwestlicher Richtung und ist relativ ungegliedert.

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z(_{\text{max}})</th>
<th>z(_{\text{mean}})</th>
<th>L(_{\text{eff}})</th>
<th>B(_{\text{eff}})</th>
<th>U(_{\text{E}})</th>
<th>F</th>
<th>z(_{\text{epi}})</th>
<th>t(_{\text{R}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[-]</td>
<td>[-]</td>
<td>[m]</td>
<td>[a]</td>
</tr>
<tr>
<td>262,96</td>
<td>32,55</td>
<td>23,3</td>
<td>8,1</td>
<td>10860</td>
<td>4180</td>
<td>1,6</td>
<td>2,3</td>
<td>10,2</td>
<td></td>
</tr>
</tbody>
</table>

1.41.3 Chemische und trophische Charakteristik des Sees

Durch seine relativ geringe mittlere Tiefe und windexponierte Lage ist der See meist gut durchmischt. Temperaturgradienten, die sich bei Windstille einstellen können, sind nur von kurzer Dauer. Paläolimnologische Untersuchungen belegen, dass der See eine über mehrere 1000 Jahre zurückreichende Eutrophierungsgeschichte hat (Seenprojekt Mecklenburg-Vorpommern 1995). Einen drastischen weiteren Eutrophierungsschub erfuhr der See Anfang der 1960er Jahre, der durch Sauerstoffschwund im Tiefenwasser nach kurzen Stagnationsphasen, hohe Primärproduktionsraten von 1 g C/(m² d) laut Kalbe & Schulze (1972 in Wöbbecke et al. 2003), epilimnische Sauerstoffübersättigungen > 130 % und sommerliche Blaulgenblüten (*Microcystis* sp.) bei minimalen Sichttiefen von 1,3 m gekennzeichnet war. Aktuelle Messungen aus den Jahren 1998 - 2000 ergaben Gesamtphosphor (TP)-Konzentrationen im Frühjahr von 80 - 130 µg/l. Im Mittel der 3 Jahre lagen sie bei 130 µg/l. Im Juni trat jeweils eine kurze Stagnationsphase auf, in deren Folge der Sauerstoff im Tiefenwasser rapide gegen 0 sank. Nach anschliessender Durchmischung stiegen die TP-Konzentrationen auf > 200 µg/l an. Die Gesamtstickstoffkonzentrationen nahmen im Jahresverlauf von ca. 3 mg/l auf ca. 1 mg/l ab (im Mittel der 3 Jahre betrug die Konzentration 1,8 mg/l). Das N/P-Verhältnis sank teilweise deutlich unter 7. Im Verhältnis zu den hohen TP-Konzentrationen blieben die Chlorophyllkonzentrationen mit 16,3 µg/l und Phytoplanktonbiovolumina auffallend gering, offensichtlich übte das Zooplankton einen regulierenden Einfluss aus. Auf dennoch hohe Primärproduktionsraten deutet z.B. die zeitweise starke Abnahme der Alkalinität hin (Wöbbecke et al. 2002).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,3</td>
<td>669</td>
<td>8,7</td>
<td>1,7</td>
<td>1,1</td>
<td>109</td>
<td>40</td>
</tr>
</tbody>
</table>

1.41.4 Flora und Fauna
Aktuelle Untersuchungen zum Makrophytenbewuchs liegen nicht vor.
Das Phytoplankton zeigte im Zeitraum 1998 - 2000 ein Diatomeenmaximum im Frühsommer 2000 auf 4,8 mm³/l und im weiteren Jahresverlauf unter 1 mm³/l ab, es trat ein Klarwasserstadium ein, das im wesentlichen durch Daphnia sp. verursacht wurde. Im Juni 2000 waren die Cryptophyceen vor allem mit der Art Rhodomonas minuta in Begleitung von Cryptomonas sp. vorherrschend. Im September 2000 dominierten unbestimmte Chroococcales (Cyanobakterien) mit

Im Zooplankton traten neben der Cladocere *Daphnia* überwiegend Copepoden auf, Rotatorien waren dagegen mengenmäßig unbedeutend. Das Zooplanktonbiovolumen überstieg im Jahresverlauf oft das des Phytoplanktons, so erreichte es zeitweilig maximale Anteile von ca. 95 % (Frühsommer) am Gesamtplanktonbiovolumen. Im Jahr 1998 wurden maximale Werte von ca. 5 mm³/l ermittelt.

In den 1970er Jahren besiedelte *Dreissena polymorpha* den Seegrund flächendeckend (Kalbe & Werner 1974), aktuelle Untersuchungen liegen nicht vor.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Regenbogenforelle</td>
<td>Salmo gairdneri</td>
</tr>
<tr>
<td>h</td>
<td>Neunstachliger Stichling</td>
<td>Pungitius pungitius</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Rapfen</td>
<td>Aspius aspius</td>
</tr>
<tr>
<td>s</td>
<td>Aland</td>
<td>Leuciscus idus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>s</td>
<td>Döbel</td>
<td>Leuciscus cephalus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>s</td>
<td>Zope</td>
<td>Abramis ballerus</td>
</tr>
<tr>
<td>s</td>
<td>Meerforelle</td>
<td>Salmo trutta f.trutta</td>
</tr>
</tbody>
</table>
Häufigkeit der Art | deutscher Name | Artname
---|---|---
h | Giebel | Carassius auratus
h | Zander | Stizostedion lucioperca
s | Flunder | Platichthys flesus
s | Wels | Silurus glanis
h | Aal | Anguilla anguilla
h | Blei | Abramis brama
h | Binnenstint | Osmerus esperlanus
h | Gründling | Gobio gobio
s | Lachs | Salmo salar
s | Flußneunauge | Lampetra fluviatilis
s | Bitterling | Rhodeus sericeus amarus
s | Zährte | Vimba vimba
s | Kleine Maräne | Coregonus albula L.
s | Steinbeißer | Cobitis taenia
h | Kaulbarsch | Gymnocephalus cernua
h | Rotfeder | Scardinius erythrophthalmus
h | Ukelei | Alburnus albumus
s | Bachneunauge | Lampetra planeri
h | Schleie | Tinca tinca
h | Dreistachliger Stichling | Gasterosteus aculeatus
s | Graskarpfen | Ctenopharyngod idella

1.41.5 Nutzung, anthropogener Einfluss

1.42 Lankower See

1.42.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Lankower See befindet sich südöstlich von Lankow bei Schwerin. Der See ist in seiner näheren Umgebung von Siedlungsflächen umgeben. Das kleine Einzugsgebiet weist eine Größe von nur 4,4 km² auf. Der mittlere langjährige Abfluss ist mit 0,019 m³/s angegeben.

Abb. 65: Tiefenkarte des Lankower See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.42.2 Topographie und Morphometrie

Der See erstreckt sich in seiner Längenausdehnung von Norden nach Süden. Dabei gliedert sich das Gewässer in zwei Bereiche, welche in der Mitte durch eine Eineingung geteilt werden. Der nördliche Bereich ist stark gegliedert und breiter als der südliche Bereich. Im südlichen Abschnitt befindet sich die tiefste Stelle.

Tab. 110: Topographie und Morphometrie des Lankower See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,80</td>
<td>0,54</td>
<td>10,2</td>
<td>5,2</td>
<td>1560</td>
<td>900</td>
<td>2,4</td>
<td>1,7</td>
<td>6,2</td>
<td>4,7</td>
</tr>
</tbody>
</table>
1.42.3 Chemische und trophische Charakteristik des Sees

Der Tiefengradient weist den See als im Sommer thermisch stabil geschichtet aus. Daten von 5 Beprobungsterminen (STAUN Schwerin) zwischen März und Oktober 1998 an der tiefen Stelle ergaben in 1 m Tiefe durchgehend hohe Gesamtphosphorkonzentrationen zwischen 560 µg/l und 1210 µg/l, über dem Grund stiegen sie im Juni sogar auf 2100 µg/l an. Äußerst hoch fielen auch die zeitlich korrespondierenden SRP-Konzentrationen mit 551 - 771 µg/l an der Oberfläche und maximal 1450 µg/l im Tiefenbereich aus.

<table>
<thead>
<tr>
<th>pH-Wert [-]</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>TP_{Früh} [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7</td>
<td>306</td>
<td>28,1</td>
<td>2,0</td>
<td>1,2</td>
<td>817</td>
<td>653</td>
</tr>
</tbody>
</table>

Abb. 66: Zeitliche Entwicklung der Trophieparameter vom Lankower See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Die Konzentrationen an Gesamtstickstoff waren mit Werten zwischen 0,5 mg/l und 2,2 mg/l in allen Tiefen ebenfalls recht hoch, dabei betrugen die Nitrat-N-Konzentrationen im Minimum 0,01 mg/l und im Maximum 0,5 mg/l, die Ammonium-N-

1.42.4 Flora und Fauna

Die Phytoplanktonentwicklung und -zusammensetzung zeigt im Vergleich einzelner Untersuchungsjahre große Unterschiede. So dominierten im April 1997 centrische Diatomeen bei einem sehr geringen Gesamtbiovolumen von 0,5 mm³/l. Im Juni zeigte der Dinoflagellat Ceratium hirundinella eine Massenentwicklung, die zu einer Biovolumenzunahme auf 41,1 mm³/l führte, an dem diese Art einen Anteil von 80 % hatte. Auch im September dominierten Dinophyceen, diesmal mit der Art Ceratium furcoides, das Gesamtbiovolumen nahm auf 6,4 mm³/l und im Anschluss auf 3,9 mm³/l ab. Im November entfiel ein Volumenanteil von 65 % auf die Cyanobakterienart Aphanizomenon flos-aquae. Die Zusammensetzung des Phytoplanktons im März 1998 wurde hingegen maßgeblich durch die Dinophyceenart Peridinium spp. bestimmt, daneben entfielen ähnliche Anteile auf Diatomeen (Asterionella formosa, Synedra acus, centrische Diatomeen) und Cryptophyceen. Diese dominierten dann im gesamten weiteren Untersuchungsverlauf mit der Art Cryptomonas spp. und Biomasseanteilen von meist über 90 %. Die Frischmasse-Konzentration (FM) lag maximal bei 10,4 mg/l im April und sonst zwischen 0,4 mg/l und 3,0 mg/l.

Zwischen März und August 1998 waren die sehr divers zusammengesetzten Rotatorien entscheidende Zooplanktonvertreter mit FM-Anteilen von zunächst 83,5 % und später ca. 50 %. Die Gesamtfischmasse des Zooplanktons blieb dabei im gesamten Jahresverlauf gering (maximal 1,6 mg/l im April). Entscheidende FM-Anteile trugen die Arten Conochiloides natans, Keratella quadrata, Polyarthra major und Synchaeta pectinata sowie zwischenzeitlich auch Asplanchna priodonta bei.

Im Lankower See wurden bei Fischerbefragungen nur 11 Fischarten ermittelt. Dabei kamen 6 Fischarten häufig und 5 eher selten vor (siehe Tab. 112).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>s</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguillaanguilla</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
</tbody>
</table>

1.42.5 Nutzung, anthropogener Einfluss

1.43 Lebehnscher See

1.43.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Lebehnsche See liegt unweit der polnischen Grenze in einem Gebiet, dessen Relief durch die Weichselvereisung stark geprägt worden ist. Der See entwässert über den Schwennenzer- und den Hoffsee in die Randow. Daten zum mittleren Abfluss liegen nicht vor. Bis auf die Westseite, die von der Ortschaft Lebehn einschließlich eines Badestrandes und Bootsverleih eingenommen wird, ist der Lebehnsche See von stark geneigten Ackerflächen begrenzt. Das Einzugsgebiet weist nur eine geringe Größe von 4,6 km² auf.

Abb. 67: Lebehnscher See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.43.2 Topographie und Morphometrie

Der Nordteil des Gewässers besteht aus zwei markanten Ausbuchtungen, im Südteil sind zwei kleine bewaldete Inseln vorhanden.

Tab. 113: Topographie und Morphometrie des Lebehnscher Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,83</td>
<td>0,56</td>
<td>6,8</td>
<td>3,3</td>
<td>1068</td>
<td>648</td>
<td>2,4</td>
<td>1,2</td>
<td>5,6</td>
<td>2,4</td>
</tr>
</tbody>
</table>
1.43.3 Chemische und trophische Charakteristik des Sees

In den Monaten Juni, Juli und August des Untersuchungsjahres 1995 wurde im Lebehnscher See auf Grund schwacher Windverhältnisse und starker Sonneneinstrahlung die Ausbildung einer thermischen Schichtung beobachtet.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,3</td>
<td>679</td>
<td>69,2</td>
<td>0,6</td>
<td>2,8</td>
<td>60,0</td>
<td>70,0</td>
</tr>
</tbody>
</table>

Abb. 68: Zeitliche Entwicklung der Trophieparameter vom Lebehnscher See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Der Sauerstoff war im Sommer in einer Tiefe unter 4,5 m in Verbindung mit Schwefelwasserstoffbildung ab Juli völlig aufgezehrt. Infolge der vorliegenden reductiven Verhältnisse kam es zu einer hohen Ammonium-Stickstoff-Anreicherung (10,3 mg/l). Ein Überleben der Fischfauna war damit in diesem Tiefenbereich nicht mehr gegeben.

Im gesamten Jahresverlauf traten hohe Chlorophyll-a-Konzentrationen bis zu 353 µg/l auf, die mit geringen Sichttiefen zwischen 50 cm und 60 cm verbunden

1.43.4 Flora und Fauna

Der See ist fast vollständig von Steilhängen mit einem schmalen Schilfgürtel umgeben.

Im Phytoplankton dominierten während des ganzen Jahres 1995 sowohl an der Oberfläche wie auch in Grundnähe die Cyanobakterien *Oscillatoria limnetica* und *Limnothrix redekei*. Im Oktober kam es zu einer Cyanobakterienblüte, die mit einem FM-Anteil von 91 % eine Biomassekonzentration von 22,2 mg/l verursachte. Ebenso regelmäßig traten Cryptomonaden bei deutlich geringeren Biomasse-Anteilen von 20 – 30 % auf. Besonders im Frühjahr und im Herbst war ein großes Artenspektrum zu verzeichnen (22 bzw. 19 Arten in Oberflächennähe). Im Frühjahr 1999 wurde das Maximum der Phytoplanktonbiomasse im Untersuchungszeitraum März - September registriert, abgesehen von Gasvakuolen der Cyanobakterien, die im Juli in erheblichem Maße zur Gesamtbiomasse beitrugen. Das Frühjahrsmaximum lag bei 10,9 mg/l und setzte sich zu 55 % aus Cyanobakterien (*Oscillatoria limnetica*) und zu 32 % aus Cryptophyceen der Art *Cryptomonas erosa.ovata* zusammen. Auch Euglenophyceen (*Phacus pyrum, Trachelomonas hispida*) waren mit 12,8 % an der Biomasse beteiligt. *Oscillatoria limnetica* zeigte im Juni noch einen stärkeren Zuwachs, daneben waren auch Dinophyceen vor allem mit der Art *Peridinium* spp. von Bedeutung. Im Juli überwogen kleine centrische Diatomeen gegenüber den weiteren entscheidenden Biomassebildnern *Cryptomonas erosa.ovata* und *Peridinium* spp.. Im September dominierte *Limnothrix redekei* (Cyanobakterien) gemeinsam mit *Cryptomonas erosa.ovata*.

Im Gewässer wurden bei Fischerbefragungen 23 Fischarten ermittelt. Dabei kamen 17 Fischarten häufig und 6 eher selten vor (siehe [Tab. 115](#)).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Nase</td>
<td>Chondrostoma nasus</td>
</tr>
<tr>
<td>h</td>
<td>Schlammpeitzger</td>
<td>Misgurnus fossilis</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius auratus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Moderlieschen</td>
<td>Leucaspius delineatus</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys nobilis</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albuminus albuminus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkena</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis broma</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius auratus</td>
</tr>
</tbody>
</table>

1.43.5 Nutzung, anthropogener Einfluss

Der See ist durch hohe Nährstoffeinträge aus der Landwirtschaft und aus der unmittelbar angrenzenden Ortschaft stark belastet, was sich u.a. in Form von starken Sauerstoffdefiziten, stark erhöhten Ammonium-Konzentrationen, Fischsterben und zeitweilig hohen Phytoplanktonbiomassen bei ganzjähriger Dominanz von Cyanobakterien auswirkt.
1.44 Malchiner See
1.44.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Malchiner See liegt südlich der Stadt Malchin im Einzugsgebiet der Westpeene und stellt einen Flusssee dar. Das Einzugsgebiet weist eine Größe von 216 km² auf und wird vorwiegend landwirtschaftlich genutzt, worin die wesentliche Belastungsquelle des Sees liegt. Als Hauptzuflüsse sind die Westpeene, der Ziggendorfer Graben, der Dahmer Graben und der Lupenbach zu nennen. Mittlere Abflusswerte liegen nicht vor.

Abb. 69: Tiefenkarte des Malchiner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.44.2 Topographie und Morphometrie

Der See hat eine langgestreckte Form und orientiert sich in Nordost-Südwest-Richtung. In der Mitte zeigt er eine leichte Verengung. Das flache Seebecken weist nur an 2 Stellen eine größere Tiefe von 10 m auf. Das Südbecken wurde zur Auswertung der biologischen Komponenten Phyto- und Zooplankton extra beprobt.

Tab. 116: Topographie und Morphometrie des Malchiner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_max</th>
<th>z_mean</th>
<th>L_eff</th>
<th>B_eff</th>
<th>U_E</th>
<th>F</th>
<th>z_epi</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[-]</td>
<td>[-]</td>
<td>[m]</td>
<td>[a]</td>
</tr>
<tr>
<td>35,31</td>
<td>13,95</td>
<td>10,0</td>
<td>2,5</td>
<td>8520</td>
<td>2370</td>
<td>1,7</td>
<td>1,1</td>
<td>9,3</td>
<td>177</td>
</tr>
</tbody>
</table>
1.44.3 Chemische und trophische Charakteristik des Sees

Das flache Seebecken und die starke Windexposition lassen keine stabile Schichtung zu, so dass auch während der Sommermonate 1995 mit Ausnahme der eng begrenzten tiefen Stellen eine vollständige Durchmischung vorherrschte. Daten von 4 Beprobungsterminen (StAUN Schwerin) zwischen April und Oktober 1995 (0,5 m Tiefe) ergaben eine Schwankungsbreite des pH-Wertes zwischen 8,2 und 9,2, die Leitfähigkeit lag zwischen 426 µS/cm und 488 µS/cm. Die Sauerstoffsättigung erreichte im August Maximalwerte von 124 % und lag während des gesamten Untersuchungszeitraumes über 100 %.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>tiefste Stelle</td>
<td>8,6</td>
<td>465</td>
<td>54,3</td>
<td>0,4</td>
<td>1,3</td>
<td>75,9</td>
<td>30,0</td>
</tr>
<tr>
<td>Südbbecken</td>
<td>8,6</td>
<td>472</td>
<td>61,6</td>
<td>0,4</td>
<td>1,2</td>
<td>70,0</td>
<td>40,0</td>
</tr>
</tbody>
</table>

Abb. 70: Zeitliche Entwicklung der Trophieparameter vom Malchiner See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Die Gesamtphosphorkonzentrationen (Mischprobe von 0,5 - 5 m bzw. 0,5 - 8 m Tiefe) zeigten Schwankungen zwischen 42 µg/l und 175 µg/l. Die SRP-
Konzentrationen waren mit 1 µg/l bis maximal 35 µg/l im Oktober eher moderat. Die hohen Konzentrationen an Gesamtstickstoff lagen zwischen 1,6 mg/l und 3,0 mg/l, dabei betrugen die Nitrat-N-Konzentrationen jedoch im Minimum nur 0,001 mg/l und im Maximum 0,79 mg/l, die Ammonium-N-Konzentrationen im Minimum lediglich 0,008 mg/l und maximal 0,07 mg/l (Mischprobe). Maximale Chlorophyll a-Konzentrationen wurden im Oktober mit 195,3 µg/l ermittelt, das Vegetationsmittel lag bei 65,7 µg/l. Entsprechend gering fielen die mittleren Sichttiefen mit 0,5 m (Vegetationsmittel) aus. Die Calciumkonzentrationen zeigten extreme Veränderungen im Bereich von 8,8 -114 mg/l mit minimalen Konzentrationen im Oktober und maximalen im April. Die Trophieparameter des Jahres 1995 wie auch die des Jahres 2001 ergeben nach LAWA-Bewertungsansatz (LAWA 1998) einen polytroph (p1)-Zustand des polymitischen Flachsees (tiefste Stelle und Südbesten). Während die mittleren Gesamtposphorkonzentrationen von ca. 100 µg/l im Jahr 1995 auf 70 µg/l in den Jahren 1999 und 2001 zurückgingen, zeigte sich in den mittleren Chlorophyll a-Konzentrationen und Sichttiefen noch keine Reaktion des Phytoplanktons.

Aus der Morphometrie ist für den See als potentiell natürlicher Trophiezustand schwache Eutrophie (e1) abzuleiten (LAWA 1998).

1.44.4 Flora und Fauna

Das Gesamtbiovolumen des Phytoplanktons war schon im April, Juni und August 1995 mit 10 - 15 mm³/l hoch, stieg dann aber im Oktober auf 47 mm³/l an. Im Frühjahr stellten centrische und pennate Diatomeen je 25 % des Phytoplanktonvolumens. Auch die Chrysophyceen waren mit der Gattung Dinobryon zu 18 Vol-% vertreten. Ein weiteres Viertel steuerten Cyanobakterien der Gattung Planktothrix bei. Nach einer Massenentwicklung centrischer Diatomeen (cf. Cyclotella), deren Volumenanteil im Juni auf 80 % stieg, dominierten im Anschluss nur noch Cyanobakterien, im August v.a. die Gattung Aphanizomenon und im Oktober vor allem Planktothrix, der Anteil beider Gattungen im Biovolumen lag zusammen bei 80 - 95 %. Im März 1999 setzte sich ca. die Hälfte des Phytoplanktons aus den Cryptophyceenarten Cryptomonas spp. und Rhodomonas minuta zusammen, die weiteren wesentlichen FM-Anteile entfielen auf die Diatomeenarten Fragilaria sp. und Asterionella formosa sowie Dinophyceen (Gymnodinium spp.), im Südbesten waren anstelle der Dinophyceen Cyanobakterien, vertreten durch Planktothrix agardhii, codominant. Im Juni überwogen centrische Diatomeen, daneben waren auch Cyanobakterien und Cryptophyceen entscheidende Biomassebildner. Im Anschluss dominierten dann wie schon in den Vorjahren Cyanobakterien, im August noch begleitet von Ceratium hirundinella (Dinophyceen) und im Oktober zu 100 % das Phytoplankton. Im Südbesten waren Cyanobakterien bereits im Juni (P. agardhii, Microcystis aeruginosa) die stärkste Fraktion. Ab August waren die fädigen Arten Aphanizomenon flos-aquae, A. gracile und Limnothrix redekei an beiden Untersuchungsstellen vorherrschend. Die Biomasse zeigte 1999 ausgehend von 0,9 mg/l im März eine extreme Zunahme auf 34 mg/l im August bzw. 39 mg/l im Oktober.

Die Zooplanktonbiomasse (FM) erreichte ihr Maximum von 4,3 mg/l im Jahr 1995 bereits im April. Dieses wurde vor allem von Rotatorien (Asplanchna priodonta) mit 44,6 FM-% und Copepoden (Thermocyclops, Cyclops und Eudiaptomus gracilis) mit 34,6 FM-% gebildet, aber auch der Anteil der Cladoceren (Bosmina spp.) erreichte 21,9 %. Während des Sommers dominierten Copepoden, im Oktober Cladoceren. Die kleine Daphnia cucullata bildete im Frühsommer und Herbst Populationsmaxima,

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrphthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Zährte</td>
<td>Vimba vimba</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Bachforelle</td>
<td>Salmo trutta f.fario</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Albumus albumus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus fossilis</td>
</tr>
<tr>
<td>s</td>
<td>Rapfen</td>
<td>Aspius aspius</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
</tbody>
</table>

1.44.5 Nutzung, anthropogener Einfluss

Durch die in der Umgebung des Sees intensiv betriebene Landwirtschaft (Gülle-einleitungen aus Schweinemast, Abwässer aus einer Kartoffelschälküche und diffuse Einträge) gelangten in der Vergangenheit hohe Nährstoffmengen in den See, die zu einer massiven Eutrophierung führten.
1.45 Malkwitzer See

1.45.1 Genese, Lage, Einzugsgebiet und Hydrologie
Der See befindet sich südlich von Hohen Wangelin und ist mit einer Reihe kleinerer Seen verbunden. Gleichzeitig stellt er das Endglied der Krakower Seenkette dar, die von der Nebel durchflossen wird. Das relativ kleine Einzugsgebiet weist eine Größe von 13,7 km² auf. Mittlere Abflusswerte liegen nicht vor.

Abb. 71: Tiefenkarte des Malkwitzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.45.2 Topographie und Morphometrie
Der See ist annähernd doppelt so lang wie breit und weist eine annähernd ovale Oberflächenform auf. Im östlichen Bereich befindet sich die tiefste Stelle.

Tab. 119: Topographie und Morphometrie des Malkwitzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,62</td>
<td>1,09</td>
<td>4,3</td>
<td>2,4</td>
<td>1415</td>
<td>775</td>
<td>1,2</td>
<td>0,7</td>
<td>6,0</td>
<td></td>
</tr>
</tbody>
</table>
1.45.3 Chemische und trophische Charakteristik des Sees

Der Malkwitzer See ist als polymiktisch anzusehen. Daten von 4 Beprobungsterminen (STAUN Schwerin) zwischen April und Oktober 1997 (1 m Tiefe) ergaben eine Schwankungsbreite des pH-Wertes zwischen 8,1 und 9,2, die Leitfähigkeit lag zwischen 275 µS/cm und 343 µS/cm. Der Sauerstoffsättigungsindex zeigte während des gesamten Untersuchungszeitraumes geringe Übersättigungen an. Die Gesamtphosphorkonzentrationen variierten im moderaten Bereich zwischen 8 µg/l und 50 µg/l. Die SRP-Konzentrationen waren mit < 5 µg/l bis maximal 24 µg/l im Oktober ebenfalls moderat. Auch die Calciumkonzentrationen lagen im mittleren Bereich und zeigten Veränderungen zwischen 42 mg/l und 59,7 mg/l. Relativ hohe Konzentrationen wurden an Gesamtstickstoff mit 1,1 mg/l - 2,1 mg/l ermittelt, dabei betrugen die Nitrat-N-Konzentrationen im Minimum < 0,2 mg/l und im Maximum 0,3 mg/l, die Ammonium-N-Konzentrationen im Minimum < 0,03 mg/l und maximal 0,06 mg/l, alle 3 Parameter wiesen also eine geringe Schwankungsbreite auf. Als maximale Chlorophyll a-Konzentration wurde im August ein Wert von 19,5 µg/l registriert, bei einem Vegetationsmittel von 12,3 µg/l. Die mittleren Sichttiefen reichten von 2 m bis zur Grundsicht. Die Trophieparameter des Jahres 2000 ergeben nach LAWA-Bewertungsansatz (LAWA 1998) einen schwach eutrophen (e1)-Zustand des polymikten Flachsees, wobei der See makrophytendominiert ist, d.h. die Klassifizierung unter Vorbehalt erfolgt. Hinsichtlich des morphometrischen Referenztrophiegrades ergibt sich für den See schwache Polytrophie (p1) (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9,2</td>
<td>287</td>
<td>12,3</td>
<td>2,9</td>
<td>1,9</td>
<td>44,5</td>
<td>21,0</td>
</tr>
</tbody>
</table>

1.45.4 Flora und Fauna

Der See gilt als makrophytendominierter Klarwassersee.

Das Phytoplankton des Malkwitzer Sees war im Jahr 1997 im gesamten Untersuchungszeitraum März - Oktober sehr heterogen zusammengesetzt und in zeitlicher Abfolge durch immer andere Klassen geprägt. So dominierten im April Diatomeen, Chryso- und Cryptophyceen mit ähnlichen FM-Anteilen, während im Juni Cryptophyceen mit einem FM-Anteil von 81 % überwogen. Im August waren Chlorophyceen zusammen mit Dinophyceen bestandsbildend und im Oktober stellten Cyanobakterien mit 51 % den größten Anteil an der Biomasse. Ähnlich dominant waren zu dieser Zeit wiederum auch Cryptophyceen. Die Phytoplankton-Biomasse (FM) blieb im gesamten Untersuchungszeitraum entsprechend der Makrophytendominanz auf sehr geringem Niveau von 0,4 - 2,0 mg/l.

Im Zooplankton waren 1997 insbesondere im März und Oktober Copepoden bestandsbildend. Im August erreichten auch Rotatorien mit ca. 30 % höhere FM-Anteile. Cladoceren entwickelten einen maximalen FM-Anteil von 16,7 % im Juni,
waren ansonsten aber unterrepräsentiert. Die Biomassen schwankten insgesamt zwischen 0,7 mg/l (Oktober) und 4,9 mg/l (April).

Innerhalb des Makrozoobenthos wurden nur wenige Taxa nachgewiesen, wobei die in sehr hohen Individuendichten vorkommenden Chironomidenlarven nicht näher determiniert wurden.

Tab. 121: Makrozoobenthosvorkommen im oberen Sublitoral außerhalb der Makrophytenzone während einer Frühjahrsbeprobung mittels Bodengreifer (Mischprobe aus allen Hols von 12 Sektoren). Siebmaschenweite: 200 µm (Institut für angewandte Ökologie GmbH 2001).

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax. Oberbegriff</th>
<th>Ordnung</th>
<th>Fam./Gatt./Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.2001</td>
<td>Schlick</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Pisidium nitidum</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastropoda</td>
<td></td>
<td>Potamopyrgus antipodarum</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annelida</td>
<td>Oligochaeta</td>
<td>Stylaria lacustris</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td>1941</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichoptera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anzahl Arten/Taxa</td>
<td></td>
<td>Summe Ind./m²</td>
<td>2401</td>
</tr>
</tbody>
</table>

Angaben zur Fischfauna lagen nicht vor.

1.45.5 Nutzung, anthropogener Einfluss

1.46 Medeweger See

1.46.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Medeweger See liegt in einem Nebental des Schweriner Sees, das als ehemalige Eisrinne angesehen wird. Er stellt den tiefsten See der Flussseenkette Aubach dar und entwässert Flächen, die den wesentlichen Teil des Einzugsgebietes des Schweriner Sees bilden. Sein Einzugsgebiet weist eine Größe von 112,3 km² auf und wird vorwiegend landwirtschaftlich genutzt. Der Aubach durchfließt zunächst den Trebbower See, dann den Barner Stücker See und schließlich den Medeweger See. Der mittlere Abfluss ist mit 0,523 m³/s angegeben.

Abb. 72: Tiefenkarte des Medeweger Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.46.2 Topographie und Morphometrie

Der Medeweger See ist von rinnenartiger Gestalt und in Nord-Süd-Richtung orientiert. Die tiefste Stelle befindet sich ungefähr in der Mitte des Sees.

Tab. 122: Topographie und Morphometrie des Medeweger Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>Zmax</th>
<th>Zmean</th>
<th>L_eff</th>
<th>B_eff</th>
<th>U_E</th>
<th>F</th>
<th>Z_epi</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,16</td>
<td>0,95</td>
<td>28,2</td>
<td>10,7</td>
<td>2100</td>
<td>1135</td>
<td>1,8</td>
<td>4,2</td>
<td>6,7</td>
<td>0,6</td>
</tr>
</tbody>
</table>
1.46.3 Chemische und trophische Charakteristik des Sees

Der Medeweger See ist im Sommer thermisch stabil geschichtet. Für den See ist eine hohe Nährstoffbelastung aus dem landwirtschaftlich genutzten Einzugsgebiet charakteristisch, die sich vor allem in übermäßigen Nitrat-N- und Gesamtstickstoffkonzentrationen insbesondere im Frühjahr äußert. So wurden im Untersuchungsjahr 1998 (März – November) in 1 m-Tiefe maximale Konzentrationen von 5,3 mg NO₃-N/l (April) und 6,7 mg TN/l (Juni) ermittelt, das Minimum lag bei 2,4 mg/l bzw. 2,9 mg/l. Die Ammonium-N-Konzentrationen schwankten zwischen 0,02 mg/l und 0,46 mg/l. Auch die Gesamtphosphor- (20 – 310 µg/l) und SRP-Konzentrationen (8 – 73 µg/l) fielen selbst oberflächennah insbesondere während des Sommers sehr hoch aus.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7,9</td>
<td>632</td>
<td>15,8</td>
<td>2,7</td>
<td>4,1</td>
<td>54,0</td>
<td>65,0</td>
</tr>
</tbody>
</table>

Abb. 73: Zeitliche Entwicklung der Trophieparameter vom Medeweger See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

186
Vor dem Einsatz der Tiefenwasserbelüftungsanlage (s. 1.46.5) und auch 1993, als diese wegen eines technischen Defektes ausfiel, war der See durch anaerobe Zustände unterhalb der Dichtesprungschicht, die noch Anfang November nachgewiesen wurden und mit Schwefelwasserstoffbildung einhergingen, charakterisiert. Während des Betriebs der Anlage konnten die Sauerstoffdefizite teilweise aufgehoben werden, auch eine H₂S-Bildung wurde während der Sommerstagnation nicht mehr registriert. An der Oberfläche wurden die höchsten Sauerstoffsättigungen im April (117 %) und November (139 %) ermittelt. Das Chlorophyll a-Maximum lag dagegen im August bei 13,6 µg/l. Die Sichttiefe schwankte zwischen 2,0 m und 7,3 m. Für den pH-Wert ergab sich ein Schwankungsbereich von 6,8 – 8,8, für die sehr hohe Leitfähigkeit von 503 – 680 µS/cm und für die ebenfalls sehr hohen Calcium-Konzentrationen von 108 – 120 mg/l. Die Trophieparameter des Jahres 2000 ergeben nach LAWA-Bewertungsansatz (LAWA 1998) einen schwach eutrophen (e1)- Zustand des Sees. Dies entspricht auch der Bewertung von 1995 und 1996, lediglich im Jahr 1998 erreichte der See kurzfristig den mesotrophen Status. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den geschichteten See nach (LAWA 1998) als natürlicherweise mesotroph (m) aus.

1.46.4 Flora und Fauna

Im Zooplankton waren Copepoden im gesamten Untersuchungszeitraum die stärksten Biomassebildner, insbesondere im Frühjahr und Spätherbst/Winter mit FM-Anteilen von maximal 96,9 %. Ab Mai nahm auch der Anteil der Cladoceren beständig zu, im Sommer machten sie ca. die Hälfte der Zooplanktonzusammensetzung aus, ihr maximaler FM-Anteil erreichte im August 51,4 %. Diese waren bis Oktober codominant, Rotatorien waren lediglich im April mit 17 % etwas stärker vertreten, im weiteren Jahresverlauf jedoch vergleichsweise unterrepräsentiert. Die Zooplanktonbiomasse lag im Medeweger See mit maximal 6,1 mg/l deutlich über der des Phytoplanktons, so dass von einer effizienten Regulierung der Phytoplanktonentwicklung durch das Zooplankton ausgegangen werden kann.

Im Medeweger See wurden bei Fischerbefragungen 20 Fischarten ermittelt. Dabei kamen 6 Fischarten häufig und eine Großzahl der Fischarten (14) eher selten vor (siehe Tab. 124).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
</tr>
<tr>
<td>s</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus fossilis</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
</tr>
<tr>
<td>s</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod idella</td>
</tr>
</tbody>
</table>

1.46.5 Nutzung, anthropogener Einfluss

1.47 Mickowsee
1.47.1 Genese, Lage, Einzugsgebiet und Hydrologie
Der Mickowsee befindet sich 16 km nordöstlich von Schwerin. Das sehr große Einzugsgebiet weist eine Größe von 421,3 km² auf. Mittlere Abflusswerte liegen nicht vor.

Abb. 74: Tiefenkarte des Mickowsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.47.2 Topographie und Morphometrie

Tab. 125: Topographie und Morphometrie des Mickowsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_max</th>
<th>z_mean</th>
<th>L_eff</th>
<th>B_eff</th>
<th>U_E</th>
<th>F</th>
<th>z_epi</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,40</td>
<td>0,61</td>
<td>2,1</td>
<td>0,7</td>
<td>1268</td>
<td>935</td>
<td>1,7</td>
<td>0,4</td>
<td>6,0</td>
<td></td>
</tr>
</tbody>
</table>
1.47.3 Chemische und trophische Charakteristik des Sees

Der Mickowsee ist als polymiktisch anzusehen. Daten von 4 Beprobungsterminen (StAUN Schwerin) zwischen März und Oktober 1997 (1 m Tiefe) ergaben eine Schwankungsbreite des pH-Wertes zwischen 8,2 und 8,7, die hohe Leitfähigkeit lag zwischen 520 µS/cm und 681 µS/cm. Die Sauerstoffsättigung erreichte im Juni Maximalwerte von 136 % und lag während des gesamten Untersuchungszeitraumes deutlich über 100 %. Die Gesamtphosphorkonzentrationen zeigten Schwankungen zwischen 80 µg/l und 150 µg/l. Die SRP-Konzentrationen waren mit 21 µg/l bis maximal 75 µg/l im August ebenfalls relativ hoch. Die hohen Konzentrationen an Gesamtstickstoff lagen zwischen 1,3 mg/l und 2,7 mg/l, dabei betrugen die Nitrat-N-Konzentrationen im Minimum jedoch nur < 0,01 mg/l und im Maximum 0,3 mg/l, die Ammonium-N-Konzentrationen im Minimum lediglich 0,01 mg/l und maximal 0,08 mg/l. Maximale Chlorophyll a-Konzentrationen wurden im Oktober mit 75,8 µg/l ermittelt, das Vegetationsmittel lag bei 42,6 µg/l. Entsprechend gering fielen die Sichttiefen um 0,7 m aus. Die Calciumkonzentrationen waren mit Werten im Bereich von 77,7 - 113 mg/l sehr hoch. Die Trophieparameter des Jahres 1997 ergeben nach LAWA-Bewertungsansatz (LAWA 1998) einen schwachen polytrophen (p1)-Zustand des polymiktischen Flachsees. Dies entspricht auch dem morphometrischen Referenztrophiegrades (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,7</td>
<td>546</td>
<td>42,6</td>
<td>0,7</td>
<td>1,3</td>
<td>125</td>
<td>80,0</td>
</tr>
</tbody>
</table>

1.47.4 Flora und Fauna

Das Phytoplankton des Mickowsees war im Jahr 1997 im gesamten Untersuchungszeitraum März - Oktober durch Diatomeen geprägt. So lag der FM-Anteil dieser Klasse im März und Juni bei ca. 50 %, nachfolgend sogar bei maximal 89 % im Oktober. Daneben waren im März und in geringerem Maße auch im Juni Dinophyceen dominant, im Juni außerdem Chlorophyceen. Die Phytoplankton-Biomasse (FM) war mit Werten zwischen 15,5 mg/l und 27,8 mg/l durchgängig hoch.

Das Zooplankton setzte sich 1997 insbesondere im Frühjahr vorwiegend aus Rotatorien zusammen. Auch im Hochsommer, dem Zeitpunkt des Biomaximums von 6,1 mg/l, waren diese weitgehend bestandsbildend und nur in geringem Maße von Copepoden begleitet. Zu den anderen Zeitpunkten fielen die Biomassen deutlich geringer aus (meist < 1 mg/l).

Angaben zur Fischfauna lagen nicht vor.

1.47.5 Nutzung, anthropogener Einfluss

Der Mickowsee ist häufig Bestandteil von Wasserwandertouren auf der Warnow.

190
1.48 Müritz
1.48.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 75: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)
1.48.2 Topographie und Morphometrie

Tab. 127: vorläufige Topographie und Morphometrie der Müritz, AM = Aussenmüritz (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>Seeteil</th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleine Müritz</td>
<td>16,2</td>
<td>3,0</td>
<td>6,4</td>
<td>4,1</td>
<td>3300</td>
<td>2325</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Röbeler Bucht</td>
<td>5,1</td>
<td>1,5</td>
<td>10,8</td>
<td>4,3</td>
<td>2125</td>
<td>775</td>
<td>1,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM, Hauptteil</td>
<td>673,1</td>
<td>104,6</td>
<td>29,0</td>
<td>6,4</td>
<td>17750</td>
<td>10750</td>
<td>2,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binnenmüritz</td>
<td>42,7</td>
<td>3,5</td>
<td>31,0</td>
<td>10,5</td>
<td>3950</td>
<td>1875</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>737,0</td>
<td>112,6</td>
<td>31,0</td>
<td>6,5</td>
<td>17800</td>
<td>9900</td>
<td>3,4</td>
<td>2,6</td>
<td>12,1</td>
<td></td>
</tr>
</tbody>
</table>

1.48.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Binnen-Müritz</td>
<td>8,0</td>
<td>471</td>
<td>4,5</td>
<td>4,0</td>
<td>0,9</td>
<td>26,3</td>
<td>30,0</td>
</tr>
<tr>
<td>Außen-Müritz</td>
<td>7,5</td>
<td>476</td>
<td>6,2</td>
<td>3,7</td>
<td>0,8</td>
<td>35,3</td>
<td>30,0</td>
</tr>
</tbody>
</table>

Abb. 76: Zeitliche Entwicklung der Trophieparameter von der Müritz (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
Flora und Fauna

Insbesondere am flachen Ostufer finden sich ausgedehnte bis zu 100 m breite Schilfröhrichtbestände (*Phragmites australis*), die bis in eine Tiefe von 2 m vordringen. Stellenweise kommen auch *Schoenoplectus lacustris* und *Typha angustifolia* vor. Das Schilf ist an einigen Stellen durch Beweidung, Badebetrieb oder Bootsliegeplätze zerstört und wird durch Eispressungen beeinträchtigt, erscheint insgesamt aber vital und erobert sich Bereiche, in denen die Nutzung aufgegeben wurde, zurück. Innerhalb der submersen Makrophyten bildet *Potamogeton pectinatus* insbesondere am Ostufer ausgedehnte Bestände und dringt hier bis zu 2 m Wassertiefe vor. *Chara aspera*, die für nährstoffarme Gewässer typisch ist, bildet zwischen 1 m und 2 m Wassertiefe Grundrasen aus. Auch kommen die Armeleuchteralgen *Chara contraria*, *Ch. tomentosa* und *Nitellopsis obtusa* vor, wenngleich das Characeenvorkommen früher wesentlich ausgedehnter gewesen ist. Die submers Vegetation der Binnenmürz besteht u.a. aus den Arten *Potamogeton lucens*, *P. pectinatus* und *P. perfoliatus*. In Tiefen bis 5 m findet sich die Goldalge *Vaucheria dichotoma*, als auch *Ceratophyllum demersum*, *Elodea canadensis* und *Ranunculus circinatus*, auf Hartsubstraten wächst das Fieberquellmoos *Fontinalis antipyretica* (Wöbbeke et al. 2002).

maximale Gesamtbiovolumen von 34,7 mm³/l registriert (Daten von Petrow, 2000, LUNG Güstrow).

<table>
<thead>
<tr>
<th>tax. Oberbegriff</th>
<th>Ordnung</th>
<th>Fam./Gatt./Art</th>
<th>KM</th>
<th>BM</th>
<th>AM</th>
<th>RB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ind./m²</td>
<td>Ind./m²</td>
<td>Ind./m²</td>
<td>Ind./m²</td>
</tr>
<tr>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Dreissena polymorpha</td>
<td>0</td>
<td>501</td>
<td>4030</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium casertanum</td>
<td>0</td>
<td>178</td>
<td>356</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium casertanum</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. ponderosum</td>
<td>15</td>
<td>65</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium moitessierianum</td>
<td>0</td>
<td>16</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>tax. Oberbegriff</td>
<td>Ordnung</td>
<td>Fam./Gatt./Art</td>
<td>KM</td>
<td>BM</td>
<td>AM</td>
<td>RB</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium milium</td>
<td>0</td>
<td>16</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium nitidum</td>
<td>0</td>
<td>89</td>
<td>323</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium nitidum f. crassa</td>
<td>163</td>
<td>267</td>
<td>0</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium obtusale</td>
<td>0</td>
<td>44</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium sp.</td>
<td>0</td>
<td>0</td>
<td>207</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium subtruncatum</td>
<td>15</td>
<td>0</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pisidium supinum</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphaeriidae</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphaerium corneum</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sphaerium solidum</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastropoda</td>
<td></td>
<td>Bithynia leachii</td>
<td>0</td>
<td>0</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bithynia tentaculata</td>
<td>0</td>
<td>32</td>
<td>119</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gyraulus albus</td>
<td>0</td>
<td>0</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potamopyrgus antipodarum</td>
<td>0</td>
<td>372</td>
<td>4178</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radix auricularia</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radix ovata</td>
<td>0</td>
<td>32</td>
<td>444</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valvata cristata</td>
<td>0</td>
<td>0</td>
<td>59</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valvata piscinalis</td>
<td>30</td>
<td>65</td>
<td>444</td>
<td>133</td>
</tr>
<tr>
<td>Annelida</td>
<td>Oligochaeta</td>
<td>indet.</td>
<td>198</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enchytraeidae</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naididae</td>
<td>15</td>
<td>16</td>
<td>267</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubificidae</td>
<td>49</td>
<td>226</td>
<td>1570</td>
<td>89</td>
</tr>
<tr>
<td>Hirudinea</td>
<td></td>
<td>Albuglossiphonia heteroclita</td>
<td>0</td>
<td>0</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erpobdella octoculata</td>
<td>0</td>
<td>0</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Helobdella stagnalis</td>
<td>0</td>
<td>0</td>
<td>178</td>
<td>0</td>
</tr>
<tr>
<td>Crustacea</td>
<td>Isopoda</td>
<td>Asellus aquaticus</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td>Gammaridae, juv.(indet.)</td>
<td>0</td>
<td>0</td>
<td>800</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pontogammarus robustoides</td>
<td>0</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corophium curvispinum</td>
<td>0</td>
<td>32</td>
<td>2874</td>
<td>222</td>
</tr>
<tr>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-</td>
<td>449</td>
<td>1939</td>
<td>15793</td>
<td>2548</td>
</tr>
<tr>
<td>tax. Oberbegriff</td>
<td>Ordnung</td>
<td>Fam./Gatt./Art</td>
<td>KM</td>
<td>BM</td>
<td>AM</td>
<td>RB</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Larven</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae-Puppen</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td></td>
<td></td>
<td>5</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>Caenis horaria</td>
<td></td>
<td>0</td>
<td>65</td>
<td>296</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Caenis luctuosa</td>
<td></td>
<td>0</td>
<td>81</td>
<td>0</td>
<td>207</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>indet.</td>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Athripsodes cinereus</td>
<td></td>
<td></td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>74</td>
</tr>
<tr>
<td>Ecnomus tenellus</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Molanna angustata</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Mystacides azurea</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Mystacides longicornis</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Mystacides nigra</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Oecetis ochracea</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Anzahl Arten/Taxa</td>
<td></td>
<td></td>
<td>11</td>
<td>25</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>Summe Ind./m²</td>
<td></td>
<td></td>
<td>979</td>
<td>4213</td>
<td>32640</td>
<td>5348</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albumus</td>
</tr>
<tr>
<td>Häufigkeit der Art</td>
<td>deutscher Name</td>
<td>Artname</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus fossilis</td>
</tr>
<tr>
<td>h</td>
<td>Ostseeschnäpel</td>
<td>Coregonus lavaretus balt.</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>s</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
</tr>
<tr>
<td>h</td>
<td>Binnenstint</td>
<td>Osmerus esperlanus</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerka</td>
</tr>
<tr>
<td>h</td>
<td>Plötzte</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
</tbody>
</table>

1.48.5 Nutzung, anthropogener Einfluss

1.49 Neuklostersee

1.49.1 Genese, Lage, Einzugsgebiet und Hydrologie

1.49.2 Topographie und Morphometrie

Der See weist eine u-förmige Oberflächenform auf. Im Norden ragt eine große Halbinsel in den See.

Tab. 131: Topographie und Morphometrie des Neuklostersees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_max [m]</th>
<th>Z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,49</td>
<td>2,99</td>
<td>10,2</td>
<td>4,5</td>
<td>2700</td>
<td>1820</td>
<td>1,8</td>
<td>1,4</td>
<td>7,3</td>
<td>0,8</td>
</tr>
</tbody>
</table>
1.49.3 Chemische und trophische Charakteristik des Sees

Der Neuklostersee gilt zumindest im Bereich der tiefsten Stelle als im Sommer thermisch stabil geschichtet, der geringe Tiefengradient weist ihn hingegen als ungeschichtet aus. Daten von 4 Beprobungsterminen (STAUN Schwerin) zwischen April und November 1997 (1 m Tiefe) ergaben geringe Schwankungen des pH-Wertes zwischen 8,1 und 8,6 und der sehr hohen Leitfähigkeit zwischen 562 µS/cm und 697 µS/cm. Die oberflächennahen GesamtpHosphorkonzentrationen betrugen zwischen 70 µg/l und 200 µg/l (August). Auch die SRP-Konzentrationen waren mit maximal 79 µg/l (August) relativ hoch. Die Konzentrationen an Gesamtstickstoff lagen in 1 m Tiefe zwischen 1,3 mg/l und 2,9 mg/l, dabei betrugen die Nitrat-N-Konzentrationen im Minimum < 0,01 mg/l und im Maximum 2,0 mg/l, die Ammonium-N-Konzentrationen im Minimum 0,03 mg/l und im Maximum 0,3 mg/l. Als maximale Sauerstoffsättigung wurde im Juni ein Wert von 135 % registriert. Maximale Chlorophyll a-Konzentrationen wurden hingegen im August mit 48,2 µg/l ermittelt. Die starke sommerliche Phytoplanktonentwicklung spiegelte sich in den minimalen Sichttiefen von 0,8 m wider, die im gesamten Untersuchungszeitraum 1,5 m nicht überschritten. Die Calciumkonzentrationen zeigten eine große Variationsbreite zwischen 66,5 mg/l und 98,6 mg/l. Die Trophieparameter des Jahres 1997 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) als polytroph (p1) aus. Aus der Morphometrie ist für den geschichteten See als potentiell natürlicher Trophiezustand schwache Eutrophie (e1) abzuleiten (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,4</td>
<td>637</td>
<td>37,0</td>
<td>0,9</td>
<td>1,6</td>
<td>190</td>
<td>110</td>
</tr>
</tbody>
</table>

1.49.4 Flora und Fauna

Topografischen Angaben (Top 50, 1999) zu Folge ist der See ringsherum mit Schilfrohr bestanden.

Die Phytoplanktonbiomasse (FM) erreichte zwischen April und November 1997 (4 Probenahmetermine) maximal 11,8 mg/l im August und lag ansonsten meist bei 3,4 mg/l. Den größten FM-Anteil daran hatten zu fast allen Zeitpunkten Diatomeen, die vorwiegend durch centrische Diatomeen unterschiedlicher Größe und im Frühjahr auch durch Asterionella formosa vertreten waren. Lediglich im August, dem Zeitpunkt des Biomassemaximums, dominierten zu etwa 2/3 Dinophyceen der Art Ceratium hirundinella und daneben Cyanobakterien mit den Arten Anabaena flos-aquae und Aphanizomenon flos-aquae.

Das Zooplankton entwickelte im Jahr 1998 extrem hohe Biomassen (FM) von maximal 18,1 mg/l im August und ansonsten zwischen 5,4 mg/l und 8,7 mg/l. Die Biomasse wurde bis August von Copepoden dominiert, deren FM-Anteil ausgehend von 93 % Anfang April auf 64 % im August sank. Der FM-Anteil der Cladoceren stieg ab Juni an und erreichte maximal 53,5 % im November. Innerhalb der Rotatorien trat vor allem Keratella quadrata während des Frühjahrs und Sommers auf, in der Folge

1.49.5 Nutzung, anthropogener Einfluss

1.50 Neumühler See

1.50.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Neumühler See befindet sich westlich von Schwerin. Die Lage in einer glazial entstandenen Seitendepression des Schweriner Sees zwängt das Gewässer in ein enges, beidseitig bewaldetes und steilufriges Tal. Der See wird zum großen Teil über Grundwasser gespeist. Kleinere Zuläufe (Düwelsborn, Zare sowie kleinere Quellbäche am Nordostufer) belasten den See nur geringfügig. Das oberirdische Einzugsgebiet ist teilweise bewaldet und mit 18 km² relativ klein. Vor allem auf Grund von Trinkwassernutzung kam es zu langjährigen Wasserstandsschwankungen mit Amplituden von bis zu 3 m und zu entsprechenden Seeflächenabnahmen von 201 ha (Stand 1913) auf 171 ha (nach Messungen 1998). Der langjährige mittlere Abfluss ist mit 0,088 m³/s angegeben.

Abb. 78: Tiefenkarte vom Neumühler See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.50.2 Topographie und Morphometrie

Die maximale Wassertiefe des Sees von 17 m liegt in einem eng begrenzten Bereich in Höhe der Flur Sacktannen. Der See ist von extrem schmaler Gestalt.
Tab. 133: Topographie und Morphometrie des Neumühlner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_{max}</th>
<th>z_{mean}</th>
<th>L_{eff}</th>
<th>B_{eff}</th>
<th>U_{E}</th>
<th>F</th>
<th>z_{epi}</th>
<th>t_{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[-]</td>
<td>[-]</td>
<td>[m]</td>
<td>[a]</td>
</tr>
<tr>
<td>13,55</td>
<td>1,72</td>
<td>17,1</td>
<td>7,9</td>
<td>3120</td>
<td>410</td>
<td>3,0</td>
<td>2,5</td>
<td>6,8</td>
<td>4,9</td>
</tr>
</tbody>
</table>

1.50.3 Chemische und trophische Charakteristik des Sees

Mit Beginn der thermischen Einschichtung des windgeschützten Sees im Juni 1997 trat ein Klarwasserstadium auf (Sichttiefe: 7 m). Danach stellten sich die Sichttiefen im Sommer auf Werte um 2 - 3 m ein, um zur Herbstvollzirkulation wieder über 5 m anzusteigen. Das Metalimnion befand sich im Bereich zwischen 6 m und 10 m. Der hypolimnische Sauerstoffgehalt wies im Juni noch Werte von über 50 % auf und wurde im Laufe des Hochsommers aufgebraucht. Im August erfassten die anaeroben Zustände auch untere Teile des Metalimnions. Oberflächennah war der Sauerstoffhaushalt des Gewässers zu allen Untersuchungsterminen (März – November) relativ ausgeglichen. Lediglich im Frühjahr traten Übersättigungen (120 %) auf, während zur Herbstzirkulation Sauerstoffsättigungen um 80 % gemessen wurden. Die Nährstoffkonzentrationen lagen ganzjährig oberflächennah im mittleren Bereich. So betrugen die epilimnischen Gesamtphosphorkonzentrationen zwischen 50 µg/l und 80 µg/l, im Hypolimnion stiegen sie im August auf maximal 160 µg/l an, die SRP-Konzentrationen schwankten zwischen 27 µg/l und 51 µg/l, im Hypolimnion erreichten sie Spitzenwerte von 152 µg/l ebenfalls im August, so dass von einer internen Phosphorfreisetzung ausgegangen werden kann. Die Konzentrationen an Gesamtstickstoff lagen oberflächennah zwischen 0,7 mg/l und 1,0 mg/l, dabei betrugen die Nitrat-N-Konzentrationen im Minimum < 0,01 mg/l und im Maximum 0,5 mg/l, die Ammonium-N-Konzentrationen im Minimum 0,04 mg/l und im Maximum 0,3 mg/l, im Hypolimnion erreichten diese während der Sommerstagnation maximal 0,96 mg/l und auch die TN-Konzentrationen zeigten hier Maxima von 1,3 mg/l. Während der Frühjahresalgenblüte wurde bei einer Sichttiefe von 2,2 m mit 15,4 µg/l das für 1997 registrierte Maximum der Chlorophyll a-Konzentration ermittelt. Die Calcium-Konzentrationen zeigten Schwankungen im Bereich von 55,3 – 67,3 mg/l. Anhand der Untersuchungsergebnisse des Jahres 1997 lässt sich der Neumühlner See als mesotrophes Gewässer einschätzen. Auch die Trophieparameter des Jahres 2000 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) als mesotroph aus. Hinsichtlich des morphometrischen Referenztrophiegrades ergibt sich für den See ebenfalls Mesotrophie (m) (LAWA 1998).

<table>
<thead>
<tr>
<th>pH-Wert</th>
<th>Leitf.</th>
<th>Chl a</th>
<th>ST</th>
<th>TN</th>
<th>TP</th>
<th>TP_{Früh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-]</td>
<td>[µS/cm]</td>
<td>[µg/l]</td>
<td>[m]</td>
<td>[mg/l]</td>
<td>[µg/l]</td>
<td>[µg/l]</td>
</tr>
<tr>
<td>8,0</td>
<td>416</td>
<td>3,5</td>
<td>2,7</td>
<td>1,0</td>
<td>60,0</td>
<td>35,0</td>
</tr>
</tbody>
</table>
Die Phytoplanktonbiomassen lagen bis auf den Frühjahrswert (1,6 mg FM/l) unter 1 mg FM/l. Die Phytoplanktonzusammensetzung wurde im Frühjahr 1997 vorrangig durch kleinzelige centrische Diatomeen dominiert, in der ersten Märzhälfte kam es bei Vollzirkulation des Wasserkörpers zur Diatomeenblüte mit einem FM-Anteil von 97,2 %. Im weiteren Jahresverlauf waren mehrere Formen unterschiedlicher taxonomischer Zugehörigkeit vertreten. Im Juni dominierten Cryptophyceen mit Cryptomonas sp. in Begleitung von Dinophyceen, vertreten durch Ceratium hirundinella, die sich im August stärker durchsetzten und FM-Anteile von 86 % bildeten. Im Herbst traten wieder centrische Diatomeen (in diesem Falle großzellige Vertreter) in den Vordergrund (91 % FM-Anteil). Cyanobakterien spielten im Jahr 1997 im Plankton des Neumühler Sees keine Rolle.

Das Zooplankton setzte sich im Frühjahr im wesentlichen aus Copepoden (Cyclops spp., Eudiaptomus spp.) zusammen, die zu dieser Zeit einen Biomasseanteil von 97,3 % hatten. Während des Klarwasserstadions im Juni bildeten kleinere Vertreter der Gattung Daphnia den Hauptanteil der Zooplanktonbiomasse, der Cladoceren-Anteil lag bei 73 %. Später wurden nur noch verhältnismäßig geringe Zooplankton- dichten registriert. Rotatorien traten nur im Juni mit einer kleinwüchsigen Polyarthra-Art nennenswert in Erscheinung, ohne mehr als 20 % der Anteile an der
Zooplanktonbiomasse zu erreichen. Im November setzte sich das Zooplankton je zur Hälfte aus Daphnien und *Eudiaptomus* spp. zusammen.

Im See wurden bei Fischerbefragungen 17 Fischarten ermittelt. Dabei kamen 6 Fischarten häufig und 11 eher selten vor (siehe Tab. 135).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluvialis</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus albumin</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>s</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>s</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus fossilis</td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
</tr>
</tbody>
</table>

1.50.5 Nutzung, anthropogener Einfluss

1.51 Neustädter See

1.51.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Neustädter See befindet sich nordwestlich von Neustadt im Landkreis Ludwigslust in einem seenarmen Gebiet. Das Einzugsgebiet weist eine Größe von nur 5,2 km² auf. Der See besitzt keine nennenswerten natürlichen Zu- und Abläufe, so dass die Seespiegelhöhe vor allem über Niederschlag, Verdunstung und Grundwasserspeisung reguliert wird. Als mittlerer Abfluss wurde langjährigen Messungen zufolge ein Wert von 0,034 m³/s bestimmt. Der See gilt nach seiner Morphometrie als typischer Einsturzsee, dessen endgültige Beckenform auf nacheiszeitliche Bodensenkungen durch Auslaugungen im Untergrund zurückzuführen ist.

![Tiefenlinienkarte vom Neustädter See](image)

Abb. 80: Tiefenlinienkarte vom Neustädter See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.51.2 Topographie und Morphometrie

Der See weist eine nahezu dreieckige Beckengestalt auf. Im Osten fällt der Seegrund steiler zur Mitte ab, als im westlichen Bereich.

Tab. 136: Topographie und Morphometrie des Neustädter Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Zₘาx [m]</th>
<th>Zₘₐₜ [m]</th>
<th>Lₐₚ [m]</th>
<th>Bₐₚ [m]</th>
<th>Uₑ [-]</th>
<th>F [-]</th>
<th>Zₚₐ [m]</th>
<th>tᵣ [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,95</td>
<td>1,29</td>
<td>31,0</td>
<td>6,9</td>
<td>1095</td>
<td>825</td>
<td>1,19</td>
<td>5,4</td>
<td>5,7</td>
<td></td>
</tr>
</tbody>
</table>
1.51.3 Chemische und trophische Charakteristik des Sees

Der Neustädter See ist im Sommer stabil geschichtet. Bereits im Juni 1998 war die thermische Sprungschicht in 6 m Tiefe ausgebildet. Die epilimnische Sauerstoffsättigung lag im August 1998 bei 114,3 %, an weiteren 3 Beprobungsterminen darunter, minimal bei 83,8 % im Oktober 1998. Im Metalimnion nahm die Sauerstoffkonzentration dann bereits im Juni rapide ab und betrug ab 12 m Tiefe nahezu 0 mg/l. Auch im August blieb die metalimnische Sauerstoffabnahme auffallend, die hypolimnischen Konzentrationen stiegen allerdings geringfügig auf ca. 2 mg/l an. Möglicherweise hatte in der Zwischenzeit eine kurzfristige Durchmischung des Wasserkörpers stattgefunden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,7</td>
<td>300</td>
<td>8,0</td>
<td>3,2</td>
<td>0,9</td>
<td>43</td>
<td>25</td>
</tr>
</tbody>
</table>

Abb. 81: Zeitliche Entwicklung der Trophieparameter vom Neumühler See (Vegetationsmittelwerte, April – Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
Daten von 4 Beprobungsterminen (LUNG 1999) zwischen März und Oktober 1998 (1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 7,5 und 9,7 und der Leitfähigkeit zwischen 258 µS/cm und 300 µS/cm. Die epilimnischen Gesamtphosphorkonzentrationen betrugen zwischen 60 µg/l und 90 µg/l, im Hypolimnion stiegen sie bis Oktober auf maximal ca. 390 µg/l an. Die Konzentrationen an Gesamtstickstoff lagen oberflächennah zwischen 1,2 mg/l und 1,4 mg/l, dabei betrugen die Nitrat-N-Konzentrationen im Minimum < 0,01 mg/l und im Maximum 0,35 mg/l, die Ammonium-N-Konzentrationen im Minimum 0,1 mg/l und im Maximum 0,2 mg/l, im Hypolimnion erreichten diese maximal ca. 1,9 mg/l (Oktober). Die SRP-Konzentrationen waren mit maximal 650 µg/l äußerst hoch. Maximale Chlorophyll a-Konzentrationen wurden im August mit 22,5 µg/l ermittelt. Die Calciumkonzentrationen zeigten nur geringe Veränderungen und lagen mit 40,9 -44,1 mg/l im mittleren Bereich. Die Trophie-Klassifizierung nach LAWA-Bewertungsansatz ergab für 1994, 1998 und 2000 einen schwach eutrophen (e1) Ist-Zustand. Im Jahr 2001 konnte der See dagegen als mesotroph eingestuft werden. Dabei zeigten alle trophierelevanten Parameter eine deutliche Verbesserung der Gewässerqualität an (s. Abb. 81). Dies entspricht dem trophischen Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, nah (LAWA 1998).

1.51.4 Flora und Fauna

Die Phytoplanktonbiomasse (FM) erreichte zwischen März und Oktober 1998 (4 Probenahmetermine) maximal 4,8 mg/l im Juni und lag minimal bei 2,4 mg/l im Oktober. Den größten Anteil daran hatten zu allen Terminen Cyanobakterien, diese schwankte zwischen minimal 41,8 % im Juni und maximal 73,3 % im August bei einer zugleich maximalen Biomassekonzentration der Cyanobakterien von 2,7 mg/l. Auch im Oktober war ihr Biomasseanteil mit 70,4 % vergleichbar hoch. Lediglich im Juni entsprach der Anteil der Dinoflagellaten mit ca. 42 % demjenigen der Cyanobakterien. Diatomeen spielten sogar im Frühjahr eine untergeordnete Rolle. In der Märzprobe stellten die Cryptophyceen mit 12,5 % den zweitgrößten Anteil an der Biomasse, gefolgt von Diatomeen, Chlorophyceen und Dinoflagellaten mit jeweils 3,6 %. Im Juni erreichten Zieralgen ihren maximalen Jahresanteil von allerdings nur 7,3 %, im August und Oktober stellten Dinoflagellaten mit 14,1 % und 14,4 % neben den dominanten Cyanobakterien den zweitgrößten Anteil an der Biomasse.

Das Zooplankton entwickelte im Jahr 1998 relativ hohe Biomassen (FM) von maximal 7,7 mg/l im März, im weiteren Jahresverlauf schwankten diese dann zwischen 1,8 mg/l und 2,2 mg/l. Dominierend waren zu allen 4 Beprobungsterminen Copepoden, so lag ihr Anteil an der Biomasse bei maximal 91,0 % im März und bei minimal 70,0 % im Oktober. Der maximale Anteil der Cladoceren erreichte 18,5 % im Oktober und war vergleichsweise gering, im März lag er bei nur 3,4 %. Rotatorien waren zu diesem Zeitpunkt mit einem Anteil von 5,5 % etwas stärker an der Biomasse beteiligt. Der Anteil der Rotatorien blieb im Juni und August auf nahezu dem gleichen Niveau und stieg im Oktober auf 11,4 % an.

Angaben zur Fischfauna lagen nicht vor.

1.51.5 Nutzung, anthropogener Einfluss

Der in einem seearmen Gebiet bei Neustadt-Glewe gelegene Neustädter See hat überregionale Bedeutung als Erholungsgewässer. Er bietet mehrere Badestellen, darunter einen Sandstrand mit langer Flachwasserzone. Innerhalb des am See

1.52 Parumer See
1.52.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Parumer See befindet sich im Kreis Güstrow, etwa 3 km westlich der Stadt Güstrow am östlichen Rand des Ortes Parum. Das Gewässer stellt einen typischen flachen Rinnensee glazialen Ursprungs dar, der aufgrund fehlender Zuflüsse überwiegend arthesisch ist. Über einen Abflussgraben entwässert der Parumer See über die Nebel in die Warnow. Das 13,27 km² (bzw. 10,5 km², CD 2002) große Einzugsgebiet ist dünn besiedelt und wird vorrangig landwirtschaftlich genutzt. Prozentual entfallen 76 % auf landwirtschaftliche Flächen, 17 % auf Wasserflächen, 4 % auf Feuchtgebiete, 2,3 % auf bebaute Flächen und 0,7 % auf Waldgebiete (Bauer et al. 1997). Ein mittlerer Abflusswert liegt nicht vor.

Abb. 82: Parumer See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.52.2 Topographie und Morphometrie

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_max [m]</th>
<th>B_max [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,99</td>
<td>2,07</td>
<td>2,8*</td>
<td>1,92</td>
<td>3500</td>
<td>1000</td>
<td>1,72</td>
<td>0,49</td>
<td>7,15</td>
<td></td>
</tr>
</tbody>
</table>

1.52.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th>pH-Wert [-]</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>TP_{Früh} [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,5</td>
<td>361</td>
<td>30,2</td>
<td>0,2</td>
<td>2,6</td>
<td>209</td>
<td>297</td>
</tr>
</tbody>
</table>

1.52.4 Flora und Fauna

Der Parumer See zeichnete sich 1996 ganzjährig durch sehr hohe Phytoplanktonkonzentrationen bei nur geringer Artenvielfalt aus. Der Anteil der Cyanobakterien an der Biomasse lag zwischen 87 % und 98 %. Ungewöhnlich war das frühe
Auftreten fädiger Formen (*Aphanizomenon, Lyngbya*) sowie die ganzjährige Dominanz der koloniebildenden coccalen Form *Aphanathece clathrata*.

Die Zooplanktonbiomasse wies bis auf einen Spitzenwert von 10 mg FM/l im Spätsommer nur geringe Werte auf. Im Früh- und Spätsommer wurde die hohe Rotatorienbiomasse vor allem durch die Art *Asplanchna priodonta* hervorgerufen. Calaniden und Cladoceren erreichten ganzjährig nur niedrige Werte.

Im See wurden bei Fischerbefragungen 13 Fischarten ermittelt. Dabei kamen 8 Fischarten häufig und 5 eher selten vor (siehe Tab. 140).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>s</td>
<td>Aland</td>
<td>Leuciscus idus</td>
</tr>
<tr>
<td>h</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albumus albumus</td>
</tr>
<tr>
<td>s</td>
<td>Bachforelle</td>
<td>Salmo trutta f.fario</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
</tbody>
</table>

1.52.5 Nutzung, anthropogener Einfluss

In der Ortschaft Bülow-See sind die Gemeindehallen und eine Badestelle vorhanden, dass Gewässer wird entsprechend touristisch genutzt.

Die sich im Einzugsgebiet des Parumer Sees befindenden Dörfer und auch die Bungalowsiedlung sind heute an das Abwassernetz angeschlossen, so dass keine größeren Nährstoffeinträge durch kommunale Einleitungen anzunehmen sind. Der Hauptteil der externen Nährstoffeinträge wird durch die landwirtschaftliche Nutzung des Einzugsgebiets verursacht (Bauer et al. 1997).
1.53 Paschensee

1.53.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Paschensee befindet sich im Sandergebiet der Schwinzer Heide zwischen dem Krakower und dem Damerower See. Zu seiner Bildung trugen ablaufende Schmelzwasser der Staffeln des Krakower Sees bei, im Norden ist der See von Dünenzügen umgeben. Der Paschensee ist im Uferbereich vollkommen bewaldet, weist mit 5,1 km² ein kleines Einzugsgebiet auf, das den See nur gering belastet und besitzt keinen oberirdischen Abfluss. Er ist Bestandteil eines Naturschutzgebietes.

![Tiefenkarte des Paschensees](image.png)

Abb. 83: Tiefenkarte des Paschensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.53.2 Topographie und Morphometrie

Der See weist eine sichelförmige Gestalt auf, die tiefste Stelle befindet sich im Zentrum. Der Seegrund fällt von Osten und Westen steiler zur Mitte ab als von Norden und Süden.

Tab. 141: Topographie und Morphometrie des Paschensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_max [m]</th>
<th>Z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,86</td>
<td>0,52</td>
<td>15,4</td>
<td>5,5</td>
<td>1107</td>
<td>582</td>
<td>1,4</td>
<td>2,8</td>
<td>5,5</td>
<td>2002</td>
</tr>
</tbody>
</table>
1.53.3 Chemische und trophische Charakteristik des Sees

Der Paschensee gilt als im Sommer thermisch stabil geschichtet. Trotz der an sich guten Gewässerqualität - der See wurde auch 1997 nach LAWA-Bewertungsansatz (LAWA 1998) als mesotroph klassifiziert - wurde ab Mitte der 1980er Jahre während der Sommerstagnation eine starke Sauerstoffzehrung bis hin zu anaeroben Verhältnissen im Tiefenwasser beobachtet. Den mesotrophen Verhältnissen entsprechend fielen im Untersuchungszeitraum April - Oktober 1997 (StAUN Schwerin) die Gesamtphosphor-Konzentrationen mit maximal 33 µg/l und die SRP-Konzentrationen mit < 5 µg/l in 1 m Tiefe gering aus. Die Gesamtstickstoff-Konzentrationen waren im Juni oberflächennah mit 1,8 mg/l am höchsten, dabei hatte innerhalb der anorganischen Fraktion Nitrat-N den größten Anteil. Die maximale Phytoplanktonentwicklung im August kam entsprechend im Chlorophyll a-Maximum von 7,8 µg/l, einer Sauerstoffsättigung von 116 % und einer pH-Erhöhung auf 9,7 zum Ausdruck. Die Sichttiefen schwankten im Untersuchungszeitraum zwischen 4 m und 5 m. Die Leitfähigkeit und die Calcium-Konzentrationen lagen in einem auffallend geringen Bereich von 101 - 106 µS/cm und 12,6 - 15 mg/l.

Hinsichtlich des morphometrischen Referenztrophiegrades ergibt sich für den See Mesotrophe (m) (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6</td>
<td>105</td>
<td>6,5</td>
<td>4,8</td>
<td>1,8</td>
<td>20,5</td>
<td>11,0</td>
</tr>
</tbody>
</table>

1.53.4 Flora und Fauna

Die Uferflora ist sehr reichhaltig, Angaben zum Makrophytenvorkommen liegen jedoch nicht vor.

Auch das Zooplankton war im Untersuchungszeitraum durch äußerst geringe Biomasse-Konzentrationen von maximal 0,9 mg/l gekennzeichnet. Rotatorien waren im April stärkste Fraktion, ähnliche FM-Anteile entfielen aber auch auf Cladoceren und Copepoden. Im Juni stieg der Cladocerenanteil auf 57 % und bedingte ein Klarwasserstadium, im Anschluss waren in erster Linie Copepoden bei einem immer noch hohen Anteil von Cladoceren bestandsbildend.

Angaben zur Fischfauna lagen nicht vor.
1.53.5 Nutzung, anthropogener Einfluss

1.54 Pinnower See

1.54.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Pinnower See befindet sich südwestlich von Schwerin in einem Evorsionskessel im Gebiet der Frankfurter Staffel. Der Wasserstand des Pinnower Sees befindet sich ca. 9 m unterhalb dem des Schweriner Sees, von dessen Südb Seite ihn die dort etwa 800 m breite Wasserscheide Ostsee/Nordsee zum Einzugsgebiet der Elbe trennt. Durch die Wasserspiegeldifferenz treten am Westufer des Pinnower Sees und im Gewässer selbst viele Quellen aus, deren klares Wasser in Verbindung mit dem kleinen oberirdischen Einzugsgebiet von 11,8 km² zu einer guten Wasserbeschaffenheit des Gewässers beiträgt.

Der Pinnower See wird indirekt über vorwiegend am Ostufer gesetzte Brunnen- galerien für die Trinkwassergewinnung genutzt. Hydrologisch bedingt kann diese Nutzung in Zeiten mit geringem Abfluss aber starkem Wasserbedarf zur Umkehr der Fließrichtung führen, wodurch unter Umständen stärker belastetes Wasser aus dem unterhalb gelegenen Petersberger See in den Pinnower See gelangt.

Abb. 84: Pinnower See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
1.54.2 Topographie und Morphometrie

Der Pinnower See weist ein reich strukturiertes Seebodenrelief sowie zwei größere Inseln auf. Vom Hauptsee wird der kleine und wesentlich flachere Kirchsee unterschieden, der sich im Osten abgrenzt.

Tab. 143: Topographie und Morphometrie des Pinnower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,43</td>
<td>2,59</td>
<td>16,0</td>
<td>6,7</td>
<td>2940</td>
<td>1730</td>
<td>1,7</td>
<td>2,2</td>
<td>7,4</td>
<td></td>
</tr>
</tbody>
</table>

1.54.3 Chemische und trophische Charakteristik des Sees

Der See ist während Stagnationsperioden stabil geschichtet, eine Ausnahme bildet allerdings der sehr viel flachere Bereich des Kirchsees. In Folge von Forellen-intensivmast zeigte der See auch lange nach deren Einstellung im Jahr 1979 eine hohe Phosphor-Belastung durch interne Düngung, die durch das anaerobe Hypolimnion während der sommerlichen Stagnationsphase forciert wurde. Daten von 4 Beprobungsterminen (StAUN Schwerin) zwischen März und Oktober 1997 (1 m Tiefe) ergaben im Hauptsee (Bereich der tiefen Stelle) Schwankungen des pH-Wertes zwischen 8,3 und 8,6 und der Leitfähigkeit zwischen 414 µS/cm und 445 µS/cm. Die epilimnischen Gesamtphosphorkonzentrationen betrugen zwischen 20 µg/l und 140 µg/l (März), die SRP-Konzentrationen lag bei 20 µg/l. Für die Konzentrationen an Gesamtstickstoff ergab sich oberflächennah ein Bereich von 0,4 mg/l - 1,6 mg/l (Oktober), dabei betrugen die Nitrat-N-Konzentrationen meist < 0,01 mg/l, die Ammonium-N-Konzentrationen stiegen auf maximal 0,2 mg/l im Oktober an. Höchste Chlorophyll a-Konzentrationen wurden im März mit 7,4 µg/l gemessen. Zugleich traten leichte Sauerstoffübersättigungen auf. Die Calciumkonzentrationen lagen mit 56,1 - 64,9 mg/l im mittleren Bereich. Eine große Schwankungsbreite zeigten die Sichttiefen mit Werten zwischen 2,1 m und 5,5 m im Bereich der tiefen Stelle und Grundsicht im Kirchsee.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptsee</td>
<td>8,6</td>
<td>425</td>
<td>2,3</td>
<td>4,6</td>
<td>0,5</td>
<td>99,4</td>
<td>138</td>
</tr>
<tr>
<td>Kirchsee</td>
<td>8,5</td>
<td>419</td>
<td>3,1</td>
<td>GS</td>
<td>0,6</td>
<td>45,0</td>
<td>70</td>
</tr>
</tbody>
</table>

Dieser wies einen sehr ähnlichen Chemismus auf, wobei die Höchstwerte der TN- und TP-Konzentrationen etwas geringer ausfielen, die maximale SRP-Konzentration mit 35 µg/l dagegen geringfügig höher. Im März wurden hier allerdings sehr hohe Chlorophyll a-Konzentrationen von 40,6 µg/l registriert, in der anschließenden Vegetationsperiode waren diese dann aber in dem makrophytendominierten Teilesee sehr gering, obwohl die Phytoplanktonbiomasse nur im August einen Rückgang

1.54.4 Flora und Fauna

Die Zooplanktonbiomassen blieben im gesamten Untersuchungszeitraum 1997 mit Werten unter 0,6 mg/l (Hauptsee) bzw. unter 0,9 mg/l (Kirchsee) sehr gering. Im Hauptsee dominierten Rotatorien und Copepoden bis Oktober, dabei überwogen im März noch Rotatorien, später Copepoden. Cladoceren waren hier nur im Oktober von Bedeutung, der maximale Biomasseanteil lag nur bei 18 %. Im Kirchsee hatten diese im Oktober und vor allem im Juni einen größeren Stellenwert, der maximale FM-Anteil erreichte hier 36 %. Rotatorien verloren hier ab Juni an Bedeutung.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax. Oberbegriff</th>
<th>Ordnung</th>
<th>Fam./Gatt./Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5.2001</td>
<td>Schlick - Feinsand, Muschel- schill</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Dreissena polymorpha</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium casertanum</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium henslowanum</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium milium</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium nitidum</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sphaeriidae</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastropoda</td>
<td>Bithynia tentaculata</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gyraulus albus</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Potamopyrgus antipodarum</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valvata piscinalis</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hirudinea</td>
<td>Helobdella stagnalis</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asellus aquaticus</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crustacea</td>
<td>Isopoda</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asellus aquaticus</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ephemeroptera</td>
<td>Caenis horaria</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caenis luctuosa</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trichoptera</td>
<td>Molanna angustata</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anzahl Arten/Taxa</td>
<td>16</td>
<td>Summe Ind./m²</td>
<td>579</td>
</tr>
</tbody>
</table>

Im Pinnower See wurden bei Fischerbefragungen 16 Fischarten ermittelt. Dabei kamen alle Fischarten häufig vor (siehe Tab. 146).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus alburnus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Bitterling</td>
<td>Rhodeus sericeus amarus</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
</tbody>
</table>

1.54.5 Nutzung, anthropogener Einfluss

1.55 Plauer See

1.55.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Plauer See bildet den Abschluss der Seenkette der Mecklenburger Oberseen und ist hinsichtlich der Wasserfläche der drittgrößte See in Mecklenburg-Vorpommern. Vor allem der Nordteil des Sees geht in Torfwiesen über, die mit ihren offenen Wasserflächen einen ornithologisch wertvollen Lebensraum bilden und als Naturschutzgebiet ausgewiesen sind. Das sehr große oberirdische Einzugsgebiet weist eine Größe von 1230 km² auf, es überwiegt hier intensive landwirtschaftliche Nutzung. Der Seespiegel wurde wiederholt abgesenkt.

Abb. 85: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.55.2 Topographie und Morphometrie

Der See weist ein stark gegliedertes Bodenrelief auf, so dass mehrere eigenständige Seebecken wie der Nord- und Südteil, der Leister Lank und das Werdertief unterschieden werden können. Von diesen weisen der Südteil und das Werdertief maximale Tiefen 20 m bzw. 23 m auf, der Leister Lank von ca. 15 m und der Nordteil von ca. 10 m. Im Folgenden wird der See jedoch als morphometrische Einheit betrachtet.

Tab. 147: Topographie und Morphometrie des Plauer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_max [m]</th>
<th>Z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>300,0</td>
<td>38,4</td>
<td>25,5</td>
<td>6,8</td>
<td>14200</td>
<td>4800</td>
<td>2,6</td>
<td>2,2</td>
<td>10,9</td>
<td></td>
</tr>
</tbody>
</table>
1.55.3 Chemische und trophische Charakteristik des Sees

Der Tiefengradient weist den Plauer See als im Sommer thermisch stabil geschichtet aus. Durch die überwiegend intensive landwirtschaftliche Nutzung im sehr großen Einzugsgebiet bedingt, aber auch durch frühere Direkteinleitungen landwirtschaftlicher Abwässer und durch die intensive Forellenproduktion unterlag der See seit Anfang der 1970er Jahre einer fortschreitenden Eutrophierung. In Verbindung mit wiederholten Seespiegelabsenkungen führten diese Vorgänge zu einer Wasserbeschaffenheit, die in den letzten Jahren laut Gewässergütebericht 1994 oft Anlass von Bürgerbeschwerden war (Blaualgenmassenentwicklungen, Aufspülungen von fädigen Grünalgen an den Badestränden, Geruchsbelästigungen usw.). Im Untersuchungsjahr 1994 wurden Sichttiefen zwischen 1 m und 2 m registriert. Die Buchten (z. B. Leister Lank) und auch die Bereiche zwischen den Forellenkäfigen im Nordteil des Sees wiesen eine höhere Trophielage auf, die sich u.a. im höheren Phosphorgehalt der jeweiligen Sedimente dokumentierte:

Phosphorgehalt der Sedimente:
- Nordteil, Seemitte: 1,46 mg/g Sedimenttrockenmasse
- Bereich Forellenkäfige: 4,06 mg/g Sedimenttrockenmasse
- Leister Lank, Seemitte: 1,60 mg/g Sedimenttrockenmasse.

Generell war der Chemismus der einzelnen Seeteile aber recht ähnlich. So schwankten die pH-Werte im Untersuchungszeitraum April - November 1994 (Gewässergütebericht 1994) insgesamt zwischen 7,4 und 8,4. Die Gesamtphosphorkonzentrationen lagen in 1 m Tiefe im Bereich von 30 - 100 µg/l, im Hypolimnion waren sie im August vermutlich in Folge interner Rücklösung enorm erhöht, als Maximalkonzentration wurden 920 µg/l im Südteil ermittelt. Ein hoher Anteil daran entfiel auf die SRP-Fraktion bei Höchstwerten von 764 µg/l wiederum im Südteil, wobei schon im Juni eine Erhöhung der SRP-Konzentrationen im Tiefenbereich registriert wurde. Parallel hierzu zeigten auch die Ammonium-N- und Gesamtstickstoffkonzentrationen im Tiefenbereich während des Hochsommers starke Anstiege auf ca. 2,5 mg NH₄-N/l und 3,5 mg TN/l (Südteil), was auf anaerobe Verhältnisse hindeutet. Oberflächennah lagen die TN-Konzentrationen zwischen 0,6 mg/l und 1,1 mg/l, die Nitrat-N-Konzentrationen waren im April mit 0,2 mg/l maximal und lagen im weiteren Jahresverlauf stets unter 0,05 mg/l, teilweise auch unter 0,01 mg/l. Die starke Phytoplanktonentwicklung im August führte zu Chlorophyll a-Spitzenwerten von 74 µg/l (Werdertief).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,0</td>
<td>444</td>
<td>6,6</td>
<td>3,0</td>
<td>0,9</td>
<td>42,3</td>
<td>23,0</td>
</tr>
</tbody>
</table>

Abb. 86: Zeitliche Entwicklung der Trophieparameter vom Plauer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.55.4 Flora und Fauna

Das Phytoplankton war 1994 artenreich, deutete aber in seiner Zusammensetzung und Menge eher auf eutrophe Verhältnisse hin, zumal im Hochsommer und auch noch im November im gesamten See fädige Cyanobakterien dominierten. Ihr maximaler FM-Anteil erreichte dabei im November 94 %. So waren diese auch für das allgemeine Biomassemaximum im August mit Spitzenwerten von 13,1 mg/l (Nordteil) verantwortlich. Im April wurde in allen Seeteilen eine Diatomeenblüte registriert, die jedoch nur Biomassekonzentrationen von maximal 2,7 mg/l (Leister Lank) zur Folge hatte. Im Juni waren vor allem Dinophyceen in Begleitung von Diatomeen vorhanden, im Nordteil allerdings mit umgekehrter Gewichtung (LAUN M-V & StaUN M-V 1994). Im Untersuchungszeitraum April - November 2000 (Daten von Petrow, 2000, LUNG Güstrow) war das Phytoplanktonbild vor allem durch Diatomeen geprägt. Neben centrischen Diatomeen waren Asterionella formosa, Aulacoseira sp. und Fragilaria crotonensis vorherrschende Arten. Im Juni entfielen auch bedeutsame Gesamtbiovolumenanteile auf die Cryptophyceenart.
Rhodomonas minuta und den Dinoflagellaten Ceratium hirundinella. Die Art Rhodomonas minuta behielt auch im Juli und November ähnliche Biovolumenanteile bei. Das Gesamtbiovolumen war im gesamten o.g. Untersuchungszeitraum mit ca. 0,9 - 2,7 mm³/l gering.

Im Zooplankton überwogen im April 1994 in allen Seeteilen Copepoden, im Juni war die Zusammensetzung dann vielfältiger unter stärkerer Beteiligung aller Zooplanktongruppen, wobei im Nordteil Cladoceren, im Südteil und Werdertief Rotatorien und im Leister Lank Copepoden den größten Anteil an der Biomasse hatten. Der Hochsommeraspekt wurde im Norden in erster Linie von Rotatorien, in den anderen Seeteilen von Copepoden und daneben auch von Cladoceren bestimmt. Im November dominierten überall Cladoceren mit maximalen FM-Anteilen von 83 %. Die Zooplanktonbiomasse zeigte jeweils im April und November eine Zunahme. Im Frühjahr lag sie dabei maximal bei 4,8 mg/l (Südteil), im Spätherbst dagegen bei maximal 5,2 mg/l (Nordteil). Im Sommer schwankten sie etwa zwischen 1 mg/l und 2 mg/l. Die Zooplanktonentwicklung war in der ersten Untersuchungshälfte im Bereich Leister Lank vergleichsweise geringer.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis braja</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cemua</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Plötzze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Regenbogenforelle</td>
<td>Salmo gairdneri</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio gario</td>
</tr>
<tr>
<td>h</td>
<td>Binnenstint</td>
<td>Osmerus esperlanus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Eso lucius</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>Häufigkeit der Art</td>
<td>deutscher Name</td>
<td>Artnamn</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albumus</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td></td>
<td>Stichling</td>
<td>aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td></td>
<td></td>
<td>erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fossilis</td>
</tr>
</tbody>
</table>

1.55.5 Nutzung, anthropogener Einfluss

1.56 Probst Jesarer See

1.56.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Probst Jesarer See liegt unmittelbar an der gleichnamigen Ortslage, ca. 3 km östlich von Lübtheen im Landkreis Ludwigslust, in einem verhältnismäßig seearmen Sandergebiert. Seine Entstehung wird nicht auf glaziale Vorgänge, sondern auf die Auslaugung und den Einsturz (Subrosion) von in der Region anstehenden salzhaltigen Gesteinsschichten zurückgeführt, womit sich die fast kreisrunde Seefläche und der annähernd trichterförmige Aufbau des Seebeckens erklären lassen. Der See ist praktisch zu- und abflusslos. Das Einzugsgebiet weist eine sehr geringe Größe von 0,7 km² auf.

Abb. 87: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.56.2 Topographie und Morphometrie

Der Probst Jesarer See hat eine kreisrunde Gestalt bei einer durchschnittlichen Wassertiefe von nur 6,7 m. Als Maximaltiefe wurden bisher 13 m ermittelt.

Tab. 150: Topographie und Morphometrie des Probst Jesarer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>zmax [m]</th>
<th>zmean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,4</td>
<td>0,06</td>
<td>13,0</td>
<td>6, 7</td>
<td>350</td>
<td>228</td>
<td>1,1</td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.56.3 Chemische und trophische Charakteristik des Sees

Der Probst Jesarer See ist ein dimiktisches Gewässer. Das Metalimnion dehnte sich im Sommer 1997 etwa zwischen 4 m und 8 m aus. Die epilimnische Sauerstoffsättigung lag maximal bei 114,0 % im August. Die Sauerstoffprofile ergaben im Juni 1997 eine Sauerstoffabnahme innerhalb des Metalimnions und ab 8 m Wassertiefe nahezu Sauerstofffreiheit. Im August war die Sauerstoffzehrung zwischen 6 m und 10 m weniger drastisch (Rückgang auf ca. 2 mg O₂/l). Ab 10 m Wassertiefe traten sogar in den Monaten ohne Temperaturschichtung (März und November) anaerobe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9,1</td>
<td>247</td>
<td>13,0</td>
<td>1,9</td>
<td>0,9</td>
<td>31,0</td>
<td>50,0</td>
</tr>
</tbody>
</table>

Abb. 88: Zeitliche Entwicklung der Trophieparameter vom Probst Jesarer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Die epilimnischen Gesamtphosphorkonzentrationen betrugen zwischen 80 µg/l und 200 µg/l, im Hypolimnion stiegen sie im August auf maximal ca. 480 µg/l an. Die Konzentrationen an Gesamtstickstoff lagen zwischen 0,72 mg/l und 0,97 mg/l, dabei betrugen die Nitrat-N-Konzentrationen im Minimum < 0,01 mg/l und im Maximum 0,08 mg/l, die epilimnischen Ammonium-N-Konzentrationen im Minimum 0,02 mg/l
und im Maximum 0,27 mg/l, im Hypolimnion erreichten diese jedoch maximal 3,0 mg/l im August. Die SRP-Konzentrationen lagen oberflächennah maximal bei 50 µg/l. Für eine moderate Phytoplanktonentwicklung sprechen die relativ geringen, mittleren Chlorophyll-a-Konzentrationen von 4,4 µg/l (Vegetationsmittel), am höchsten waren sie im März zur Zeit der Frühjahrsalgenblüte mit 19,2 µg/l. Im Jahr 1997 lagen die Sichttiefen bei 1,3 - 1,5 m, mit Ausnahme eines Klarwasserstadiums Anfang Juni, als der Wert 4,3 m betrug. Die Calciumkonzentrationen zeigten Schwankungen zwischen 34,5 und 44,9 mg/l. Die Trophie-Klassifizierung nach LAWA-Bewertungsansatz ergab für 1997 einen schwach eutrophen (e1) Ist-Zustand. Auch die Trophieparameter der Jahre 2000 und 2001 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) als schwach eutroph (e1) aus. Aus der Morphometrie ist für den geschichteten See als potentiell natürlicher Trophiezustand Mesotrophie (m) abzuleiten (LAWA 1998).

Schwermetallanalysen, die an einer im November entnommenen Sedimentprobe durchgeführt wurden, ergaben Konzentrationen, die nur wenig über dem natürlichen Hintergrund lagen

1.56.4 Flora und Fauna

Der See ist arm an Schilfbeständen, weist jedoch einen geschlossenen Baumbestand bis unmittelbar an das Ufer auf.

Im Jahr 1997 wiesen die Phytoplanktonbiomassen (FM) an 4 Probenahmeterminen zwischen März und November durchgängig geringe Konzentrationen unter 5 mg/l auf. Dabei waren im Frühjahr in erster Linie Cryptophyceen, daneben zu etwa gleichen Anteilen Diatomeen und fädige Cyanobakterien vertreten. Im Juni dominierten klar Diatomeen bei einem Biomasseanteil von 76,3 % gegenüber den subdominanten Klassen wie Cryptophyceen und Zieralgen. Im August bildeten vor allem Chlorophyceen, aber auch fädige Cyanobakterien, Diatomeen und Cryptophyceen Biomasseanteile zwischen 17,7 % und 31,6 % aus. Das gesamte Phytoplankton entwickelte zu dieser Zeit nur eine minimale Biomasse von 0,3 mg/l. Im November stieg die Biomassekonzentration auf das Jahresmaximum von 4,4 mg/l, den größten Anteil daran hatten fädige Cyanobakterien (66,1 %) gefolgt von Cryptophyceen (23 %). Innerhalb der Diatomeen herrschten im Frühjahr centrische Arten, später Asterionella formosa vor.

Das Zooplankton war artenreich, was vor allem auf die Vielfalt der Rotatorien zurückzuführen war, die im März (vorwiegend durch Asplanchna priodonta) und November 1997 (mit Polyarthra spec.) mit 81 % bzw. sogar 99,6 % den Hauptanteil der Zooplanktonbiomasse (FM) von 5,0 mg/l bzw. 2,2 mg/l bildeten. Während des frühsommerlichen Klarwasserstadium und Zooplankton-Biomassemaximums von 5,3 mg/l dominierten Cladoceren (Daphnia, Ceriodaphnia), aber bereits auch cyclopoide Copepoden, die dann im späten August die Zooplanktonzusammensetzung prägten.

Angaben zur Fischfauna lagen nicht vor.

1.56.5 Nutzung, anthropogener Einfluss

Der See besitzt eine hohe territoriale Bedeutung als Badegewässer.
1.57 Putzarer See

1.57.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Putzarer See ist Bestandteil des östlichen Landgrabentals und steht als international bedeutendes Wasservogelbrut- und -zugrastgebiet unter Naturschutz. Er ist der Entstehung nach ein Verlandungssee.

Abb. 89: Tiefenkarte des Putzarer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.57.2 Topographie und Morphometrie

Der See ist mit einer durchschnittlichen Tiefe von 0,4 m extrem flach. Er weist mehrere Stellen mit der maximalen Tiefe auf.

Tab. 152: Topographie und Morphometrie des Putzarer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,73</td>
<td>1,68</td>
<td>2,1</td>
<td>0,4</td>
<td>2513</td>
<td>980</td>
<td>1,5</td>
<td>0,3</td>
<td>6,8</td>
<td></td>
</tr>
</tbody>
</table>

1.57.3 Chemische und trophische Charakteristik des Sees

Der See ist aufgrund seiner geringen Tiefe und sehr windexponierten Lage polymiktisch. Die Sedimentschicht ist infolge fortschreitender Verlandung stark
ausgebildet. Im Jahr 1995 war die durchschnittliche Sichttiefe von 30 cm nicht in erster Linie durch das Phytoplankton bestimmt, sondern vor allem durch Sedimentaufwirbelungen. Im Herbst machte sich ein Nährstoffüberangebot bemerkbar, das auch auf den Eintrag durch Wasservögel zurückzuführen ist. Die frühe Eisbedeckung Ende November ließ bereits den Trend zu reduktiven Verhältnissen erkennen, da der überwiegende Anteil des Gesamtstickstoffs (TN) als Ammonium-Stickstoff vorlag. Auch im Untersuchungszeitraum 1999 (März – September) wurde bis September ein Anstieg der TN-Konzentrationen auf maximal 2,4 mg/l und der Ammonium-Konzentrationen auf maximal 0,2 mg/l an der Oberfläche registriert, allerdings waren die TN-Konzentrationen mit minimal 2,1 mg/l zu den anderen Zeitpunkten nicht wesentlich geringer.

<table>
<thead>
<tr>
<th>pH-Wert [-]</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>TP_{Früh} [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,2</td>
<td>525</td>
<td>9,4</td>
<td>2,3</td>
<td>160</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 90: Zeitliche Entwicklung der Trophieparameter vom Putzarer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.57.4 Flora und Fauna

Der See ist als makrophytendominiert ausgewiesen. Nähere Angaben liegen jedoch nicht vor.

Im Jahr 1995 war die Zusammensetzung des Phytoplanktons durch die Dominanz von Cyanobakterien gekennzeichnet (Planktothrix, Aphanizomenon flos-aquae, Lyngbya limnetica), die Biomasse-Anteile bis 95 % bildeten. Nur im März wurden diese durch eine Diatomeenblüte (Fragilaria capucina und F. ulna) mit FM-Anteilen von 86 % verdrängt. Auch im Frühjahr 1999 kam es zu einer ausgeprägten Diatomeenblüte kleiner centrischer Formen, die zu einem beträchtlichen Anstieg der Biomasse auf das Jahresmaximum von 42,5 mg/l führte. Im Anschluss dominierten nicht wie in den Vorjahren Cyanobakterien, sondern ausschließlich Cryptophyceen (Cryptomonas erosa/ovata). Erst im September waren daneben auch Chlorophyceen (Pediastrum boryanum) und erneut Diatomeen stärker vertreten. Zwischen Juni und September schwankten die Biomassen zwischen 2,7 mg/l und 7,3 mg/l.

Beim Zooplankton überwogen ganzjährig die Rotatorien (Keratella), innerhalb der Cladoceren in der zweiten Jahreshälfte die Gattung Bosmina und innerhalb der Copepoden die Gattung Cyclops. Im Untersuchungsjahr 1999 setzte sich das Zooplankton zunächst aus Rotatorien zusammen (März). Hauptarten waren Brachionus calyciflorus pala und Keratella cochlearis. Im Juni waren Copepoden die stärksten Biomassebildner mit FM-Anteilen von 67 % (vorwiegend Nauplien, später Cyclops strenuus), im Juli hingegen Cladoceren (vor allem Daphnia longispina und Ceriodaphnia reticulata) mit FM-Anteilen von 87 % und im September Ostracoden. Die Biomasse war im März und Juni mit 0,02 mg/l äußerst gering, stieg im Juli kurzfristig auf 3,1 mg/l an und fiel dann wiederum stark auf 0,1 mg/l ab.

Angaben zur Fischfauna lagen nicht vor.

1.57.5 Nutzung, anthropogener Einfluss

Mit der Ausweisung als Naturschutzgebiet gingen für den Pützarer See gewisse Beschränkungen hinsichtlich einer Erholungsnutzung einher. So besteht ein Zeltverbot am Gewässer, welches jedoch als Badesee genutzt sowie von Booten befahren werden darf.

Der Nährstoffhaushalt des Sees wurde durch frühere Abwassereinleitungen stark belastet. Auch durch seine Funktion als Zugrastplatz und Wasservogelbrutgebiet erfährt der Pützarer See Beeinträchtigungen.
1.58 Röggeliner See
1.58.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Röggeliner See befindet sich zwischen Ratzeburg und Rehna. Er ist Bestandteil eines Naturschutzgebietes und besitzt ein oberirdisches Einzugsgebiet von nur ca. 16 km². Dieses enthält Torfmoore, wurde in der Vergangenheit aber auch intensiv landwirtschaftlich genutzt (Viehhaltung). Der Abfluss des Röggeliner See entwässert in Richtung Norden in das Maurinetal. Der mittlere Abfluss ist mit 0,12 m³/s angegeben.

![Diagramm des Röggeliner Sees](image)

Abb. 91: Röggeliner See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.58.2 Topographie und Morphometrie

Der Röggeliner See ist ein gegliederter Flachsee mit der tiefsten Stelle im östlichen Seebereich. Im Folgenden wird er jedoch als morphometrische Einheit betrachtet.

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>T_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,14</td>
<td>1,77</td>
<td>6,8</td>
<td>2,9</td>
<td>2241</td>
<td>1162</td>
<td>1,7</td>
<td>1,0</td>
<td>6,7</td>
<td>1,3</td>
</tr>
</tbody>
</table>
1.58.3 Chemische und trophische Charakteristik des Sees

Der Röggeliner See ist ein polymiktischer Flachsee, der bei ruhigen Sommerwetterlagen im Bereich seiner tiefsten Stelle eine instabile thermische Schichtung ausbildet. Die Untersuchungen 1995 ergaben ganzjährig ein verhältnismäßig geringes Nährstoffangebot im freien Wasserkörper. Während im Sommer in den oberen Wasserschichten Sauerstoffübersättigungen bis zu 145 % nachgewiesen wurden, kam es unterhalb von 5 m Wassertiefe bisweilen zu anaeroben Zuständen, teilweise sogar mit starker Schwefelwasserstoffbildung. Während eines Klarwasserstadiums im Frühjahr 1995 lagen die Sichttiefen über 2 m und sanken erst in der zweiten Jahreshälfte auf Werte um 1,5 m.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6</td>
<td>390</td>
<td>7,1</td>
<td>1,8</td>
<td>0,8</td>
<td>90,0</td>
<td>60,0</td>
</tr>
</tbody>
</table>

1.58.4 Flora und Fauna

Das Plankton wies insgesamt eine hohe Artenfülle auf. Im Phytoplankton dominierten im Frühjahr verschiedene Diatomeen, Ende Juni speziell die Art Asterionella formosa. Im Sommer traten neben Diatomeen (vorwiegend centrische Formen) auch fädige Cyanobakterien auf, was bei geringeren Biomassen auch noch im November der Fall war. Erwähnenswert ist das Auftreten von Volvox aureus - einer Grünalgenkolonie, die stark eutrophierte Gewässer meidet und 1995 außer im Frühjahr zu allen Beprobungsterminen im Röggeliner See nachgewiesen wurde.

Im späten Frühjahr 1995 verursachten große Daphnien und calanoide Copepoden (insgesamt ca. 135 Ind./l) ein Klarwasserstadium, das noch Ende Juni nachzuweisen war. Das Zooplankton setzte sich nach der erwähnten Frühjahrsentwicklung größerer Arten im Verlauf des Jahres aus kleinwüchsigen Formen zusammen. Es wurden vor allem Rotatorien erfasst - zumeist aber räuberisch lebende Arten, die auf ausgewogene Verhältnisse im Nahrungsgefüge des Planktons und damit auch auf eine gute Wasserbeschaffenheit des Sees schließen lassen.

Im See wurden 1995 nur relativ wenige Fischarten nachgewiesen. Insgesamt waren es 10 Arten.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td></td>
<td></td>
<td>anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tinca</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>brama</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lota</td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carpio</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lucius</td>
</tr>
<tr>
<td>s</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
</tbody>
</table>

1.58.5 Nutzung, anthropogener Einfluss

Der Röggeliner See ist Teil des Naturschutzgebietes „Kuhlrader Moor / Röggeliner See“. Um der Schützwürdigkeit Rechnung zu tragen wurde für Seeanlieger nur eine begrenzte Anzahl von Wasserfahrzeugen genehmigt und das Einsetzen ortsfremder Boote ganz verboten. Das Baden ist im Röggeliner See erlaubt, entsprechende Möglichkeiten bestehen bei Klocksdorf und Dechw.

Wegen der vor 1990 nur selten und dann sporadisch durchgeführten Untersuchungen des Sees wurden angebliche Fischsterben, die durch die Einleitung bzw. Abspülung von Gülle und durch andere Verunreinigungen verursacht worden sein sollen, nie eindeutig erfasst.
1.59 Rugensee

1.59.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der See befindet sich bei der Ortschaft Rugensee und ist von einem schmalen Waldgürtel umgeben. Das kleine Einzugsgebiet weist eine Größe von nur 3,1 km² auf. Der See gilt als zu- und abflusslos. Im langjährigen Mittel wurde jedoch ein Abfluss von 0,013 m³/s registriert.

Abb. 92: Tiefenkarte des Rugensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.59.2 Topographie und Morphometrie

Der längliche See weist mehrere Krümmungen und Einbuchtungen auf und ist in Nordost-Südwest-Richtung orientiert.

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_{max}</th>
<th>z_{mean}</th>
<th>L_{eff}</th>
<th>B_{eff}</th>
<th>U_{E}</th>
<th>F</th>
<th>z_{epi}</th>
<th>t_{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,10</td>
<td>0,55</td>
<td>27,5</td>
<td>11,0</td>
<td>1500</td>
<td>700</td>
<td>1,8</td>
<td>4,6</td>
<td>6,0</td>
<td>14,9</td>
</tr>
</tbody>
</table>
1.59.3 Chemische und trophische Charakteristik des Sees

Der Rugensee ist im Sommer thermisch stabil geschichtet. Daten von 4 Beprobungs-terminen (STAUN Schwerin) zwischen April und November 1997 (1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 7,8 und 8,8, der Leitfähigkeit zwischen 325 µS/cm und 383 µS/cm und der mittelhohen Calcium-Konzentrationen zwischen 43,3 mg/l und 55,3 mg/l. Die epilimnischen Gesamtphosphorkonzentrationen betrugen zwischen 150 µg/l (November) und 250 µg/l (April), als maximale SRP-Konzentrationen wurden hier im November 106 µg/l gemessen. Die Konzentrationen an Gesamtstickstoff lagen oberflächennah zwischen 0,9 mg/l und 1,1 mg/l, dabei betrugen die Nitrat-N-Konzentrationen im Minimum 0,01 mg/l (Sommer) und im Maximum 0,22 mg/l (Frühjahr), die Ammonium-N-Konzentrationen im Minimum 0,02 mg/l und im Maximum 0,4 mg/l (November). Maximale Chlorophyll a-Konzentrationen wurden im April mit 21,6 µg/l ermittelt. Die Trophieparameter der Jahre 1997 und 1999 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) als mesotrophes Gewässer aus. Aus der Morphometrie ist für den See als potentieller natürlicher Trophiezustand ebenfalls Mesotrophie (m) abzuleiten (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6</td>
<td>359</td>
<td>5,4</td>
<td>3,5</td>
<td>1,2</td>
<td>55,0</td>
<td>105</td>
</tr>
</tbody>
</table>

Abb. 93: Zeitliche Entwicklung der Trophieparameter vom Rugensee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.59.4 Flora und Fauna

Die Phytoplanktonbiomassen sind im Rugensee sehr gering. Zwischen März und August 1999 wurden nur maximal 1,1 mg/l (Juni) gebildet. Im Frühjahr waren Cryptophyceen in Begleitung von Diatomeen stärkste Biomassebildner, im Anschluss dominierten dagegen Dinoflagellaten mit FM-Anteilen von maximal 95 %. 1997 waren im Sommer auch Chloro- und Desmidiaceen stärker vertreten, im November 1997 bildeten dann Diatomeen die stärkste Fraktion. Die maximale Biomassekonzentration lag in diesem Jahr ebenfalls im Juni bei 1,5 mg/l.

Im Untersuchungszeitraum 1999 waren Copepoden mit FM-Anteilen von 97 % im März und ca. 55 % im Anschluss die dominierenden Vertreter. Hauptarten waren *Cyclops* sp. und *Eudiaptomus* sp.. Cladoceren bildeten im Juni und September relativ hohe Biomassen, daran waren zunächst vor allem *Daphnia* sp., später *Bosmina coregoni* und *Diaphanosoma brachyurum* beteiligt. Die Rotatorien waren zwar zu keiner Zeit codominant, aber vorwiegend und in zeitlicher Abfolge durch *Conochiloides natans*, *Keratella cochlearis* und *Polyarthra major* vertreten. Insgesamt schwankte die Zooplankton-Biomasse zwischen 1,0 mg/l und 1,8 mg/l.

Angaben zur Fischfauna lagen nicht vor.

1.59.5 Nutzung, anthropogener Einfluss

Der Rugensee hat eine Bedeutung als Erholungsgebiet insbesondere für den Bereich Schwerin und Umgebung. Im Rahmen der Erholungsnutzung wird dort unter anderem gebadet, geangelt und getaucht.
1.60 Rühner See
1.60.1 Genese, Lage, Einzugsgebiet und Hydrologie
Der Rühner See befindet sich im Kreis Güstrow, südwestlich von Bützow und nördlich vom Ort Rühn. Das Einzugsgebiet weist eine Größe von 27,5 km² auf.

![diagram](image)

Abb. 94: Rühner See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.60.2 Topographie und Morphometrie
Der Flachsee weist eine ovale Gestalt auf. Nach neueren Messungen beträgt die Seefläche 99,4 ha bei einer maximalen Wassertiefe von 3,6 m.

Tab. 159: Topographie und Morphometrie des Rühner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_{max} [m]</th>
<th>Z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,18</td>
<td>0,99</td>
<td>3,6</td>
<td>2,2</td>
<td>1595</td>
<td>935</td>
<td>1,2</td>
<td>0,6</td>
<td>6,2</td>
<td></td>
</tr>
</tbody>
</table>

1.60.3 Chemische und trophische Charakteristik des Sees
Nach dem Tiefengradienten zu urteilen, ist der See im Sommer nicht stabil geschichtet. Im Frühjahr 1996 wurde ein pH-Wert von 9,1 und eine extrem starke Sauerstoffübersättigung bei einem Sauerstoffsättigungsindex von 216 % registriert. Während im September der pH-Wert wieder über 9 anstieg, blieb der SSI-Wert mit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9,1</td>
<td>384</td>
<td>43,7</td>
<td>0,4</td>
<td>2,2</td>
<td>178</td>
<td>92,0</td>
</tr>
</tbody>
</table>

1.60.4 Flora und Fauna

Der See ist vollständig von Acker- und Weideland umgeben und besitzt einen schwach ausgeprägten Schilfgürtel.

Das Zooplankton wies im Früh- und Spätsommer mit 10 - 11 mg/l Frischmasse dreimal höhere Biomassewerte als im Frühjahr und Herbst auf. Im Frühjahr und Spätsommer dominierten cyclopoide Copepoden mit einem Biomasseanteil von 62 % bzw. 96 %. Die relativ hohe Zooplanktonbiomasse im Frühjahr wurde durch Cladoceren der Art *Bosmina longirostris* hervorgerufen. Der Anteil der Rotatorien und calanoiden Copepoden war zu allen Untersuchungsterminen sehr gering.

Im Gewässer wurden bei Fischerbefragungen 21 Fischarten ermittelt. Dabei kamen 9 Fischarten häufig und 12 eher selten vor (siehe Tab. 161).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod idella</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus alburnus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguillaanguilla</td>
</tr>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius auratus</td>
</tr>
<tr>
<td>s</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus glanis</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota lota</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys nobilis</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>s</td>
<td>Aland</td>
<td>Leuciscus idus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>s</td>
<td>Döbel</td>
<td>Leuciscus cephalus</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluvialtilis</td>
</tr>
</tbody>
</table>

1.60.5 Nutzung, anthropogener Einfluss

1.61 Schloßsee Penkun

1.61.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 95: Tiefenkarte des Oberen Schloßsees (Daten vom Umweltministerium MV, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.61.2 Topographie und Morphometrie

Der Schloßsee Penkun ist in 3 Becken untergliedert (Obersee, Mittlerer Schloßsee und Untersee), von denen der südlich gelegene Obersee die maximale Tiefe aufweist.
Tab. 162: Topographie und Morphometrie des Oberen Schloßsee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>Seeteil</th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_{E} [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_{R} [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obersee</td>
<td>0,69</td>
<td>0,19</td>
<td>8,9</td>
<td>3,7</td>
<td>1190</td>
<td>250</td>
<td>2,4</td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelsee</td>
<td>0,80</td>
<td>0,33</td>
<td>5,5</td>
<td>2,4</td>
<td>1100</td>
<td>550</td>
<td>1,2</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untersee</td>
<td>0,70</td>
<td>0,32</td>
<td>4,5</td>
<td>2,2</td>
<td>1130</td>
<td>520</td>
<td>1,5</td>
<td>0,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>2,18</td>
<td>0,84</td>
<td>8,9</td>
<td>2,6</td>
<td>1756</td>
<td>878</td>
<td>3,1</td>
<td>1,4</td>
<td>6,3</td>
<td></td>
</tr>
</tbody>
</table>

1.61.3 Chemische und trophische Charakteristik des Sees

Der Obersee weist im Sommer eine wenig stabile Schichtung auf, während der Mittlere und Untere Schloßsee als polymiktisch anzusehen sind. So befand sich das Metalimnion des Obersees im Mai 1998 zwischen 2 m und 4 m Tiefe, im Juli allerdings in 6 m Tiefe. Zu beiden Zeitpunkten ließ sich eine metalimnische Sauerstoffabnahme beobachten, die im Juli 1998 ebenso wie 1997 zu anaeroben Zuständen unterhalb der Sprungschicht führte. Die gewässerchemischen Daten (StAUN Schwerin) in der Zeit von März - August 2000 waren im Ober- und Untersee recht ähnlich. Die oberflächennahen Gesamtphosphorkonzentrationen betrugen im Obersee zwischen 51 µg/l und 120 µg/l, im Untersee zwischen 94 µg/l und 156 µg/l, die SRP-Konzentrationen in beiden Teilseen in 0,5 m Tiefe < 0,005 mg/l. Im Hypolimnion des Obersees wurde ein starker Konzentrationsanstieg im August vermutlich infolge von Sauerstoffmangel und internen Rücklösungsprozessen auf 312 µg TP/l und 199 µg SRP/l beobachtet.

<table>
<thead>
<tr>
<th>Seeteil</th>
<th>pH-Wert [-]</th>
<th>Leitf. [µS/cm]</th>
<th>Chl a [µg/l]</th>
<th>ST [m]</th>
<th>TN [mg/l]</th>
<th>TP [µg/l]</th>
<th>TP_{Früh} [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>8,0</td>
<td>922</td>
<td>37,7</td>
<td>0,8</td>
<td>2,0</td>
<td>137</td>
<td>115</td>
</tr>
<tr>
<td>MS</td>
<td>8,3</td>
<td>922</td>
<td>48,1</td>
<td>0,8</td>
<td>2,7</td>
<td>165</td>
<td>103</td>
</tr>
<tr>
<td>US</td>
<td>8,2</td>
<td>904</td>
<td>68,0</td>
<td>0,7</td>
<td>3,1</td>
<td>180</td>
<td>122</td>
</tr>
</tbody>
</table>

Die Ammonium-N-Konzentrationen erreichten hier sehr hohe Werte von 3,1 mg/l und die Gesamtstickstoff-Konzentrationen lagen hier maximal bei 4,9 mg/l. Auch oberflächennah waren die TN-Konzentrationen mit maximal 2,9 mg/l im März (Obersee) bzw. 3,2 mg/l im Juli (Untersee) sehr hoch. Die Nitrat-N-Konzentrationen ergaben im Frühjahr noch 0,2 mg/l (Untersee) bzw. 0,8 mg/l (Obersee), wurden dann aber weitgehend auf Werte < 0,01 mg/l aufgezehrt. Maximale Chlorophyll a-Konzentrationen wurden im Juni mit 72,4 µg/l im Obersee und gar 111,0 µg/l im Untersee ermittelt. Die Calciumkonzentrationen schwankten insgesamt in einem hohen Bereich von 87,0 - 110 mg/l. Die Trophieparameter der Jahre 2000 und 2001

![Diagramm der Trophieparameter](image)

Abb. 96: Zeitliche Entwicklung der Trophieparameter vom Oberen Schloßsee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.61.4 Flora und Fauna

In der Zooplanktonzusammensetzung zeigten sich nur im Frühjahr größere Unterschiede zwischen den einzelnen Seeteilen. Im März 2000 waren im Unteren Schloßsee Rotatorien mit den Arten Keratella quadrata und Asplanchna priodonta bestandsbildend, im Mittelsee waren Copepoden mit Cyclops strenuus ebenso stark vertreten und im Obersee dominierten diese. Im Juni bildeten Cladoceren der Art Bosmina longirostris im Obersee und Mittelsee den größten FM-Anteil, im Unteree waren Rotatorien und Copepoden gleich stark vertreten. Im Anschluss war das Zooplankton in allen Seeteilen sehr heterogen zusammengesetzt, innerhalb der Cladoceren überwog im Hochsummer Daphnia cucullata, im Ober- und Mittelsee kam die Rotatorienart Polyarthra remata und im Unteree Trichocerca pusilla stärker auf. Die Biomasse war im März am höchsten und erreichte maximal 7,8 mg/l im Unteree.

Der Schloßsee Penkun zeichnet sich durch eine große Vielfalt und Häufigkeit an Fischarten aus. Insgesamt wurden 24 Arten ermittelt.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius auratus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla anguilla</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys nobilis</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
</tr>
<tr>
<td>h</td>
<td>Moderlieschen</td>
<td>Leucaspius delineatus</td>
</tr>
<tr>
<td>h</td>
<td>Schleie</td>
<td>Tinca tinca</td>
</tr>
<tr>
<td>h</td>
<td>Schlammpeitzger</td>
<td>Misgumus fossilis</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus albuminus</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis brama</td>
</tr>
<tr>
<td>h</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
</tr>
<tr>
<td>Häufigkeit der Art</td>
<td>deutscher Name</td>
<td>Artname</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion lucioperca</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus aculeatus</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
</tr>
<tr>
<td>s</td>
<td>Neunstachliger Stichling</td>
<td>Pungitius pungitus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca fluvialilis</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod idella</td>
</tr>
<tr>
<td>h</td>
<td>Gründling</td>
<td>Gobio gobio</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius carassius</td>
</tr>
<tr>
<td>s</td>
<td>Wels</td>
<td>Silurus glanis</td>
</tr>
</tbody>
</table>

1.61.5 Nutzung, anthropogener Einfluss

Mit einer Verbesserung der Wasserbeschaffenheit des Schlosssees Penkun sollen auch wieder touristische Anreize geschaffen werden, mit denen ein stark eutrophiertes Gewässer mit ganzjährigen Sichttiefen von unter 0,5 m nicht aufwarten kann.
1.62 Schmacher See

1.62.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 97: Tiefenkarte des Schmacher Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.62.2 Topographie und Morphometrie

Der Schmacher See weist eine dreieckige Gestalt auf und ist nur maximal 2,5 m tief.

Tab. 165: Topographie und Morphometrie des Schmacher Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_{max} [m]</th>
<th>Z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_{E} [-]</th>
<th>F [-]</th>
<th>Z_{api} [m]</th>
<th>t_{R} [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,50</td>
<td>1,20</td>
<td>2,5</td>
<td>1,3</td>
<td>1770</td>
<td>1180</td>
<td>1,4</td>
<td>0,4</td>
<td>6,5</td>
<td>0,7</td>
</tr>
</tbody>
</table>
1.62.3 Chemische und trophische Charakteristik des Sees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,5</td>
<td>455</td>
<td>8,0</td>
<td>GS</td>
<td>1,41</td>
<td>75,0</td>
<td>137</td>
</tr>
</tbody>
</table>

Abb. 98: Zeitliche Entwicklung der Trophieparameter vom Schmachter See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
Die Konzentrationen an Gesamtstickstoff lagen zwischen 1,5 mg/l und 1,9 mg/l, dabei betrugen die Nitrat-N-Konzentrationen durchgehend < 0,008 mg/l, die Ammonium-N-Konzentrationen zeigten große Schwankungen zwischen < 0,007 mg/l und 0,5 mg/l. Maximale Chlorophyll a-Konzentrationen wurden im Juni mit 152,9 µg/l ermittelt, das Vegetationsmittel ergab 97,2 µg/l. Die geringen Sichttiefen von 0,4 - 0,7 m waren mitunter auch auf Sedimentaufwirbelungen zurückzuführen. Noch im Vorjahr war das Bioproduktionsmaximum durch Chl a-Konzentrationen von 200 µg/l, Phytoplanktonvolumina von 50 – 60 mm³/l, pH-Werten von 9,4 und Sichttiefen von 0,3 cm gekennzeichnet. Die Calciumkonzentrationen schwankten 1996 im Bereich von 40,5 -62,9 mg/l. Die Trophie-Klassifizierung des Jahres 1996 kennzeichnete den damals als makrophytenbeinflusst geltenden See als polytroph (p2). Die aktuellen, trophierelevanten Parameter des Jahres 2001 zeigen eine Trophieverminderung an, nach LAWA-Bewertungsansatz (LAWA 1998) ergibt sich nun ein Status von polytroph (p1) unter dem Vorbehalt der Makrophytendominanz. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den ungeschichteten See nach (LAWA 1998) als natürlicherweise hoch eutroph (e2) aus.

1.62.4 Flora und Fauna

Die Phytoplanktonzusammensetzung zeigte starke saisonale Unterschiede mit wechselnden Dominanzen von Cryptophyccen, Chlorophyceen, Diatomeen und Cyanobakterien. Die Phytoplanktonbiomasse (FM) erreichte im Zeitraum April - Oktober 1996 (4 Probenahmetermine) maximal 24,8 mg/l im Juni und lag minimal bei 1,2 mg/l im April. Im April dominierten Cryptophyceen mit einem Biomasseanteil von 75,7 %. Subdominant waren zu etwa gleichen Teilen Diatomeen, Chlorophyceen und Sonstige vertreten. Das Biomassemaximum im Juni wurde zu 89,7 % von Cyanobakterien verursacht. Im August überwogen Chlorophyceen (Oocystis, Scenedesmus) mit einem FM-Anteil von 78,7 % gegenüber Cryptophyceen mit 20,7 %. Im Oktober dominierten dagegen centrische Diatomeen und in etwas geringerem Maße auch Chlorophyceen das Phytoplankton.

Die verhältnismäßig hohe Zooplankton-Biomasse (FM) zeigte im Jahresverlauf 1996 Schwankungen zwischen 6,1 mg/l (Juni) und 11,3 mg/l (Oktober). Den größten Anteil daran hatten im April Copepoden mit 98 %, im Juni Cladoceren mit 78,3 %, im August erneut Copepoden mit 61,2 % und im Oktober wiederum Cladoceren (67,7 %). Auch Rotatorien bildeten zeitweilig hohe FM-Anteile von maximal 36,1 % im August aus. Im Untersuchungsjahr 1995 waren die dominierenden Zooplankton-Gattungen/Arten Keratella (Rotatorien), Chydomor sphaericus, Bosmina longirostis (Cladoceren) und der Copepode Cyclops strenuus.
Das Makrozoobenthos zeichnete sich durch eine relativ hohe Artenzahl aus. Die Gesamt-Individuendichte war dabei im regionalen Vergleich gering. Bemerkenswert ist das Vorkommen der Schmetterlingslarven.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax. Oberbegriff</th>
<th>Ordnung</th>
<th>Fam./Gatt./Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5.2001</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Anodonta anatina</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Annelida</td>
<td>Oligochaeta</td>
<td>Stylaria lacustris</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Hirudinea</td>
<td></td>
<td>Glossiphonia complanata</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Piscicolidae</td>
<td>indet. spec.</td>
<td>Theromyzon tessulatum</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Crustacea</td>
<td>Isopoda</td>
<td>Asellus aquatic</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td></td>
<td>193</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cerato-pogonida</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ephemeroptera</td>
<td>Caenis robusta</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caenis sp.</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichoptera</td>
<td>Cymrus flavidus</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leptocerus tineiformis</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lepidoptera</td>
<td>Acentropinae, Larve</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Schlick - Feinsand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arten/Taxa</td>
<td>13</td>
<td>Summe Ind./m²</td>
<td>551</td>
<td></td>
</tr>
</tbody>
</table>

Die fischereiliche Nutzung des Sees erfolgt als Aal-Hecht-Zander-See. Zum Bestand gehören weiterhin Schlei (Tinca tinca), Rotfeder (Scardinius erythrophthalmus), Plötze (Rutilus rutilus) und Moderlieschen (Leucaspius delineatus).

1.62.5 Nutzung, anthropogener Einfluss

250
1.63 Schmaler Luzin

1.63.1 Genese, Lage, Einzugsgebiet und Hydrologie

1.63.2 Topographie und Morphometrie

Der 145 ha große Schmale Luzin ist in das nördlich gelegene Mittelbecken und das südlich gelegene Carwitzer Becken unterteilt, die durch eine maximal 8 m tiefe Schwelle getrennt sind. Die maximale Tiefe von 33,5 m wird im Mittelbecken erreicht. Beide Seeteile sind morphologisch und limnologisch vergleichbar.

<table>
<thead>
<tr>
<th>Seeteil</th>
<th>V</th>
<th>A</th>
<th>z_{max}</th>
<th>z_{mean}</th>
<th>L_{eff}</th>
<th>B_{eff}</th>
<th>U_E</th>
<th>F</th>
<th>z_{epi}</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittel-B.</td>
<td>10,3</td>
<td>0,85</td>
<td>33,5</td>
<td>12,2</td>
<td>2373</td>
<td>256</td>
<td>5,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carwitzer B.</td>
<td>10,7</td>
<td>0,60</td>
<td>33,0</td>
<td>17,7</td>
<td>1170</td>
<td>861</td>
<td>5,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>20,98</td>
<td>1,45</td>
<td>33,5</td>
<td>14,5</td>
<td>2378</td>
<td>861</td>
<td>3,5</td>
<td>5,0</td>
<td>6,7</td>
<td>4,8</td>
</tr>
</tbody>
</table>

1.63.3 Chemische und trophische Charakteristik des Sees

Konzentrationen der Vorjahre konnten nicht nachgewiesen werden. Die Phosphorkonzentrationen waren auch 2001 im euphotischen Bereich beider Becken mit < 35 µg TP/l bzw. < 10 µg SRP/l ganzjährig niedrig. Während des Sommers lagen die TP-Konzentrationen sogar unterhalb von 20 µg/l und die SRP-Konzentrationen unterhalb der Nachweigrenze. In 25 m Tiefe (Mai und Oktober) stiegen die TP-Konzentrationen im Mittelbecken auf maximal 206 µg/l, im Carwitzer Becken auf maximal 41 µg/l, das Maximum der SRP-Konzentrationen lag bei 45 µg/l (Mittelbecken) bzw. 18 µg/l (Carwitzer Becken).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carw. B.</td>
<td>8,5</td>
<td>375</td>
<td>2,8</td>
<td>5,6</td>
<td>0,5</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Mittel-B.</td>
<td>8,5</td>
<td>334</td>
<td>2,7</td>
<td>6,1</td>
<td>0,5</td>
<td>15</td>
<td>24</td>
</tr>
</tbody>
</table>

Abb. 100: Zeitliche Entwicklung der Trophieparameter vom Schmalen Luzin (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
Die außergewöhnlich lange Schichtungsperiode führte Ende November in dieser Tiefe zu einem weiteren Anstieg der TP-Konzentration auf 137 µg/l und der SRP-Konzentration auf 125 µg/l. Bei diesen epilimnischen Konzentrationen, die für mesotrophe Seen typisch sind, ergibt sich eine ausgeprägte Phosphorlimitation der Algenproduktion im euphotischen Bereich. Die Chlorophyll a-Konzentration ergab maximal ca. 10 µg/l im März. Mittelbecken und Carwitzer Becken unterschieden sich hierbei nur geringfügig. Das Minimum der Sichttiefe betrug im Frühjahr in beiden Becken des Schmalen Luzin ca. 4,0 m und maximal zwischen 8,0 - 9,0 m im September. Im Mittelbecken kam es zum Ende der Schichtungsperiode zur Methanakkumulation im sedimentnahen Hypolimnion. Im Carwitzer Becken wurde Anfang Juli auch nach mehrwöchiger Stagnation noch kein Methan im Freiwasser nachgewiesen. Insgesamt ist die methanogene Aktivität so hoch, dass sowohl Sauerstoffzehrung als auch Nährstoffmobilisierung Bedeutung erlangen. Die Calcitaufgabe in 3 – 4 cm Sedimenttiefe wirkt nur bedingt als Sperrschicht für gelöste Stoffe (Koschel et al. 2001a).

1.63.4 Flora und Fauna

Die jährliche mittlere Biomasse des Crustaceenplanktons betrug im Mittelbecken des Schmalen Luzin 16,7 mg C/m³ (Mittelwert Mai - September 29,1 mg C/m³). Damit waren die Werte im Vergleich zum Vorjahr nahezu identisch. Ein klares Maximum zeichnete sich im gesamten Jahresverlauf nicht ab. Vielmehr lag die Biomasse im Zeitraum Juli bis September bei 40 - 45 mg C/m³. Innerhalb des
Crustaceenplanktons sind vor allem *Daphnia cuculltata*, *Eurytemora lacustris* und cyclopoide Copepoden als dominante Formen zu nennen. Im Zeitraum Mai bis September betrug ihr mittlerer Anteil an der Gesamtbiomasse jeweils 21 %, 19 % und 22 %. Im Carwitzer Becken lag die mittlere Biomasse des Crustaceenplanktons mit 21,4 mg C/m³ (Mittelwert Mai - September 35,3 mg C/m³) höher als im Hauptbecken. Die Biomasse zeigte im Zeitraum Juli - August ein Maximum von 63 mg C/m³. Dieses Maximum wurde hauptsächlich von *Daphnia cuculltata* (21 mg C/m³) und *Eurytemora lacustris* (16 – 23 mg C/m³) gebildet. Die Crustaceenbiomasse hat 2001 weiter abgenommen und lag besonders im Carwitzer Becken um ca. 30 % unter den Vergleichswerten des Jahres 2000. Bemerkenswert ist das Wiedererscheinen des Eiszeitreliktkrebses *Mysis oculata relictia* im Carwitzer Becken, der im Schmalen Luzin bereits als ausgestorben galt (Koschel et al. 2001a).

Im Jahr 1997 erreichte die Zooplanktonbiomasse im Mittelbecken noch maximale Konzentrationen von 279,6 mg C/m³ im April bzw. 259,0 mg C/m³ im Juni. Maßgeblichen Anteil daran hatten die Crustaceen mit 182,2 mg C/m³ (April) und 248,7 mg C/m³ (Juni). Im Carwitzer Becken lag die Gesamtbiomasse (FM) des Zooplankton in den Monaten April und Juni 1997 bei 118,5 mg C/m³ bzw. 205,9 mg C/m³. Die Crustaceen trugen 80,0 mg C/m³ (April) bzw. 194,1 mg C/m³ (Juni) bei.

Die Tiefenwasserbelüftung verbesserte die Lebensbedingungen für Zooplankton und Fische. Bei den Fischen tritt die Kleine Maräne *Coregonus albula* in hohen Beständen (10000 bis 12000 Fische pro ha) auf. Der verstärkte Fraßdruck durch das beträchtliche Aufkommen dieser benthi- und zooplanktivore Fische lässt die Biomasse des Crustaceenplanktons nach anfänglicher Erhöhung seit 1998 insgesamt wieder sinken (Koschel et al. 2001b).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis
brama</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus
albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus
rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus
carpio</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox
lucius</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla
anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca
fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus
cernua</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla
anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Quappe</td>
<td>Lota
lota</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger Stichling
Gasterosteus</td>
<td>aculeatus</td>
</tr>
</tbody>
</table>
Häufigkeit der Art | deutscher Name | Artname
--- | --- | ---
s | Rotfeder | Scardinius erythrophthalmus
h | Schleie | Tinca tinca
h | Ukelei | Alburnus albumus
s | Zander | Stizostedion lucioperca

1.63.5 Nutzung, anthropogener Einfluss
Der Schmale Luzin wurde bis in die 1980er Jahre durch den Eintrag von Phosphor und Stickstoff aus landwirtschaftlichen und kommunalen Quellen sowie bis 1969 aus dem angrenzenden Feldberger Haussee belastet. Nachfolgende Sanierungsmaßnahmen führten zu einer rückläufigen externen und internen Belastung des Gewässers. Die Kombination von Tiefenwasserbelüftung und hypolimnisch abgeschiedener Ca(OH)₂-Zugabe führte bereits in den Betriebsjahren 1996 - 1998 zu intensiven Calcitfällungen im Hypolimnion und einer entsprechenden Verminderung der Phosphorkonzentrationen (TP und ortho-Phosphat) um ca. 60 %. Dabei gestaltete sich die Einmischung des belüfteten und Ca(OH)₂-behandelten Tiefenwassers unterhalb der Sprungschicht in 15 m Tiefe strömungsmechanisch als besonders günstig in bezug auf eine homogene Verteilung der "Kalkmilch". Von 1996 bis 1998 wurden insgesamt ca. 470 t Ca(OH)₂ und ca. 2.650.000 m³ Luft ins Hypolimnion des Schmalen Luzins eingebracht, im Mittel 80 t Ca(OH)₂ und 440.000 m³ Luft pro Jahr und Becken (Koschel et al. 2001b).

1.64 Schmollensee

1.64.1 Genese, Lage, Einzugsgebiet und Hydrologie

1.64.2 Topographie und Morphometrie

Der verhältnismäßig großflächige See besteht aus einem größeren und tieferen nordöstlichen und einem etwa halb so großen südwestlichen flachen Seeteil, die beide auf der Höhe von Sellin über eine etwa 200 m breite Verengung in Verbindung stehen. Im Folgenden wird der See jedoch als eine morphometrische Einheit betrachtet.
Tab. 171: Topographie und Morphometrie des Schmollensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,62</td>
<td>5,03</td>
<td>5,7</td>
<td>2,7</td>
<td>3692</td>
<td>2024</td>
<td>1,7</td>
<td>0,7</td>
<td>7,8</td>
<td></td>
</tr>
</tbody>
</table>

1.64.3 Chemische und trophische Charakteristik des Sees

Der See ist durch seine geringe mittlere Tiefe und Windeinwirkung polymiktisch und dabei bis zum Grund durchmischt. Im Untersuchungszeitraum März - August 2000 schwankten die Gesamtphasphorkonzentrationen im Bereich der tiefen Stelle (Nordteil) an der Oberfläche zwischen 76 µg/l und 132 µg/l, in 2 m Tiefe stiegen sie im August auf 183 µg/l an. Im Südteil erreichten sie maximal 153 µg/l. Die SRP-Konzentrationen sanken ausgehend von maximal 30 – 36 µg/l im März auf meist < 5 µg/l in beiden Seeteilen ab. Sehr hoch waren die Gesamtsickstoffkonzentrationen im Bereich von 2,3 - 4,0 mg/l (Nordteil) bzw. 1,3 - 5,0 mg/l (Südteil), woran anorganischer Stickstoff mit meist < 0,01 mg NO₃-N/l, < 0,03 mg NH₄-N/l und < 0,005 NO₂-N/l nur einen geringen Anteil hatte. Nur im März wurden höhere Nitrat-N-Konzentrationen von maximal 0,5 mg/l im Nordteil ermittelt. Enorme Ausmaße nahm die Bioproduktion an, die sich in hochsommerlichen Chlorophyll a-Maxima von 341 µg/l (Nordteil) bzw. 328 µg/l (Südteil), ebenso extremen Phytoplanktobiomassen und minimalen Sichttiefen äußerte. Für die Calcium-Konzentrationen ergab sich im gesamten See ein Schwankungsbereich von 72,0 – 91,0 mg/l. Erwähnenswert sind die außergewöhnlich hohen TOC-Werte, für die neben den Algenmassenentwicklungen und den Abwasserbelastungen auch Einträge von Huminsäuren aus angrenzenden Niedermoorflächen verantwortlich sein dürften. Die enormen Leitfähigkeitswerte zeigen die saline Beeinflussung des Sees an.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9,0</td>
<td>2560</td>
<td>269,3</td>
<td>0,3</td>
<td>3,2</td>
<td>138</td>
<td>101</td>
</tr>
</tbody>
</table>
1.64.4 Flora und Fauna

Wie schon in den Vorjahren setzte sich das Phytoplankton auch im Jahr 2000 während der Vegetationsperiode ausschließlich aus fädigen Cyanobakterien zusammen. Lediglich im März waren Diatomeen mit *Fragilaria ulna* var. *acus* im Nordteil Hauptbiomassebildner, im Südteil dagegen neben Cyanobakterien als weit weniger bedeutende Biomassebildner zu nennen. Es dominierte dabei nach FM-Anteilen in erster Linie die Art *Limnothrix redekei*, gefolgt von *Aphanizomenon gracile* und *Planktothrix agardhii*. Die ganzjährig sehr hohen Biomassen lagen im März minimal bei 20,1 mg/l bzw. 32,9 mg/l und stiegen dann im Hochsommer auf Extremwerte von 64,0 mg/l (Nordteil) bzw. 98,9 mg/l (Südteil) an.

Die Zooplanktonbiomassen waren im Untersuchungszeitraum März - August 2000 mit maximal 0,4 mg/l (August) im Nordteil und 1,9 mg/l (Juni) im Südteil relativ gering. Im Bereich der tiefen Stelle standen im März und Juni alle Zooplanktongruppen in einem ausgewogenen Verhältnis zueinander, im Juli dominierten hier Rotatorien mit FM-Anteilen von 91 % und im August Copepoden mit FM-Anteilen von 67 %. Im Südteil dominierten im Juni eindeutig Cladoceren mit 87 % FM-Anteil und in der Folge Rotatorien zu maximal 81 %. Die Artenzusammensetzung war in beiden Seeteilen vergleichbar. Die Rotatorien zeigten eine hohe Diversität, als wichtigste Arten sind *Keratella quadrata*, *Pompholyx sulcata*, *Asplanchna priodonta*, *Brachionus angularis*, *Polyarthra major*, *Anuraeopsis fissa*, *Trichocerca pulsilla* und *Proales* spec. zu nennen. Hauptarten der Cladoceren waren im Nordteil
Bosmina longirostris und Pseudochydorus globosus, im Südteil vor allem *P. globosus*, daneben auch *B. coregoni* und *B. longirostris*. Die Copepoden waren vor allem durch *Cyclops strenuus* und Nauplien vertreten.

1.64.5 Nutzung, anthropogener Einfluss

1.65 Schweingartensee
1.65.1 Genese, Lage, Einzugsgebiet und Hydrologie
Der Schweingartensee befindet sich ca. 10 km östlich von Neustrelitz.

![Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)](image)

1.65.2 Topographie und Morphometrie
Der Schweingartensee gliedert sich in einen nördlichen flachen und einen südwestlichen, wesentlich tieferen Seeteil.

<table>
<thead>
<tr>
<th>Seeteil</th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_max [m]</th>
<th>B_max [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW-Teil</td>
<td>4,65</td>
<td>0,47</td>
<td>31,0</td>
<td>9,89</td>
<td>1200</td>
<td>400</td>
<td>2,2</td>
<td>5,7</td>
<td>5,5</td>
<td></td>
</tr>
<tr>
<td>N-Teil</td>
<td>0,37</td>
<td>0,25</td>
<td>6,30</td>
<td>1,51</td>
<td>1250</td>
<td>150</td>
<td>2,7</td>
<td>1,2</td>
<td>5,3</td>
<td></td>
</tr>
</tbody>
</table>

1.65.3 Chemische und trophische Charakteristik des Sees
Der nördliche Seeteil ist polymiktisch, der südliche dagegen im Sommer thermisch stabil geschichtet. Der Chemismus war dabei im Untersuchungsjahr 1998 (März - Oktober, STAUN Schwerin) in beiden Seeteilen ähnlich. Im Süd-Becken schwankten die Gesamtphosphorkonzentrationen in 1 m Tiefe zwischen 17 µg/l und 44 µg/l, über dem Gewässergrund stiegen sie im August auf maximal 253 µg/l an. Auch die SRP-Konzentrationen waren hier zu diesem Zeitpunkt mit 216 µg/l maximal, epilimnisch lagen sie zwischen < 5 µg/l und 20 µg/l. Die Gesamtstickstoffkonzentrationen waren oberflächennah im Südbecken mit 2,9 mg/l (Juni) und im Nordbecken mit 1,5 mg/l (März) am größten, ab Juni zeigten sie jeweils über Grund einen starken Anstieg auf
maximal 3,4 mg/l im Südbecken (August) bzw. 5,9 mg/l (Oktober) im Nordbecken, der in hohem Maß durch Ammonium-Stickstoff bedingt war. Scheinbar hat also auch im sehr viel flacheren Nordteil eine starke Sauerstoffzehrung stattgefunden, zugleich deuten die Messbefunde auf eine längere Stagnationsphase auch in diesem Bereich hin. Nur im März wurden relativ hohe Nitrat-N-Konzentrationen von 0,4 mg/l (Südwestbecken) bzw. 0,2 mg/l (Nordbecken) ermittelt, während der Sommerstagnation wurde diese Nährstoffressource weitgehend aufgezehrt (< 0,01 mg/l). Anfang Oktober stiegen die Konzentrationen dann im Nordteil auf maximal 0,5 mg NO₃-N/l. Als Chlorophyll a-Maxima wurden Werte um 41 µg/l im August und im Nordbecken auch noch im Oktober registriert. Für die geringen Calcium-Konzentrationen ergab sich im gesamten See ein enger Schwankungsbereich von 27,0 - 31,0 mg/l. Die Trophieparameter des Jahres 1998 kennzeichnen den polymiktischen Nordteil nach LAWA-Bewertungsansatz (LAWA 1998) als hoch eutroph (e2), den Südteil dagegen als schwach eutroph (e1). Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den gesamten See nach (LAWA 1998) als natürlicherweise mesotroph (m) aus.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordteil</td>
<td>7,6</td>
<td>239</td>
<td>32,2</td>
<td>1,1</td>
<td>1,6</td>
<td>141</td>
<td>22,0</td>
</tr>
<tr>
<td>Südteil</td>
<td>8,2</td>
<td>240</td>
<td>28,2</td>
<td>1,1</td>
<td>1,4</td>
<td>54,0</td>
<td>21,0</td>
</tr>
</tbody>
</table>

1.65.4 Flora und Fauna

Im Phytoplankton herrschten im gesamten Untersuchungszeitraum 1998 in beiden Seeteilen fädige Cyanobakterien mit den Arten *Aphanizomenon flos-aquae*, *Limnothrix redekei* und *Planktothrix agardhii* bei Anteilen an der Frischmasse von meist > 95 % vor. Lediglich im März trugen auch Diatomeen (vor allem *Asterionella formosa* und *Fragilaria ulna var. acus*) sowie Crypto- und im Nordteil auch Chrysoflagellaten geringe Anteile zur Biomasse bei. Die maximale Entwicklung zeigte das Phytoplankton im August, als die Biomassen auf 16,7 mg/l im Nordteil bzw. 20,4 mg/l im Südteil anstiegen.

Im Zooplankton dominierten zu allen Probenahmeterminen 1998 und in beiden Seeteilen cyclopoide Copepoden.

Im Schweingartensee wurden bei Fischerbefragungen 14 Fischarten ermittelt. (Tab. 175).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Güster</td>
<td>Blicca</td>
<td>bjoerkna</td>
</tr>
<tr>
<td>r</td>
<td>Ukelei</td>
<td>Alburnus</td>
<td>albumus</td>
</tr>
<tr>
<td>r</td>
<td>Moderlieschen</td>
<td>Leucaspius</td>
<td>delineatus</td>
</tr>
<tr>
<td>r</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
<td>albula L.</td>
</tr>
<tr>
<td>r</td>
<td>Hecht</td>
<td>Esox</td>
<td>lucius</td>
</tr>
<tr>
<td>r</td>
<td>Blei</td>
<td>Abramis</td>
<td>brama</td>
</tr>
<tr>
<td>r</td>
<td>Rotfeder</td>
<td>Scardinius</td>
<td>erythrophthalmus</td>
</tr>
<tr>
<td>r</td>
<td>Barsch</td>
<td>Perca</td>
<td>fluviatilis</td>
</tr>
<tr>
<td>r</td>
<td>Karpfen</td>
<td>Cyprinus</td>
<td>carpio</td>
</tr>
<tr>
<td>r</td>
<td>Schleie</td>
<td>Tinca</td>
<td>tinca</td>
</tr>
<tr>
<td>r</td>
<td>Plötze</td>
<td>Rutilus</td>
<td>rutilus</td>
</tr>
<tr>
<td>r</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
<td>cernua</td>
</tr>
<tr>
<td>r</td>
<td>Karausche</td>
<td>Carassius</td>
<td>carassius</td>
</tr>
<tr>
<td>r</td>
<td>Aal</td>
<td>Anguilla</td>
<td>anguilla</td>
</tr>
</tbody>
</table>

1.65.5 Nutzung, anthropogener Einfluss
Zur Nutzung des Gewässers liegen keine Angaben vor.
1.66 Schweriner See
1.66.1 Genese, Lage, Einzugsgebiet und Hydrologie

Das Gewässer befindet sich östlich von Schwerin unmittelbar an der Stadtgrenze. Der Schweriner See liegt in der Westmecklenburgischen Seenlandschaft in einer tertiären Senke, die durch die letzte Eiszeit als subglaziale Schmelzwaserrinne zwischen dem Pommerschen und dem Frankfurter Stadium überformt wurde. Die Moränenzüge der umliegenden Hügel heben sich bis zu 100 m üNN.

![Schweriner Innensee](image)

Abb. 104: Schweriner Innensee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Die Fläche des oberirdischen Einzugsgebiets beider Seeteile beträgt zusammen 414 km², wesentliche Anteile daran haben nach Angaben des Staatlichen Amts für Umwelt und Natur Schwerin (2000) mit 47,5 % Ackerflächen und mit 20,9 % Wasserflächen. 12,8 % bestehen aus Wald, 10,9 % aus bebauten Flächen, 7,6 % aus Grünlnd und 0,3 % aus sonstigem (Moor) (Wöbbecke et al. 2002).

1.66.2 Topographie und Morphometrie

zwei Inseln. Der Außensee hat zwar eine größere maximale Tiefe, ist in weiten Teilen jedoch relativ flach.

Tab. 176: Topographie und Morphometrie des gesamten Schweriner Sees (GS) und der Seeteile Innensee (IS) und Außensee (AS) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th></th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS</td>
<td>355,91</td>
<td>26,37</td>
<td>44,6</td>
<td>13,5</td>
<td>9166</td>
<td>5499</td>
<td>2,7</td>
<td>4,4</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>331,47</td>
<td>35,17</td>
<td>52,4</td>
<td>9,4</td>
<td>11266</td>
<td>4906</td>
<td>2,1</td>
<td>5,0</td>
<td>10,4</td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td>787,0</td>
<td>61,54</td>
<td>52,4</td>
<td>12,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,0</td>
<td></td>
</tr>
</tbody>
</table>

1.66.3 Chemische und trophische Charakteristik des Sees

Der Innensee weist meist von Mai - Oktober eine stabile thermische Schichtung mit einer Sprungschicht bei ca. 12 - 14 m auf. Im Außensee liegt das Metalimnion bei 16 - 18 m, so dass das Hypolimnion relativ klein ist und große Teile des Seebeckens durchmischt sind (Staatsliches Amt für Umwelt und Natur 1994).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Innensee</td>
<td>8,5</td>
<td>503</td>
<td>14,3</td>
<td>3,9</td>
<td>0,8</td>
<td>415</td>
<td>490</td>
</tr>
<tr>
<td>Außensee</td>
<td>8,7</td>
<td>478</td>
<td>8,2</td>
<td>2,8</td>
<td>1,0</td>
<td>299</td>
<td>315</td>
</tr>
</tbody>
</table>

1.66.4 Flora und Fauna

höhere Biomassen (maximal 3,6 mg/l), zu den anderen Probeterminen lag diese unter 0,5 mg/l. Im Außensee wurden 1,5 mg/l nicht überschritten.

Der Schweriner See ist durch einen großen Artenreichtum und relativ hohe Individuendichten innerhalb des Makrozoobenthos gekennzeichnet. Dabei sind insbesondere die Mollusken arten- und individuenreich vertreten. Innerhalb dieser sind die Erbsenmuschelarten *Pisidium supinum* und *P. hibernicum* nach der Roten Liste für Mecklenburg-Vorpommern (Jueg et al. 1993) als stark gefährdet (Kat.2) eingestuft (nach der Roten Liste Deutschland gilt nur *P. supinum* alsgefährdet), während die Arten *P. henslowanum* und *P. milium* in der Vorwarnliste der RL-Deutschland (Binot et al. 1998) aufgeführt sind. Weiterhin erwähnenswert ist das Vorkommen der bauchigen Schnauzenschnecke *Bithynia leachii*, die als stark gefährdet (Kat.2) gilt. Die höchsten Individuendichten erreichten die Dreikantmuschel *Dreissena polymorpha*, die Erbsenmuschelart *Pisidium nitidum* und die Gastropodenart *Valvata piscinalis*. *Potamopyrgus antipodarum* (Gastropoda) und Chironomiden-Larven waren nur im Hohen Viechelner Seeteil zahlreich, während die Eintagsfliegenart *Caenis horaria* im Außensee höchste Individuendichten bildete.

<table>
<thead>
<tr>
<th>Datum</th>
<th>tax. Oberbegriff</th>
<th>Ordnung</th>
<th>Fam./Gatt./Art</th>
<th>IS, Süd</th>
<th>AS, Nord</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>01., 06. und 07.06.2001</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Dreissena polymorpha</td>
<td>89</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium casertanum</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium casertanum f. ponderosum</td>
<td>0</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium henslowanum</td>
<td>89</td>
<td>74</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium hibernicum</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium milium</td>
<td>0</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium nitidum</td>
<td>0</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium subtruncatum</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pisidium supinum</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sphaeriidae</td>
<td>44</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bithynia leachii</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Aland</td>
<td>Leuciscus</td>
</tr>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td>s</td>
<td>Döbel</td>
<td>Leuciscus</td>
</tr>
<tr>
<td>s</td>
<td>Regenbogenforelle</td>
<td>Salmo</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Binnenstint</td>
<td>Osmerus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>s</td>
<td>Rapfen</td>
<td>Aspius</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
</tr>
</tbody>
</table>
1.66.5 Nutzung, anthropogener Einfluss

1.67 Tempziner See

1.67.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Tempziner See befindet sich im Landkreis Nordwestmecklenburg westlich von Blankenberg in einem seenreichen Sandergebiet südlich der Hauptrandeislage des Pommerschen Stadiums der Weichseleiszeit und ist streckenweise von steilen Ufern umgeben. Das Gewässer wird hauptsächlich vom Ablauf (Tönniesbach) des oberhalb gelegenen Glammsees gespeist und entwässert ein relativ großes Einzugsgebiet von 126 km² über den Brüeler Bach in die Warnow. Angaben zum mittleren Abfluss liegen nicht vor.

Abb. 107: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.67.2 Topographie und Morphometrie

Der See ist in ein Nord- und Südbecken untergliedert. Die maximale Wassertiefe des Sees befindet sich im Nordbecken. Im Folgenden wird der See jedoch als morphometrische Einheit betrachtet.

Tab. 180: Topographie und Morphometrie des Tempziner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>Z_{\text{max}} [m]</th>
<th>Z_{\text{mean}} [m]</th>
<th>L_{\text{eff}} [m]</th>
<th>B_{\text{eff}} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>Z_{\text{epi}} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,24</td>
<td>1,60</td>
<td>15,1</td>
<td>2,0</td>
<td>2274</td>
<td>1171</td>
<td>1,7</td>
<td>2,2</td>
<td>6,8</td>
<td></td>
</tr>
</tbody>
</table>
1.67.3 Chemische und trophische Charakteristik des Sees

Während das tiefeere Nordbecken in Stagnationsperioden thermisch stabil geschichtet ist, wird das flachere Südbecke häufig bis zum Gewässergrund durchmischt. Im Untersuchungszeitraum März - Oktober 1997 (STAUN Schwerin) wurden insbesondere zum Zeitpunkt der Frühjahrsalgenblüte an der Oberfläche enorme Sauerstoffüberversättigungen bis zu 180 % registriert. Während der Stagnationsperiode blieben die SSI-Werte an der Oberfläche > 100 %, während in den Tiefenwasserbereichen schon ab 3 m starke Sauerstoffdefizite bis zur Anaerobie sowie Schwefelwasserstoffbildung auftraten. Erst im Oktober wurde der See wieder voll durchmischt, was zu einem ausgeglichenen Sauerstoffhaushalt führte. Die Gesamtphosphor- und SRP-Konzentrationen fielen im Nordbecken mit oberflächennahen Werten zwischen 80 - 210 µg TP/l und 20 - 90 µg oPO4-P/l höher als im Südbecke aus. Bereits im Juni stiegen sie im Tiefenbereich auf maximal 160 µg TP/l bzw. 97 µg oPO4-P/l (jeweils Nordbecken) an. Auch die Ammonium-Konzentrationen nahmen im Hypolimnion im Zuge der Sauerstoffarmut auf maximal 0,9 mg/l zu. Die oberflächennahen Gesamtstickstoffkonzentrationen waren mit 1,0 – 1,7 mg/l in beiden Seebecken vergleichbar, die Nitrat-N-Konzentrationen lagen während der Stagnation < 0,01 mg/l. Eine Nährstofflimitation der planktischen Primärproduktionen dürfte im gesamten Untersuchungszeitraum nicht vorgelegen haben. So zeigten die Chlorophyll a-Konzentrationen im März und August besonders hohe Werte von maximal 91 µg/l im März (Süddecke) und ca. 65 µg/l im August bei ganzjährig sehr hohen Phytoplanktonbiomassen. Entsprechend lagen die Sichttiefen an allen Untersuchungsstrecken 1997 unter 1 m. Die Calcium-Konzentrationen schwankten zwischen 48 mg/l und 75 mg/l. Die Trophieparameter des Jahres 1997 kennzeichnen den See nach LAWA-Bewertungsansatz (LAWA 1998) als hoch eutroph (e2) im Grenzbereich zu polytroph (p1). Aus der Morphometrie ist für den gesamten See als potentiell natürlicher Trophiezustand schwache Eutrophie (e1) abzuleiten (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9,0</td>
<td>490</td>
<td>44,0</td>
<td>0,9</td>
<td>1,2</td>
<td>92,5</td>
<td>180</td>
</tr>
</tbody>
</table>

1.67.4 Flora und Fauna

Die Phytoplanktonodynamik war im Untersuchungszeitraum 1997 (März – Oktober) in beiden Seeteilen vergleichbar, allerdings waren die Biomassen im Nordbecken deutlich höher. Im zeitigen Frühjahr kam es zu einer Algenblüte, die durch centrische Diatomeen verursacht wurde und zum Jahresmaximum der Biomassekonzentrationen von 72 mg/l im Nordbecken und 39,5 mg/l im Südbecke führte. Im Anschluss dominierten Cyanobakterien zunächst unter Beteiligung von Microcystis aeruginosa und M. wesenbergii, später dann vorwiegend mit der Art Aphanizomenon flos-aquae, die insbesondere im Oktober eine starke Vermehrung zeigte. Neben Cyanobakterien, deren FM-Anteile im Jahresverlauf auf 83 - 85 % zunahmen, waren im Juni auch Chlorophyceen mit der Art Eudorina elegans und im
August/September der Dinoflagellat *Ceratium hirundinella* bestandsbildend. Die Biomasse zeigte bis Oktober einen Rückgang auf 22 – 25 mg/l.

Das Zooplankton wies 1997 eine hohe Artenvielfalt bei den Rotatorien auf, die jedoch erst ab August an Bedeutung gewannen. Hauptarten waren *Brachionus diversicornis* und *Keratella quadrata* sowie *K. cochlearis* und *K. cochlearis tecta*. Copepoden waren zu allen Probenahmeterminen dominant und traten verstärkt im Frühjahr insbesondere durch calanoide Copepoden aller Entwicklungsstadien in Erscheinung. Im Frühsommer sind außerdem Cladoceren mit den Arten *Daphnia cucullata* und *Bosmina longirostris* als Hauptbestandsbildner der insgesamt relativ geringen Zooplanktonbiomasse zu nennen. Die Cladoceren entwickelten im Nordbecken im Oktober sogar größte FM-Anteile, diesmal war neben *D. cucullata* auch *Chydorus sphaericus* dominierend. Die Zooplanktonbiomasse war im Nordbecken im März mit 1,8 mg/l maximal, im Südbecken wurde im August ein Spitzenwert von 4,4 mg/l erreicht.

Angaben zur Fischfauna lagen nicht vor.

1.67.5 Nutzung, anthropogener Einfluss

1.68 Teterower See

1.68.1 Genese, Lage, Einzugsgebiet und Hydrologie

1.68.2 Topographie und Morphometrie

Der See weist insbesondere im Südwestteil einen sehr unregelmäßigen Uferverlauf auf und ist durch Landzungen (wie die Halbinsel Sauerwerder) und die Burgwallinsel stark untergliedert. Der östliche Seeanteil ist sehr flach bzw. geht in eine Verlandungszone über. Im Folgenden wird der See jedoch als morphometrische Einheit betrachtet.

Tab. 182: Topographie und Morphometrie des Teterower Sees. (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,57</td>
<td>3,36</td>
<td>10,7</td>
<td>4,0</td>
<td>3312</td>
<td>1878</td>
<td>2,3</td>
<td>1,4</td>
<td>7,6</td>
<td>4,6</td>
</tr>
</tbody>
</table>
1.68.3 Chemische und trophische Charakteristik des Sees

Der Teterower See ist abgesehen von den Tiefenbereichen in weiten Teilen thermisch nicht stabil geschichtet, im Juni des Untersuchungsjahres 1997 bildete sich aber vor allem im Südostteil eine vorübergehende Temperaturschichtung aus. Daten von 4 Beprobungsterminen (LUNG 1999) zwischen April und Oktober 1997 (1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 7,9 und 9,2. Die Leitfähigkeit war mit Werten zwischen 644 µS/cm und 739 µS/cm relativ hoch. Die einzelnen Probenahmestellen "tiefe Stelle, Burgwall und Südost-Teil" wichen vom Chemismus her nur unwesentlich voneinander ab. Die sommerlichen Sauerstoffprofile zeigten eine extreme Spanne zwischen oberflächlichen Sauerstoffübersättigungen, die bei maximal 157 % im Juni (tiefe Stelle) bzw. 142 % im April (Südost-Teil) lagen und annähernd anaeroben Zuständen ab ca. 6 - 7 m Tiefe, bzw. schon ab 3 m Tiefe im Südost-Teil.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9,1</td>
<td>661</td>
<td>74,6</td>
<td>0,7</td>
<td>2,4</td>
<td>167</td>
<td>73,0</td>
</tr>
</tbody>
</table>

Die oberflächennahen Gesamtphosphorkonzentrationen zeigten im Bereich der tiefen Stelle ausgehend von 73 µg/l bis Oktober eine Zunahme auf 150 µg/l, im Tiefenbereich stiegen sie im Juni auf maximal ca. 220 µg/l (Probestelle Burgwall). Die Konzentrationen an Gesamtstickstoff schwankten in 1 m Tiefe insgesamt zwischen 1,0 - 3,0 mg/l, dabei nahmen die Nitrat-N-Konzentrationen ausgehend von 1,6 mg/l bis Oktober auf minimal 0,24 mg/l ab, die Ammonium-N-Konzentrationen lagen zwischen 0,03 mg/l und 0,21 mg/l, im Tiefenbereich erreichten diese maximal ca. 1,4 mg/l (Juni, Südostteil). Maximale Chlorophyll a-Konzentrationen wurden mit ca. 142 µg/l zum Zeitpunkt der Frühjahrsalgenblüte (April) an der tiefen Stelle und im Burgwall ermittelt, im Südost-Teil dagegen im August und Oktober (92 - 96 µg/l). Die relativ hohen Calciumkonzentrationen zeigten im gesamten See Schwankungen zwischen 55 mg/l und 83,2 mg/l. Die Trophieparameter des Jahres 1997 kennzeichnen den polymiktischen Flachsee nach LAWA-Bewertungsansatz (LAWA 1998) noch als polytroph (p1). Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den See nach (LAWA 1998) als natürlicherweise schwach eutroph (e1) aus.

1.68.4 Flora und Fauna

Im Untersuchungsjahr 1997 (April – Oktober) dominierten zunächst Diatomeen mit Biomasseanteilen zwischen 67,1 % und 77,6 % an allen Probenahmestellen, im Südost-Teil waren außerdem Cryptophyceen (20,5 %) und an der Stelle Burgwall Cyanobakterien (15,9 %) dominant. Im Südost-Teil war die Diatomeenblüte bei einer Gesamtbiomasse (FM) von 15,1 mg/l geringer ausgebildet als an den anderen Probenahmestellen, wo das Phytoplankton eine Biomasse von maximal 26,6 mg/l (Bereich der tiefen Stelle) bildete. Im Juni waren in allen Seebereichen Chlorophyceen größtenteils Biomassebildner, begleitet von Cryptophyceen. In weiteren Jahresverlauf herrschten Cyanobakterien an allen Probenahmestellen vor und bildeten Biomasse-Anteile zwischen 87 % und 100 % aus, lediglich an der Probestelle Burgwall konnten sich im August neben Cyanobakterien (76,3 %) auch noch Cryptophyceen (18,0 %) durchsetzen. Höchste Biomassekonzentrationen wurden zu dieser Zeit mit 23,9 mg/l im Südost-Teil (Oktober) ermittelt. Innerhalb der Diatomeen überwogen centrische Formen und Asterionella formosa, innerhalb der Chlorophyceen hingegen Coelastrum microporum und Scenedesmus armatus, während die Cryptophyceen durch Rhodomonas minuta vertreten waren. Innerhalb der Cyanobakterien war im Frühjahr die Art Limnothrix redekei am stärksten vertreten, im Hochsommer außerdem Planktothrix agardhii und Anabaena spiroids sowie A. solitaria, während sich dann im Oktober Planktothrix agardhii gegenüber den anderen Arten durchsetzte (Angaben zum Artenvorkommen nach M. Schönfelder 1997, Seenprojekt Mecklenburg-Vorpommern). Im Zooplankton waren an fast allen Probenahmestellen zu allen 4 Terminen Copepoden dominierend. Ihren maximalen Biomasse-Anteil von 88,5 % erlangten sie im April an der tiefen Stelle. In diesem Seebereich wie auch an der Stelle Burgwall waren zu den anderen Zeitpunkten (Juni - Oktober) Cladoceren codominant. Der Südost-Teil zeigte im Jahr 1997 eine abweichende Zooplanktonstruktur. Im April dominierten hier mit 84,5 FM-% Rotatorien, im Juni und Oktober waren es ausschließlich Copepoden und im August verteilten sich die FM-Anteile zu 56,7 % auf Copepoden, zu 26,5 % auf Rotatorien und zu 17,1 % auf Cladoceren. In diesem...
Seebereich wurde ebenfalls im August auch ein Peak der Zooplankton-Biomasse von 13,3 mg/l registriert.
Angaben zur Fischfauna lagen nicht vor.

1.68.5 Nutzung, anthropogener Einfluss
1.69 Tiefer See

1.69.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Tiefe See befindet sich bei Alt-Gaarz und befindet sich als Teil der Loppiner Seenkette zwischen den Flachen See im Norden und dem Bergsee im Süden. Das Einzugsgebiet weist eine Größe von 17,0 km² auf. Mittlere Abflusswerte liegen nicht vor.

Abb. 110: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.69.2 Topographie und Morphometrie

Das Gewässer erstreckt sich in seiner Längsausdehnung von Norden nach Süden.

Tab. 184: Topographie und Morphometrie des Tiefen Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,0</td>
<td>0,76</td>
<td>62,5</td>
<td>18,5</td>
<td>1550</td>
<td>805</td>
<td>3,0</td>
<td>10,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.69.3 Chemische und trophische Charakteristik des Sees

Es handelt sich um einen überaus tiefen, thermisch stabil geschichteten See. Im Untersuchungszeitraum April – November 1996 (STÄUN Schwerin) war das Metalimnion in einer Tiefe zwischen 6 m und 10 m klar abgegrenzt. Im Hypolimnion herrschten ab ca. 20 m Tiefe auch noch Mitte November quasi anaerobe Verhältnisse. Der Bereich ab 40 m Tiefe war zu allen Probenahmeterminen sauerstofffrei, was auf meromiktische Verhältnisse hindeutet. Oberflächennah schwankten die Gesamtphosphorkonzentrationen zwischen 69 – 158 µg/l, die SRP-Konzentrationen zwischen 15 – 30 µg/l. Über Grund waren die Werte im April mit 396 µg TP/l und 344 µg o-PO₄-P/l am höchsten. Die epilimnischen Gesamtstickstoffkonzentrationen lagen im Bereich zwischen 1,0 mg/l und 1,7 mg/l, dabei nahmen die Nitrat-N-Konzentrationen ausgehend von 0,6 mg/l während der Vegetationsperiode auf 0,01 mg/l ab, die Ammonium-N-Konzentrationen erreichten hier maximal 0,2 mg/l. In der Tiefe waren diese im April und September mit 1,2 mg/l maximal, im Juli und November fielen sie mit 0,8 mg/l geringer aus. Für die relativ hohen Calciumkonzentrationen ergab sich eine Schwankungsbreite von 67,2 – 91,5 mg/l. Die Chlorophyll-Konzentrationen lagen mit maximal 9,7 µg/l im April im sehr moderaten Bereich. Die Trophieparameter des Jahres 1996 kennzeichnen den See nach LAWA-Bewertungsansatz (LAWA 1998) als mesotroph. Hinsichtlich des morphometrischen Referenztrophiegrades ergibt sich für den See Oligotrophie (o) (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,7</td>
<td>594</td>
<td>2,1</td>
<td>3,9</td>
<td>1,3</td>
<td>77,5</td>
<td>147</td>
</tr>
</tbody>
</table>

1.69.4 Flora und Fauna

Das Phytoplankton zeigte im Untersuchungsjahr 1996 wechselnde Dominanzen zwischen den einzelnen Klassen und bildete im April und September höchste Biomassen von 7,0 mg FM/l bzw. 6,1 mg FM/l aus. Während im April und September Dinophyceen des Gattung Gymnodinium und Peridinium und Chlorophyceen mit der Gattung Eudorina Hauptbiomassebildner waren, herrschten im Juli Cryptophyceen (Cryptomonas) vor und im November centrische Diatomeen in Begleitung von Asterionella formosa. Zu diesem Zeitpunkt war die Biomassekonzentration mit 0,2 mg/l minimal.

Das Zooplankton setzte sich vorwiegend aus Copepoden zusammen, deren FM-Anteil ab September 1996 zwischen 84 % und 87 % betrug. Im April waren Rotatorien und im Juli Cladoceren codominant. Innerhalb der Copepoden war das Verhältnis zwischen calanoiden und cyclopoiden Formen (vor allem Adulte) im Juli ungefähr ausgeglichen, im Anschluss überwogen dann jedoch calanoide Adulte und Copepodite. Die Cladoceren waren durch Daphnia cucullata vertreten, die Rotatorien vorwiegend durch die Arten Asplanchna priodonta, Synchaeta pectinata und Filinia terminalis. Ein Biomassepeak von 14,4 mg/l im Juli unter stärkerer Beteiligung
der Cladoceren scheint zu einem Klarwasserstadium geführt zu haben. Im April und November waren die Zooplankton-Biomassen mit 0,3 mg/l und 0,8 mg/l sehr gering.

Im Gewässer wurden bei Fischerbefragungen 16 Fischarten ermittelt. Dabei kamen 11 Fischarten häufig und 5 eher selten vor (siehe Tab. 186).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
<th>Artnamen</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca</td>
<td>tinca</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
<td>brama</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
<td>lucius</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
<td>gobio</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
<td>erythrophthalmus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
<td>lota</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
<td>cemua</td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
<td>albula L.</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
<td>fluviatilis</td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus</td>
<td>carpio</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
<td>anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
<td>bjoerkna</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Albumus</td>
<td>albumus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
<td>rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Ostseeschnäpel</td>
<td>Coregonus</td>
<td>lavaretus balt.</td>
</tr>
<tr>
<td>h</td>
<td>Dreistachliger</td>
<td>Stichling</td>
<td>Gasterosteus</td>
</tr>
</tbody>
</table>

1.69.5 Nutzung, anthropogener Einfluss

Zur Nutzung des Gewässers liegen keine Angaben vor.
1.70 Tiefer Trebbower See

1.70.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 111: Tiefer Trebbower See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.70.2 Topographie und Morphometrie

Der See ist von rundlicher Gestalt und äußerst flach.

<table>
<thead>
<tr>
<th></th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_{E} [-]</th>
<th>F [-]</th>
<th>z_{spi} [m]</th>
<th>t_{R} [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,51</td>
<td>0,41</td>
<td>2,0</td>
<td>1,3</td>
<td>1033</td>
<td>760</td>
<td>1,4</td>
<td>0,4</td>
<td>0,5</td>
<td>0,4</td>
</tr>
</tbody>
</table>
1.70.3 Chemische und trophische Charakteristik des Sees

Infolge der geringen Tiefe von maximal 2 m und der windexponierten Lage ist das Gewässer ständig bis zum Grund durchmischt, so dass 1995 weder Temperatur- noch Sauerstoffschichtungen zu verzeichnen waren. Im Spätsommer wurde ein Rückgang des Wasserstandes um 0,5 m registriert, wobei Teile des Uferbereiches trocken fielen, die später aber wieder überflutet wurden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,8</td>
<td>621</td>
<td>104,8</td>
<td>0,3</td>
<td>2,1</td>
<td>104</td>
<td>36,0</td>
</tr>
</tbody>
</table>

Abb. 112: Zeitliche Entwicklung der Trophieparameter vom Tiefer Trebbower See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Die Sichttiefen im Großen Trebbower See waren mit Werten zwischen 0,1 m und 0,5 m sehr gering. Es wurden ganzjährig sehr hohe Stickstoff- und Phosphorkonzentrationen sowie Chlorophyllkonzentrationen bis 168 µg/l nachgewiesen. Hohe Werte der Phytoplanktonbiomassen zeigten eine intensive Algenproduktion an. Nach

1.70.4 Flora und Fauna

Ein breiter Schilfgürtel und ein Erlensaum umgeben das Gewässer, in den Uferbereichen wurde starker Brennnesselbewuchs registriert. Aufgrund der direkt angrenzenden Feuchtwiesen ist der See nur schwer zugänglich.

Im Frühjahr 1995 bestimmten Diatomeen (vor allem *Synedra acus*) und Dinoflagellaten (*Peridinium* spp.) die Phytoplanktongesellschaft, während fädige Cyanobakterien mit lediglich 7 % Biomasseanteil auftraten. Vom Frühsommer bis in den Herbst waren fädige Cyanobakterien der Gattungen *Aphanizomenon* und *Planktothrix* dann allerdings mit 76 % bis 91 % die dominierende Klasse. Im Vergleich hierzu waren Cyanobakterien im Untersuchungszeitraum März – November 1999 nur im August vorherrschend. Insbesondere die fädige Art *Planktothrix agardhii* bestimmte in Begleitung von *Anabaena flos-aquae* und *Aphanizomenon gracile* den Hochsommeraspekt, zusammen führten sie zu einem enormen Biomasseanstieg auf 63,7 mg/l bei 97 % FM-Anteil. Im Frühjahr dominierten wiederum Diatomeen mit *Fragilaria ulna* var. *acus*, im Juni kamen Crypto- und Chlorophyceen (vorwiegend *Scenedesmus* spp.) dazu und im November waren Cryptophyceen der Gattung *Cryptomonas* die Hauptbiomassebildner. Im Juni wurden die geringsten Biomassekonzentrationen mit 7,9 mg/l ermittelt.

Angaben zur Fischfauna lagen nicht vor.

1.70.5 Nutzung, anthropogener Einfluss

Zur Nutzung des Gewässers liegen keine Angaben vor.
1.71 Tiefwarensee
1.71.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 113: Tiefwarensee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
1.71.2 Topographie und Morphometrie

Der relativ schmale Rinnensee orientiert sich in in Nord-Süd-Richtung. Die tiefste Stelle befindet sich Zentrum.

Tab. 189: Topographie und Morphometrie des Tiefwarensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,58</td>
<td>1,41</td>
<td>23,6</td>
<td>9,63</td>
<td>2700</td>
<td>680</td>
<td>2,0</td>
<td>3,5</td>
<td>6,7</td>
<td></td>
</tr>
</tbody>
</table>

1.71.3 Chemische und trophische Charakteristik des Sees

Der Tiefwarensee ist ein dimiktischer Klarwassersee. Im Tiefwarensee kam es 1998 und 1999 kurz nach dem Beginn der Sommerstagnation (Juni) in einer Wassertiefe von 20 m zur vollständigen Aufzehrung von Sauerstoff und Nitrat-Stickstoff. Zum Maximum der Hypolimnionausbreitung (meist Ende August) wird der gesamte Wasserkörper unterhalb von 6 m anoxisch, d.h. auch weite Teile des Metalimnions sind vom Sauerstoffmangel betroffen. Im Frühsommer 1998 wurde im Hypolimnion (8 - 24 m Tiefe) eine Sauerstoff-Zehrung von 0,82 g/(m² d) gemessen. Während es mit zunehmender Dauer der Sommerstagnation im Epilimnion bisher zu einer leichten Phosphor-Verarmung kam, erfolgte im Hypolimnion eine intensive Phosphor-Akkumulation, die dazu führte, dass sich am Ende der Schichtungsperiode ca. 80 % des gesamten P-Inhaltes des Sees im Hypolimnion befanden. Die Phosphor-Akkumulation im Hypolimnion betrug im Jahr 1998 8,4 mg/(m² d) und resultiert sowohl aus der Phosphor-Freisetzung während der Sedimentation als auch aus den Sedimenten. Anhand von Konzentrationsgradienten an der Sediment-Wasser Grenzschicht wurde eine mittlere SRP-Diffusionsrate aus dem Sediment von 4,4 ± 3,1 mg/(m² d) kalkuliert, wobei in den Sommermonaten Maxima von 8,8 mg/(m² d) ermittelt wurden. Die interne Phosphorbelastung wird mit 1434 kg/a angegeben (unter der Voraussetzung, dass die ermittelte P-Diffusionsrate für eine Wassertiefe unterhalb 8 m gilt), entsprechend einer Flächenbelastung von ca. 1 g PO₄³⁻·P/(m² a) und ist damit annähernd doppelt so hoch wie die externe Belastung. Für den Tiefwarensee empfehlen sich Renaturierungsmaßnahmen, die an den Nährstoffpools der Sedimente vorzugsweise im Hypolimnion am Ende der Sommerstagnation ansetzen, wobei die Auswahl von geeigneten Fällmitteln für die redoxunabhängige Festlegung des Phosphors im Sediment und einen nachhaltigen Restaurierungserfolg entscheidend ist. Durch die gezielte Überdosierung eines Fällmittels (Sedimentdeckschicht mit hoher P-Bindungskapazität) könnten die noch mobilisierbaren Nährstoffe dauerhaft festgelegt werden. Vor dem Beginn der Restaurierung muss jedoch die externe P-Belastung so weit reduziert sein, dass der See das Restaurierungsziel erreichen und bewahren kann (Gonsiorczyk et al. 2000).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,7</td>
<td>502</td>
<td>19,0</td>
<td>1,9</td>
<td>1,1</td>
<td>78,7</td>
<td>168</td>
</tr>
</tbody>
</table>

1.71.4 Flora und Fauna

Im Frühjahr 1996 (LUNG 1999) setzte sich das Phytoplankton vorwiegend aus autotrophen Flagellaten unterschiedlicher taxonomischer Zugehörigkeit zusammen. Hauptgattungen waren jedoch *Eudorina* und *Chlamydomonas* (Chlorophyceen). Kleine centrische Diatomeen wurden erst im Mai zusammen mit *Cryptomonas* sp. nachgewiesen. Im Juli waren vor allem centrische Diatomeen an der Biomasse beteiligt, daneben entfielen ähnliche Anteile auf *Eudorina* spp. sowie die Cyanobakterien *Anabaena* sp. und unbestimmte Chroococcales. Der Anstieg der Phytoplanktonbiomassen im Spätsommer bis auf Maximalwerte von 20 mg/l (Südteil) bzw. 46 mg/l (Nordteil) war vor allem auf eine Massenentwicklung von
Dinoflagellaten der Art *Ceratium hirundinella* zurückzuführen, deren Biomasseanteil bei 54 % (Seemitte) lag. Die Cyanobakteriengattung *Planktothrix* war zu dieser Zeit ebenfalls in stärkerem Maße an der Biomasse beteiligt. Im November sanken die Werte unter 1 mg/l, neben centrischen Diatomeen war auch *Aphanizomenon flos-aquae* vertreten (Angaben zum Artenvorkommen nach Korth 1996, Uni Rostock).

Das Zooplankton war artenreich. Während im Frühjahr (Mai) neben den Copepoden auch Rotatorien mit den Gattungen *Asplanchna und Polyarthra* hohe Biomasseanteile besaßen, traten diese im weiteren Jahresverlauf zurück. Bei fortdauernder Dominanz von Copepoden aller Entwicklungsstadien gewannen nun Cladoceren an Bedeutung.

Im Juli wurden pelagische Larven der Dreikant- oder Wandermuschel (*Dreissena polymorpha*) nachgewiesen.

Im See wurden bei Fischerbefragungen 17 Fischarten ermittelt. Dabei kamen 10 Fischarten häufig und 7 eher selten vor (siehe Tab. 191).

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artnname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichys</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>s</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
</tbody>
</table>

h = häufig, s = selten

290
1.71.5 Nutzung, anthropogener Einfluss

Bis Mitte der 1980er Jahre wurde das Gewässer durch kommunale und landwirtschaftliche Abwässer stark überlastet. Die Flächenbelastung mit ortho- Phosphat erreichte dabei bis zu 6,4 g/(m² a) (Gonsiorczyk et al. 2000). Restaurierungsmaßnahmen, die auch insbesondere auf eine Verminderung der internen Phosphor-Freisetzung zielen, sind in Planung (s.1.71.3).
1.72 Tollensesee

1.72.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Tollensesee liegt am Nordrand der Mecklenburgischen Seenplatte, unmittelbar südwestlich der Stadt Neubrandenburg. Das gesamte Tiefland Mecklenburg-Vorpommerns wurde vor allem von der Weichsel-Kaltzeit geprägt. Der Tollensesee ist durch tiefe und breite Ausschürfungen einer Gletscherzunge am Rande des Inlandeises vor etwa 15000 Jahren entstanden. Die Moränenwälle umranden den ganzen Südteil des Zungenbeckens in U-förmigen Bögen (Loben), deren Seitenflanken den Tollensesee am Ost- und Westufer begleiten. Von den Grundmoränenplatten beiderseits des Tollensesees kommen auch die Zuflüsse, die sich in Tälern eingeschnitten haben und in die weitere Seen eingebunden sind. Das Einzugsgebiet umfasst insgesamt 515 km² und wird vorwiegend landwirtschaftlich genutzt. Davon sind 56,4 % Ackerfläche, 5,6 % Grünland und 22,8 % Wald. Zu dem Einzugsgebiet gehören weiterhin Teilgebiete der Stadt und des Landkreises Neubrandenburg sowie die Kreise Neustrelitz, Strasburg und Waren. Der Zufluss erfolgt vorwiegend oberirdisch. Die wichtigsten Zuflüsse aus dem Einzugsgebiet sind der Gaetenbach (0,55 m³/s), der Lindebach (0,20 m³/s), der Nonnenbach (0,57 m³/s), der Krickower Bach (0,10 m³/s), der Wustrower Bach (0,10 m³/s) und der Liepskanal (0,49 m³/s), in deren Einzugsgebiet wiederum beachtliche Rückhalteflächen von Seen liegen. Der Abfluss erfolgt über den Oberbach und den Ölmühlenbach nach Norden. Er beträgt bei mittlerer Wasserführung 2,6 m³/s und bei Niedrigwasser 0,27 m³/s (Anwand et al. 1994).

Abb. 115: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)
1.72.2 Topographie und Morphometrie

Das Seebecken zeigt dort Verengungen, wo die eiszeitlichen Moränenzüge (Zwischenstaffeln) das Seebecken queren. So ist die Godensweger Staffel Ursache der Landbrücke im Bereich des Nonnenhofes (Anwand et al. 1994).

Tab. 192: Topographie und Morphometrie des Tollenseseees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_max</th>
<th>z_mean</th>
<th>L_eff</th>
<th>B_eff</th>
<th>U_E</th>
<th>F</th>
<th>z_epi</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td></td>
<td></td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>315,89</td>
<td>17,9</td>
<td>31,2</td>
<td>17,6</td>
<td>10260</td>
<td>2394</td>
<td>1,8</td>
<td>3,2</td>
<td>9,7</td>
<td></td>
</tr>
</tbody>
</table>

1.72.3 Chemische und trophische Charakteristik des Sees

Der Tollensesee ist ein dimiktisches Gewässer. 47 % des gesamten Volumens entfallen auf das Epilimnion, 53 % auf das Hypolimnion. Das Metalimnion liegt zu Beginn der Schichtungsphase in einer Tiefe von 10 m und wandert im Verlaufe der Sommer- und Herbstmonate bis in Tiefen von 14 - 20 m. Ab Mitte Oktober tritt in der Regel die Herbstvollzirkulation ein (Anwand et al. 1994).

<table>
<thead>
<tr>
<th>pH-Wert</th>
<th>Leitf.</th>
<th>Chl a</th>
<th>ST</th>
<th>TN</th>
<th>TP</th>
<th>TP_Früh</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-]</td>
<td>[µS/cm]</td>
<td>[µg/l]</td>
<td>[m]</td>
<td>[µg/l]</td>
<td>[µg/l]</td>
<td>[µg/l]</td>
</tr>
<tr>
<td>8,7</td>
<td>480</td>
<td>6,0</td>
<td>5,6</td>
<td>0,66</td>
<td>19,0</td>
<td>37,7</td>
</tr>
</tbody>
</table>
TP-Konzentration ca. 85 µg/l und das der SRP-Konzentration ca. 60 µg/l. Diese entsprachen damit dem Niveau von 1999 und 2000 und fielen erneut wesentlich geringer als in den Vorjahren aus. Maximale Konzentrationen wurden in 25 m Tiefe mit 240 µg TP/l und 200 µg SRP/l am Ende der Sommerstagnation gemessen. Die Gesamtstickstoffkonzentration varierte 2001 im euphotischen Bereich zwischen 0,5 mg/l und 1,4 mg/l. Die maximale NO₃-N-Konzentration lag hier bei 0,6 mg/l (Januar bis März) und nahm bis September auf < 0,01 mg/l ab. Im aphotischen Bereich (25 m Tiefe) lag die NO₃-N-Konzentration noch im August bei 0,5 mg/l. Erst im September fielen die Werte in 25 m Tiefe unter 0,1 mg/l. Die NH₄-N-Konzentration stiegen dagegen im Oktober auf etwas höhere Konzentrationen von ca. 0,3 mg/l. Im Jahresgang der Chlorophyll a-Konzentration zeigte sich Ende April ein Frühjahrsmaximum von ca. 20 µg/l. Ein ausgeprägtes Klarwasserstadium konnte nicht beobachtet werden, jedoch fielen die Chlorophyll a-Konzentrationen ab Mai auf Werte < 7 µg/l und blieben während des gesamten Sommers etwa auf diesem Niveau. Die im April und Mai 2001 gemessenen Sichttiefen lagen zwischen 8,5 m und 3,3 m, im Jahresmittel bei 5,1 m und im Sommermittel bei 4,2 m. Im Jahr 2001 traten relativ bescheidene Calcitfällungen auf (Maxima im Mai und Juli zwischen 0,2 mg/l und 0,25 mg/l. Das Sommermittel der CaCO₃-Konzentration betrug 0,15 mg/l und lag deutlich unter dem langfristigen Mittel von 0,3 mg/l (Koschel et al. 2001c).

Die Trophieparameter der Jahre 1997 – 2000 weisen den Tollensesee nach LAWA-Bewertungsansatz als mesotrophes Gewässer aus, was dessen Referenzzustand entspricht.

1.72.4 Flora und Fauna

Im Zooplankton des Tollensesee wurden 20 Rotatorienarten und 17 Arten von Kleinkrebsen nachgewiesen. Bei den Rotatorien dominierten *Polyarthra dolichoptera*, *Keratella quadrata*, *Pompholyx sulcata* und *Asplanchna priodonta*, bei den Kleinkrebsen *Daphnia galeata* und *Eudiaptomus gracilis* sowie *Thermocyclops oithonoides*. Die Rotatorien waren bereits im zeitigen Frühjahr in großer Zahl vorhanden und zeigten nochmals im Herbst eine starke Vermehrung mit Biomassekonzentrationen von 0,42 mg TML. *Daphnia galeata* und *Eudiaptomus gracilis*
erreichten nur kurzzeitige maximale Biomassekonzentrationen von 0,6 mg FG/l zwischen Mai und Juni, im Jahresdurchschnitt lag die Biomassekonzentration bei nur 0,3 mg FM/l. Als Begründung für die geringe Biomasse der planktischen Krebse wird ein großer Fraßdruck durch Kleinfische angenommen (Anwand et al. 1994).

Von fischereiökologischer und fischereilicher Bedeutung für den Tollensesee war schon immer die Kleine Maräne (Coregonus albula), deren Bestandsdichte größeren Schwankungen unterlag. Für das Jahr 1993 ergab sich ein Fangereignis von 6,5 t. Die jährlichen Aalereignisse sind seit Mitte der 1980er Jahre trotz Besatzmaßnahmen infolge der zunehmenden Anzahl von Kormoranen und Parasitenbefall von 8,4 t auf 1,3 t zurückgegangen. Unter den karpfenartigen Fischen dominierten mengenmäßig die Plötze (Rutilus rutilus) und der Blei (Abramis brama). Ferner wurden innerhalb dieser Familie Schleie (Tinca tinca), Rotfeder (Scardinius erythrophthalmus), Güster (Blicca bjoerkna), Ukelei (Alburnus alburnus), Gründling (Gobio gobio) und Moderlieschen (Leucaspius delineatus) im See nachgewiesen. Aus der Gruppe der barschartigen Fische kommen Flussbarsch (Perca fluviatilis) und Kaulbarsch (Gymnocephalus cernua) vor. Weitere Fischarten im See sind Hecht (Esox lucius), Stint (Osmerus eperlanus), Große Maräne (Coregonus lavaretus) sowie Kleinfischarten (Anwand et al. 1994). Bedeutendste Nutzfische des Jahres 2001 waren Barsch, Hecht und die Kleine Maräne, wobei die Erträge an Barsch, Großer Maräne und Hecht im Vergleich zu 1999 deutlich zugenommen, die der kleinen Maräne dagegen im Vergleich zu 1995 - 1999 drastisch abgenommen haben.

1.72.5 Nutzung, anthropogener Einfluss

Der Tollensesee dient als Badesee und wird von Berufsfischern und Anglern genutzt. Er ist zugleich ein Wassersportgebiet und hat für die Wasserwirtschaft der Region erhebliche Bedeutung.

1.73 Treptowsee

1.73.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Treptowsee befindet sich ca. 13 km südöstlich von Parchim. Das kleine Einzugsgebiet weist eine Größe von nur 2,6 km² auf. Ein mittlerer Abflusswert liegt nicht vor.

1.73.2 Topographie und Morphometrie

Der See ist annähernd kreisförmig und weist im südlichen Bereich die tiefste Stelle auf.

Tab. 194: Topographie und Morphometrie des Treptowsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>z_max</th>
<th>z_mean</th>
<th>L_eff</th>
<th>B_eff</th>
<th>U_E</th>
<th>F</th>
<th>z_e</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[-]</td>
<td>[-]</td>
<td>[m]</td>
<td>[a]</td>
</tr>
<tr>
<td>1,17</td>
<td>0,60</td>
<td>5,2</td>
<td>2,0</td>
<td>945</td>
<td>894</td>
<td>1,1</td>
<td>0,9</td>
<td>5,7</td>
<td></td>
</tr>
</tbody>
</table>

1.73.3 Chemische und trophische Charakteristik des Sees

Der relativ flache Treptowsee gilt als polymiktisch. Daten von 4 Beprobungsterminen (STAUN Schwerin) zwischen April und Oktober 1997 (1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 7,8 und 9,0 und der Leitfähigkeit zwischen
400 µS/cm und 418 µS/cm. An der Oberfläche traten nur zeitweilig und dann auch nur geringe Sauerstoffübersättigungen auf, dem relativ geringen Vorkommen an planktischen Primärproduzenten entsprechend. So fielen auch die Chlorophyll-a-Konzentrationen sehr moderat aus, lediglich im Oktober ergab sich ein leichter Anstieg auf maximal 19,5 µg/l. Die Gesamtphosphorkonzentrationen zeigten ausgehend von 27 µg/l im April bis Oktober eine Zunahme auf 50 µg/l, die oberflächennahen SRP-Konzentrationen waren dagegen mit meist unter 5 µg/l minimal. Die Konzentrationen an Gesamtstickstoff nahmen von 1,7 mg/l im April auf 0,8 mg/l im Oktober ab, die Nitrat-N-Konzentrationen waren dabei im August mit 0,4 mg/l maximal und lagen sonst unter 0,2 mg/l, die Ammonium-N-Konzentrationen schwankten zwischen 0,03 mg/l und 0,06 mg/l. Für die Calciumkonzentrationen ergab sich ein Schwankungsbereich von 53 mg/l - 72 mg/l. Die Trophie-Klassifikation des Jahres 1997 ergibt nach LAWA-Bewertungsansatz (LAWA 1998) einen schwach eutrophen (e1) Zustand des polymiktischen Flachsees. Aus der Morphometrie ist für den See als potentiell natürlicher Trophiezustand hohe Eutrophie (e2) abzuleiten (LAWA 1998).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,5</td>
<td>302</td>
<td>10,8</td>
<td>1,8</td>
<td>1,6</td>
<td>25,0</td>
<td>25,0</td>
</tr>
</tbody>
</table>

1.73.4 Flora und Fauna

Das Phytoplankton war im Untersuchungszeitraum April – Oktober 1997 sehr heterogen zusammengesetzt und entwickelte eine relativ geringe Biomasse, die bis Oktober auf maximal 4,2 mg/l anstieg. Im April waren mit absteigender Gewichtung Crypto-, Chryso-, Chloro- sowie Diatomeen bestandsbildend, im Juni dann Diatomeen, Chlorophyceen und Dinoflagellaten. Cyanobakterien dominierten im Hochsommer mit 66 % FM-Anteil, im Herbst waren hingegen Cryptophyceen die bedeutendsten Phytoplanktonvertreter.

Das Zooplankton setzte sich im April 1997 vorwiegend aus Copepoden zusammen. Im Juni und August traten Cladoceren in stärkerem Maße hinzu und im Oktober waren neben den Copepoden und Cladoceren auch Rotatorien mit ähnlichen Anteilen an der Biomasseproduktion beteiligt.

Bezüglich des Artenvorkommens innerhalb des Makrozoobenthos nimmt der See im regionalen Vergleich eine mittlere Stellung ein. Dabei bildeten insbesondere die nicht näher determinierten Chironomidenlarven und die Gastropodenart *Potamopyrgus antipodarum* sehr hohe Individuendichten aus.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax. Oberbegriff</th>
<th>Ordnung</th>
<th>Fam./Gatt./Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6.2001</td>
<td>Schlick, schlick, Feinsand-</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Pisidium casertanum</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Grobsand teilw. H₂S-Geruch</td>
<td></td>
<td>Gastropoda</td>
<td>Potamopyrgus antipodarum</td>
<td>1319</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Valvata piscinalis</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crustacea</td>
<td>Isopoda</td>
<td>Asellus aquaticus</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td>1304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chironomidae-Puppen</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ceratopogonidae</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ephemeroptera</td>
<td>Caenis horaria</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caenis luctuosa</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Anzahl Art/Taxa</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Summe Ind./m²</td>
<td></td>
<td></td>
<td></td>
<td>3202</td>
</tr>
</tbody>
</table>

Angaben zur Fischfauna lagen nicht vor.

1.73.5 Nutzung, anthropogener Einfluss
Der Treptowsee gilt als hervorragender Badesee, gelegen in reizvoller Landschaft.
1.74 Tressower See

1.74.1 Genese, Lage, Einzugsgebiet und Hydrologie

Das Einzugsgebiet weist eine relativ geringe Größe von 13,1 km² auf. Als mittlerer Abfluss ergibt sich langjährig 0,07 m³/s.

1.74.2 Topographie und Morphometrie

Der See hat eine längliche Gestalt. Die maximale Tiefe ist relativ zentral gelegen. Aufgrund der überwiegend steil abfallenden Ufer, ist nur ein schmaler Röhrichtsaum ausgebildet.

Tab. 197: Topographie und Morphometrie des Tressower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>zₘₐₓ [m]</th>
<th>zₘₑₘₐₜ [m]</th>
<th>Lₑₚ [m]</th>
<th>Bₑₚ [m]</th>
<th>Uₑ [-]</th>
<th>F [-]</th>
<th>zₑₚ [m]</th>
<th>tₑ [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,95</td>
<td>0,64</td>
<td>20,0</td>
<td>7,7</td>
<td>1670</td>
<td>550</td>
<td>1,8</td>
<td>3,3</td>
<td>6,0</td>
<td>2,2</td>
</tr>
</tbody>
</table>

1.74.3 Chemische und trophische Charakteristik des Sees

Der Tressower See ist im Sommer thermisch stabil geschichtet. Bereits im Juni 1997 war der Tiefenbereich ab ca. 14 m anaerob, im August waren dann das gesamte Meta- und Hypolimnion durch Sauerstoffmangel bei O₂-Konzentrationen um 1 mg/l gekennzeichnet, was zeitgleich zu einer starken hypolimnischen Erhöhung der Ammonium-N- und Gesamtphosphor- (TP)-Konzentrationen führte. Die epilimnische Sauerstoffsättigung erreichte im August Maximalwerte von 119 %. Daten von 4 Beprobungsterminen (LUNG 1999) zwischen März und November 1997 (1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 7,9 und 8,7 und der Leitfähigkeit zwischen 475 µS/cm und 554 µS/cm.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,4</td>
<td>480</td>
<td>23,3</td>
<td>3,0</td>
<td>1,3</td>
<td>75,0</td>
<td>155</td>
</tr>
</tbody>
</table>

Die epilimnischen Gesamtphosphorkonzentrationen betrugen zwischen 90 µg/l und 190 µg/l, im Hypolimnion stiegen sie im August auf maximal ca. 590 µg/l an. Wie die TP-Konzentrationen waren auch die SRP-Konzentrationen mit maximal 159 µg/l im November oberflächennah sehr hoch. Die Konzentrationen an Gesamtstickstoff lagen in 1 m Tiefe zwischen 0,95 mg/l und 1,9 mg/l, dabei nahmen die Nitrat-N-Konzentrationen ausgehend von 1,04 mg/l im März während des Sommers auf < 0,01 mg/l ab, die Ammonium-N-Konzentrationen lagen hier zwischen < 0,01 mg/l und 0,6 mg/l, im Hypolimnion erreichten diese ebenfalls im August im Zuge der Sauerstoffzehrung maximal ca. 2,7 mg/l. Maximale Chlorophyll a-Konzentrationen wurden im März mit 13,6 µg/l ermittelt, diese waren insgesamt also sehr moderat. Die Calciumkonzentrationen lagen in einem relativ hohen Bereich von 64,9 - 79,3 mg/l. Die aktuelle Trophie-Klassifizierung des Jahres 2001 ergibt nach LAWA-Bewertungsansatz (LAWA 1998) ebenso wie die Untersuchungsergebnisse der Jahre 1997 und 2000 einen schwach eutrophen (e1) Zustand. Im Jahr 1991 wurde der See noch als polytroph und 1994 als hoch eutroph (e2) bewertet. Während sich nach 1997 eine deutliche Abnahme der mittleren TP-Konzentrationen abzeichnet,

Abb. 119: Zeitliche Entwicklung der Trophieparameter vom Tressower See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.74.4 Flora und Fauna

Die Phytoplanktonbiomasse (FM) erreichte zwischen März und November 1997 (4 Probenahmetermine) maximal 12,5 mg/l im August und lag zu den anderen Untersuchungsterminen unter 1 mg/l (minimal bei 0,2 mg/l im November). Im Jahresverlauf waren meist einzelne, jedoch unterschiedliche Phytoplanktonklassen dominant. So beherrschten Diatomeen im März mit einem Anteil von 97,4 % den Phytoplanktonaspekt, im August waren dies Dinophyceen mit 99,3 % FM-Anteil und im November Cryptophyceen mit 94,5 % FM-Anteil. Cyanobakterien spielten insgesamt eine untergeordnete Rolle und traten lediglich im Juni mit einem FM-Anteil von 35,7 % zusammen mit Diatomeen (18,6 %) und Chlorophyceen (28,6 %) codominant in Erscheinung.

Die Zooplankton-Biomasse (FM) zeigte im Jahresverlauf 1997 nur geringe Veränderungen und lag im Mittel bei 1,4 mg/l. Dominierend waren zu allen 4 Beprobungsterminen Copepoden und Cladoceren. Der Anteil der Copepoden an der Gesamtbiomasse war im Juni annähernd so hoch wie der der Cladoceren, im März und August mit 61,4 % bzw. 53,8 % ungefähr doppelt so hoch und stieg im November auf
73,8 %. Rotatorien waren mit maximal 7,0 % im November an der Zooplanktonfrischmasse beteiligt, d.h. deutlich unterrepräsentiert.

Das Fischvorkommen ist relativ artenarm. Es wurden nur 11 Fischarten ermittelt.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Kleine Maräne</td>
<td>Coregonus</td>
<td>albula L.</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca</td>
<td>tinca</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
<td>anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
<td>fluvialtilis</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
<td>lucius</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
<td>brama</td>
</tr>
<tr>
<td>s</td>
<td>Güster</td>
<td>Blicca</td>
<td>bjoerkna</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus</td>
<td>alburnus</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
<td>rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus cernua</td>
<td></td>
</tr>
</tbody>
</table>

1.74.5 Nutzung, anthropogener Einfluss

1.75 Upahler See

1.75.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Upahler See liegt in einem Naturschutzgebiet des Landschaftsschutzgebietes Dobbertiner Seenlandschaft und mittleres Mildenitztal. Er befindet sich im nördlichen Vorland des Warnowbogens der Inneren Endmoräne (Pommersche Staffel) zwischen den Orten Groß Upahl am östlichen Ufer und Klein Upahl auf dem gegenüberliegenden Ufer in kuppigem Gelände. Im südlichen Teil befindet sich eine in der Verlandung begriffene, relativ abgeschlossene Bucht, die von Flachmoortorf umgeben ist und in die ein Zulauf einmündet.

Abb. 120: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.75.2 Topographie und Morphometrie

Der See ist trotz seiner meist stark geneigten Ufer mit einer maximalen Tiefe von nur 4 - 5 m ein typischer Flachsee und gleichmäßig durchmischt.

Tab. 200: Topographie und Morphometrie des Upahler Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,30</td>
<td>1,07</td>
<td>4,5</td>
<td>2,2</td>
<td>1850</td>
<td>890</td>
<td>0,7</td>
<td>6,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.75.3 Chemische und trophische Charakteristik des Sees

Im Untersuchungsjahr 1995 (Gewässergütebericht 1995) war der Sauerstoffhaushalt des Sees relativ ausgeglichen. Die gemessenen Übersättigungen erreichten nur maximal 14 %. Trotzdem wurden auch in diesem Flachsee relativ stabile Sauerstoffschichtungen nachgewiesen, die auf stark zehrende Sedimente schließen ließen und zu Sauerstoffmangel über dem Sediment und zu entsprechender Phosphatfreisetzung führten. So nahm der Sauerstoff im August bei den höchsten Wassertemperaturen (23,6 °C) im Hauptsee zur Tiefe hin rapide ab. Die minimale Sichttiefe von 50 cm (Südbucht) bzw. 80 cm (Zentralteil) und die relativ hohen pH-Werte (bis 8,9) deuteten auf sehr produktive Verhältnisse hin. Allerdings fielen die Chlorophyll a-Konzentrationen mit 13,3 µg/l im August 1995 ebenso wie zu den anderen Terminen eher moderat aus. Zwischen März und September 1995 (4 Termine) schwankten die GesamtpHosphorkonzentrationen oberflächennah zwischen 40 µg/l und 270 µg/l, die SRP-Konzentrationen zwischen 10 µg/l und 40 µg/l mit maximalen Werten jeweils im August. Die Gesamtstickstoffkonzentrationen waren im März mit 1,8 mg/l am höchsten, die Nitrat-N-Konzentrationen lagen zu diesem Zeitpunkt bei 0,6 mg/l und nahmen dann im Verlauf der Vegetationsperiode auf unter 0,1 mg/l ab. Die Ammonium-N-konzentrationen überschritten die Konzentration von 0,1 mg/l in 1 m-Tiefe nicht.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,4</td>
<td>500</td>
<td>14,9</td>
<td>1,2</td>
<td>1,2</td>
<td>40,0</td>
<td>45,0</td>
</tr>
</tbody>
</table>

Abb. 121: Zeitliche Entwicklung der Trophieparameter vom Upahler See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.75.4 Flora und Fauna

<table>
<thead>
<tr>
<th>Datum</th>
<th>Substrat</th>
<th>tax.Oberbegriff</th>
<th>Ordnung</th>
<th>Fam./Gatt./Art</th>
<th>Ind./m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.6.2001</td>
<td>Schlick - Feinsand</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Sphaeriidae</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastropoda</td>
<td></td>
<td>Potamopyrgus antipodarum</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annelida</td>
<td>Oligochaeta</td>
<td>Naididae</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tubificidae</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insecta</td>
<td>Diptera</td>
<td>Chironomidae-Larven</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chironomidae-Puppen</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ephemeroptera</td>
<td>Caenis horaria</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caenis luctuosa</td>
<td>30</td>
</tr>
<tr>
<td>Anzahl Arten/Taxa</td>
<td>8</td>
<td>Summe Ind./m²</td>
<td></td>
<td></td>
<td>2251</td>
</tr>
</tbody>
</table>

Innerhalb des Makrozoobenthos wurden nur wenige Taxa bis auf Artniveau bestimmt, so dass nicht sicher ist, ob der See artenreicher ist als es nach den oben aufgeführten Ergebnissen scheint. In sehr hohen Individuendichten kamen Chironomidenlarven vor. Insbesondere bezüglich des Vorkommens an Mollusken kann der See als artenarm bezeichnet werden, wobei die nachgewiesenen Taxa hohe Individuenzahlen ausbildeten.

Angaben zur Fischfauna lagen nicht vor.

1.75.5 Nutzung, anthropogener Einfluss

1.76 Wanzkaer See

1.76.1 Genese, Lage, Einzugsgebiet und Hydrologie

![Diagramm des Wanzkaer Sees](image)

1.76.2 Topographie und Morphometrie

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,39</td>
<td>2,03</td>
<td>25,6</td>
<td>5,6</td>
<td>3075</td>
<td>875</td>
<td>3,5</td>
<td>3,6</td>
<td>7,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Tab. 203: Topographie und Morphometrie des Wanzkaer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)
Die beiden Belüftungsanlagen des Kleinen Seeteils waren 1995 in Betrieb, so dass auch in den tiefen Becken die gesamte Wassersäule durchmischt wurde und sich keine Temperaturschichtungen ausbildeten. Hinsichtlich der Sauerstoffkonzentrationen wurden jedoch im Frühsommer deutliche Unterschiede registriert, wobei es an der Oberfläche zu Übersättigungen bis auf > 230 % kam, während in der Tiefe Sauerstoffdezizite verzeichnet wurden. Im Spätsommer erreichten die Sauerstoffkonzentrationen wegen des durch die Destratifikation verursachten gleichmäßig hohen Stoffabbaus im gesamten Wasserkörper lediglich Werte von 30 - 60 %. Der sogenannte Faule Sack war aufgrund der geringen Tiefe ohnehin bis zum Grund durchmischt. Auch hier traten im Frühsommer hohe Sauerstoffübersättigungen auf. Die Nährstoffkonzentrationen waren im Kleinen Seeteil verhältnismäßig hoch, wodurch eine intensive planktische Primärproduktion ermöglicht wurde. So lagen die Sichttiefen im Sommer bei hohen Chlorophyllkonzentrationen und Phytoplanktonbiomassen nur bei Werten zwischen 0,7 m und 1,1 m.

Im Großen Seeteil des Wanzkaer Sees traten in den tiefen Bereichen thermische Schichtungen auf, die sich aufgrund der windexponierten Lage aber erst spät einstellten. In dem 10 m tiefen Becken am Ablauf zeigten sich im Frühsommer im Tiefenwasserbereich starke Sauerstoffdezizite, im Spätsommer war das gesamte Hypolimnion anaerob. Die etwas flachere Stelle vor Rollenhagen wies ebenfalls ein sauerstofffreies, wenn auch nur gering ausgebildetes Hypolimnion auf. An allen Probenahmepunkten konnte wegen der relativ hohen Gesamt-P-Konzentrationen bis 1700 µg/l im Tiefenwasser auf hohe Phosphorfreisetzungsraten aus dem Sediment geschlossen werden. Die Ammoniumkonzentrationen waren mit 9000 µg/l ebenfalls sehr hoch. Die Nährstoff- und Chlorophyllkonzentrationen sowie die Werte der Phytoplanktonbiomassen des Großen Seeteils waren im Vergleich zum Kleinen Teil geringer, dagegen lagen die Sichttiefen mit 0,4 - 1,0 m in der gleichen Größenordnung.

1.76.4 Flora und Fauna

Angaben zur Fischfauna lagen nicht vor.

1.76.5 Nutzung, anthropogener Einfluss

1.77 Wockersee

1.77.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Wockersee grenzt im Norden an die Stadt Parchim an. Das Einzugsgebiet weist eine Größe von 33,3 km² auf. Abflusswerte liegen nicht vor.

1.77.2 Topographie und Morphometrie

Der See ist von länglicher Gestalt. Die tiefste Stelle befindet sich im östlichen Zentralbereich.

Tab. 205: Topographie und Morphometrie des Wockersees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,26</td>
<td>0,60</td>
<td>6,4</td>
<td>3,8</td>
<td>1487</td>
<td>598</td>
<td>1,4</td>
<td>1,1</td>
<td>5,9</td>
<td>4,5</td>
</tr>
</tbody>
</table>
1.77.3 Chemische und trophische Charakteristik des Sees

Der Wockersee ist aufgrund seiner geringen Tiefe polymiktisch. Untersuchungs-
ergebnisse des Jahres 1997 (April – Oktober, STAUN Schwerin) zeigen eine hohe
Nährstoffbelastung und Produktivität des Sees an. So wurden im August
Chlorophyll a-Maxima von 48 µg/l, pH-Werte von 9,6 und Sauerstoffsättigungen von
151 % registriert.

Tab. 206: Vegetationsmittelwerte (April-Oktober) chemischer und
trophierelevanter Parameter des Jahres 2001, Oberfläche (Ausnahme
TPFrüh: Mittelwert der Monate März und April 2001) (Daten vom
Umweltministerium M-V, Abteilung Integrierter Umweltschutz und
Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,2</td>
<td>399</td>
<td>24,3</td>
<td>1,0</td>
<td>1,4</td>
<td>48,3</td>
<td>70,0</td>
</tr>
</tbody>
</table>

Abb. 125: Zeitliche Entwicklung der Trophieparameter vom Wockersee
(Vegetationsmittelwerte, April – Oktober) (Daten vom
Umweltministerium M-V, Abteilung Integrierter Umweltschutz und
Nachhaltige Entwicklung - Seenprojekt, 2002)

Die oberflächennahen Gesamtphosphor-Konzentrationen schwankten zwischen
33 µg/l und 120 µg/l, die SRP-Konzentrationen betrugen bis Juni < 5 µg/l, im August
stiegen sie auf maximal 41 µg/l an. Die Gesamtstickstoff-Konzentrationen lagen im
Bereich 1,5 – 3,4 mg/l, dabei waren die Nitrat-N-Konzentrationen im April mit 1,0 mg/l
maximal und sanken dann im August auf 0,3 mg/l, die Ammonium-N-Konzentrationen
betrugen minimal < 0,03 mg/l und maximal 0,6 mg/l. Für die Calcium-Konzentrationen ergab sich ein Schwankungsbereich von 56 – 75 mg/l, für die Leitfähigkeit von 406 – 441 µS/cm. Die Trophieparameter der Jahre 1997 und 2001 weisen den See nach LAWA-Bewertungsansatz (LAWA 1998) als hoch eutrophes (e2) Gewässer aus. Aus der Morphometrie ist für den See als potentiell natürlicher Trophiezustand schwache Eutrophie (e1) abzuleiten (LAWA 1998).

1.77.4 Flora und Fauna

Im Phytoplankton waren Diatomeen während des gesamten Untersuchungszeitraumes 1997 dominant. Im Juni und Oktober wurden diese von Cryptophyceen und Chlorophyceen begleitet, im April waren Chlorophyceen mit einem Biomasseanteil von 53 % sogar die stärkste Phytoplanktonklasse, im Hochsommer überwogen dagegen Cyanobakterien mit FM-Anteilen von 62 %. Die Biomasse erreichte maximale Konzentrationen von 10 mg/l im August, minimal lag sie bei 1,5 mg/l im Juni, die Sichttiefen zeigten jedoch mit geringen 0,7 m zu dieser Zeit kein Klarwasserstadium an.

Im Zooplankton dominierten Copepoden vor allem im April und im November mit Biomasseanteilen von 97 % bzw. 78 %. Im Juni und August waren Cladoceren mit etwa gleichen Anteilen an der Biomasse beteiligt. Diese nahm ausgehend von 4,1 mg/l im Frühjahr bis August auf 5,0 mg/l zu und dann im November auf minimal 1,2 mg/l ab.

Angaben zur Fischfauna lagen nicht vor.

1.77.5 Nutzung, anthropogener Einfluss

1.78 Woezer See

1.78.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 126: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.78.2 Topographie und Morphometrie

Der Woezer See erstreckt sich von Nordwesten nach Südosten. Die Ufer sind wenig strukturiert.

Tab. 207: Topographie und Morphometrie des Woezer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,61</td>
<td>0,57</td>
<td>1,6</td>
<td>1,1</td>
<td>1342</td>
<td>686</td>
<td>1,3</td>
<td>0,3</td>
<td>5,8</td>
<td>0,05</td>
</tr>
</tbody>
</table>

1.78.3 Chemische und trophische Charakteristik des Sees

Der Woezer See ist aufgrund seiner äußerst geringen Tiefe polymiktisch. Untersuchungsergebnisse des Jahres 1996 (Mai – Oktober, StAUN Schwerin) zeigen eine hohe Nährstoffbelastung und überaus hohe Produktivität des Sees an. So wurden im Mai und September Sauerstoffsättigungen von 146 % bzw. 166 % gemessen, die Chlorophyll a-Konzentrationen erreichten zu diesen Zeitpunkten
101 µg/l (Mai) bzw. 121 µg/l (September). Entsprechend gering fielen die Sichttiefen mit 0,3 – 0,6 m aus. Die pH-Werte schwankten im Bereich von 8,0 – 8,8 und die Leitfähigkeit zwischen 467 µS/cm und 547 µS/cm. Die Gesamtphosphor-Konzentrationen variierten zwischen 60 µg/l und 220 µg/l, die SRP-Konzentrationen zwischen 24 µg/l und 67 µg/l mit höchsten Werten im Juli und geringsten im Oktober. Die Gesamtstickstoff-Konzentrationen lagen im engen Bereich 2,0 – 2,5 mg/l, dabei betrugen die Nitrat-N-Konzentrationen zwischen < 0,05 mg/l (Mai) und 0,5 mg/l (Oktober), während die Ammonium-N-Konzentrationen nur im Juli eine Erhöhung auf 0,6 mg/l zeigten und sonst unter 0,05 mg/l lagen. Für die Calcium-Konzentrationen ergab sich ein Schwankungsbereich von 69 – 89 mg/l. Die Trophieparameter des Jahres 1996 kennzeichnen den polymiktischen Flachsee nach LAWA-Bewertungsansatz (LAWA 1998) als stark polytrophes (p2) Gewässer. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter mittlere Tiefe und Tiefengradient, weist den See nach (LAWA 1998) als natürlicherweise schwach polytroph (p1) aus.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,0</td>
<td>507</td>
<td>99,3</td>
<td>0,4</td>
<td>2,3</td>
<td>163</td>
<td>190</td>
</tr>
</tbody>
</table>

1.78.4 Flora und Fauna

Im Untersuchungszeitraum 1996 (Mai – Oktober) herrschten im Frühjahr Diatomeen vor. Die Biomasse betrug im Mai noch 5,1 mg/l, stieg dann aber bis Oktober auf Maximalwerte von 36,5 mg/l an. Im Juli setzte sich das Phytoplankton bei vergleichbaren Biomasseanteilen aus Crypto- und Chlorophyceen zusammen, im September und Oktober dominierten wiederum Diatomeen, diesmal zusammen mit Cyanobakterien. Diese zeigten dann im Herbst eine Massenvermehrung, ihr maximaler Anteil an der Biomasse lag bei 58 %.

Im Zooplankton dominierten Copepoden im gesamten Untersuchungszeitraum zusammen mit Rotatorien im Mai und im September. Die Copepoden überwogen dann alle anderen Zooplankter im Oktober mit FM-Anteilen von 75 %. Lediglich im Juli waren Cladoceren bei ähnlichen Anteilen an der Biomasse wie Copepoden stärker an dieser beteiligt. Die Zooplankton-Biomasse war insbesondere im Frühsommer und Sommer mit maximal 15,5 mg/l im Juli sehr hoch und nahm dann bis November auf minimal 1,1 mg/l ab.

Angaben zur Fischfauna lagen nicht vor.

1.78.5 Nutzung, anthropogener Einfluss

Der Woezer See wird als Badegewässer und von Anglern genutzt.
1.79 Wolgastsee

1.79.1 Genese, Lage, Einzugsgebiet und Hydrologie

1.79.2 Topographie und Morphometrie

Das Seebecken weist eine annähernd rechteckige Gestalt auf und ist von Nordwest nach Südost orientiert.

Tab. 209: Topographie und Morphometrie des Wolgastsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V (Mio. m³)</th>
<th>A (km²)</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,89</td>
<td>0,47</td>
<td>7,5</td>
<td>4,1</td>
<td>1428</td>
<td>453</td>
<td>1,5</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
</tr>
</tbody>
</table>

1.79.3 Chemische und trophische Charakteristik des Sees

Der Tiefengradient von 1,3 weist den Wolgastsee als im Sommer thermisch nicht stabil geschichteten See aus. Sowohl im Juni als auch im August des Jahres 1994 wurde jedoch eine ausgeprägte thermische Schichtung mit völligem O₂-Schwund im Hypolimnion beobachtet. Auch im August 1997 führte eine kurzfristige thermische Schichtung sofort zu massiver Sauerstoffzehrung ab ca. 3 m und anaeroben Zuständen ab 5 m Wassertiefe. Die oberflächennahen Sauerstoffsättigungen erreichten maximal 131 % im August. Gleichzeitig wurde auch das Minimum der Sichttiefe mit 2,1 m ermittelt. Daten von 4 Beprobungsterminen (LUNG 1999) zwischen April und Oktober 1997 (1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 8,1 und 9,1 und der Leitfähigkeit zwischen 331 µS/cm und 406 µS/cm. Die Gesamtphosphorkonzentrationen betrugen zwischen 49 µg/l und 160 µg/l mit höchsten Werten im Oktober, in der Tiefenprobe stiegen die Konzentrationen im August auf ca. 215 µg/l an. Die oberflächennahen Konzentrationen an Gesamtstickstoff lagen zwischen 0,1 mg/l und 1,05 mg/l, dabei sanken die Nitrat-N-Konzentrationen ausgehend von 0,11 mg/l im April während des Sommers unter die Nachweisgrenze, die Ammonium-N-Konzentrationen im Minimum bis 0,008 mg/l und im Maximum bis 0,05 mg/l. Das Vegetationsmittel der Chlorophyll a-Konzentrationen fiel mit 8,6 µg/l moderat aus, höchste Konzentrationen wurden im Oktober mit 12,0 µg/l registriert. Die Calciumkonzentrationen zeigten Schwankungen zwischen 38,1 mg/l und 48,1 mg/l.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,4</td>
<td>437</td>
<td>8,1</td>
<td>2,0</td>
<td>0,9</td>
<td>40,0</td>
<td>60,0</td>
</tr>
</tbody>
</table>

phosphorkonzentrationen eine deutliche Abnahme von > 100 µg/l auf aktuell 40 µg/l und auch die mittleren Chlorophyll a-Konzentrationen zeigen eine längerfristige, annähernd kontinuierliche Abnahme auf ca. die Hälfte der Ausgangskonzentrationen von 1994.

Eine chemische Belastung des Sees (vermutlich durch ein Armeeobjekt, dessen Regenüberlauf in den See entwässert) konnte an Hand von überdurchschnittlichen Bleikonzentrationen der Sedimente nachgewiesen werden.

1.79.4 Flora und Fauna

Der den See umgebende Buchenmischwald reicht bis an das sandige Seeufer heran. Im Frühjahr und Frühsommer wurden dichte Characeen-Rasen vorgefunden.

und Oktober durchgängig geringe Konzentrationen unter 5 mg/l auf. Dabei waren im Frühjahr pennate Diatomeen (*Fragilaria crotonensis*) und Sonstige an der geringen Biomassekonzentration von 0,8 mg/l beteiligt. Im Juni setzte sich die Hälfte der Phytoplankton-Biomasse aus Chlorophyceen der Art *Dictyosphaerium pulchellum* zusammen, daneben waren Cryptophyceen mit *Rhodomonas minuta* dominante Biomassebildner. Auch Conjugatophyceen waren mit *Closterium acutum* stärker vertreten. Im August hatten stickstofffixierende Cyanobakterien (*vor allem Anabaena flos-aquae*) und Dinophyceen (*Gymnodinium* sp., *Ceratium hirundinella*) mit ca. 38 % ähnliche Anteile an der Gesamtbiomasse. Diatomeen, gefolgt von Cyanobakterien (*vor allem Aphanizomenon flos-aquae*) dominierten dagegen den Herbstaspekt, zugleich wurde im Oktober auch die maximale Biomassekonzentration von 4,7 mg/l erreicht (Angaben zum Artenvorkommen bearbeitet durch Ernst-Moritz-Arndt-Universität 1997, Seenprojekt Mecklenburg-Vorpommern). Im Untersuchungszeitraum März - September 2000 war die Phytoplanktonsukzession wiederum anders, die Biomassen sanken im Vergleich zu 1997 weiter auf Konzentrationen von maximal 1,7 mg/l im März und minimal 0,3 mg/l im September. Im März dominierten Diatomeen (vor allem *Asterionella formosa*). Cyanobakterien, diesmal vertreten durch *Microcystis incerta*, herrschten nur im Juni mit FM-Anteilen von 47 % vor, die weiteren Biomasseanteile verteilten sich auf coccale Chlorophyceen, Cryptophyceen (vor allem *Rhodomonas minuta*) und den Dinoflagellaten *Ceratium hirundinella*. Im Hochsommer dominierten vor allem Cryptophyceen (*Rhodomonas, Cryptomonas*), im Juli zusammen mit centrischen Diatomeen und der pennaten Art *Fragilaria crotonensis*, im August zusammen mit *Ceratium hirundinella* und der Gattung *Peridinium*. Im September war das Phytoplankton sehr heterogen zusammengesetzt. Ähnliche FM-Anteile entfielen vor allem auf Cryptophyceen der genannten Gattungen sowie Dinophyceen (jetzt vor allem *Peridinium*), centrische Diatomeen und coccale Chlorophyceen.

Das Fischvorkommen ist relativ artenarm. Es wurden nur 10 Arten ermittelt.

\begin{tabular}{|c|c|c|c|}
\hline
Häufigkeit der Art & deutscher Name & Artname & \\
\hline
h & Aal & Anguilla & anguilla \\
\hline
h & Zander & Stizostedion & lucioperca \\
\hline
h & Hecht & Esox & lucius \\
\hline
h & Barsch & Perca & fluviatilis \\
\hline
s & Kaulbarsch & Gymnocephalus & cernua \\
\hline
s & Güster & Blicca & bjoerkna \\
\hline
h & Döbel & Leuciscus & cephalus \\
\hline
h & Plötze & Rutilus & rutilus \\
\hline
s & Karpfen & Cyprinus & carpio \\
\hline
s & Ukelei & Albumus & albumus \\
\hline
\end{tabular}

1.79.5 Nutzung, anthropogener Einfluss

Erholungssuchenden bieten sich am Wolgastsee Hotels, Pensionen, Ferienwohnungen sowie ein Campingplatz (Korswandt) mit 100 Stellplätzen. Auf dem Gewässer besteht die Möglichkeit zum Ruderbootfahren, welche auch vor Ort ausgeliehen werden können. Badestellen existieren am Wolgastsee ebenfalls.

Die geplante Überleitung von Wasser aus dem Thurbruch zur Anhebung des Seespiegels wurde aufgrund der unbefriedigenden Wasserqualität verworfen.
1.80 Woseriner See

1.80.1 Genese, Lage, Einzugsgebiet und Hydrologie

1.80.2 Topographie und Morphometrie

Der Woseriner See wird durch eine zentral liegende Insel in 3 tiefe Seebecken, den sogenannten Holzsee, Mühlensee und Hofsee gegliedert.
Tab. 212: Topographie und Morphometrie des Woseriner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>Seeteil</th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_max [m]</th>
<th>z_mean [m]</th>
<th>L_eff [m]</th>
<th>B_eff [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_epi [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holzsee</td>
<td>9,90</td>
<td>0,90</td>
<td>37,5</td>
<td>11,0</td>
<td>1784</td>
<td>764</td>
<td>1,8</td>
<td>6,0</td>
<td>6,2</td>
<td></td>
</tr>
<tr>
<td>Mühlensee</td>
<td>3,86</td>
<td>0,59</td>
<td>15,5</td>
<td>6,6</td>
<td>1175</td>
<td>810</td>
<td></td>
<td>2,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hofsee</td>
<td>5,91</td>
<td>0,68</td>
<td>29,9</td>
<td>8,7</td>
<td>1695</td>
<td>690</td>
<td></td>
<td></td>
<td>4,9</td>
<td></td>
</tr>
</tbody>
</table>

1.80.3 Chemische und trophische Charakteristik des Sees

Vor allem im Frühjahr gelangten relativ hohe Nitratfrachten über die Bresenitz in den Mühlensee, was an den Stickstoffkonzentrationen deutlich wurde. Die im Epilimnion ermittelten Konzentrationen der Stickstoff- und Phosphorverbindungen dürften eine Nährstofflimitation der planktischen Primärproduktion während der Vegetationsperiode ausgeschlossen haben. Die Sichttiefen lagen im Sommer bei 1,6 - 3,0 m (Mühlensee), 2,0 - 3,1 m (Hofsee) und 3,0 - 3,5 m (Holzsee).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Holzsee</td>
<td>8,7</td>
<td>640</td>
<td>9,3</td>
<td>3,3</td>
<td>1,1</td>
<td>66,0</td>
<td>60,0</td>
</tr>
<tr>
<td>Mühlensee</td>
<td>8,8</td>
<td>685</td>
<td>14,0</td>
<td>2,3</td>
<td>1,7</td>
<td>83,0</td>
<td>40,0</td>
</tr>
<tr>
<td>Hofsee</td>
<td>8,8</td>
<td>683</td>
<td>6,4</td>
<td>2,5</td>
<td>1,3</td>
<td>60,0</td>
<td>80,0</td>
</tr>
</tbody>
</table>
1.80.4 Flora und Fauna

Die Phytoplanktonentwicklung in den einzelnen Seeteilen wies im Untersuchungsjahr 1995 Unterschiede auf. Bei einer allgemeinen Dominanz an Diatomeen und Dinoflagellaten variierten deren Biomasseanteile stark. Während beispielsweise im Holzsee eine Massenentwicklung von *Ceratium hirundinella* (Dinoflagellat) im Juni auftrat, fand diese im Hof- und Mühlensee erst im August statt. Insgesamt war das Phytoplankton artenreich (StAUN Schwerin). Neben den centrischen Diatomeen, die ebenso wie die Dinoflagellaten im gesamten Untersuchungszeitraum bestandsbildend waren, sind als dominante Arten innerhalb der Dinophyceen *C. hirundinella*, *Peridinium* spp. und *P. cinctum* zu nennen, innerhalb der Chlorophyceen trat *Coelosphaerium* spp. im April stärker in Erscheinung. Cyanobakterien bildeten erst ab August mit *Microcystis aeruginosa* erhöhte Biovolumenanteile bis zu 40 % (Oktober). Das Gesamtbiovolumen schwankte zwischen ca. 5 mm³/l im Oktober und 22,2 mm³/l im Juni (Angaben zum Artenvorkommen erarbeitet durch Bioplan Papendorf 1995, Seenprojekt Mecklenburg-Vorpommern).

Auch das Zooplankton wies eine hohe Artenvielfalt auf und wurde zum großen Teil von Copepoden gebildet, die in der zweiten Jahreshälfte mit calanoiden Vertretern verhältnismäßig hohe Biomassewerte erreichten. Cladoceren kamen mit *Daphnia cucullata* im August in erwähnenswerten Mengen vor, während Rotatorien ganzjährig nur im Mühlensee in größeren Abundanzen auftraten.

Angaben zur Fischfauna lagen nicht vor.

1.80.5 Nutzung, anthropogener Einfluss

1.81 Woterfitzsee

1.81.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Woterfitzsee liegt in einem Sandergebiet südöstlich der Müritz im Müritz-Nationalpark. Das Einzugsgebiet weist eine Größe von 34,8 km² auf.

![Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)](image)

1.81.2 Topographie und Morphometrie

Der See besteht aus einem fast kreisförmigen Flachbecken von ca. 2 km Durchmesser und ist wegen einer geringen durchschnittlichen Wassertiefe (Maximaltiefe nur 4,5 m) und seiner windexponierten Lage polymiktisch.

Tab. 214: Topographie und Morphometrie des Woterfitzsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,94</td>
<td>2,90</td>
<td>7,8</td>
<td>3,4</td>
<td>2366</td>
<td>1863</td>
<td>1,4</td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

325
1.81.3 Chemische und trophische Charakteristik des Sees

Der See ist polymiktisch. 1995 zeigte die Gegenüberstellung der Untersuchungsergebnisse an verschiedenen Probenahmestellen nur sehr geringe horizontale Unterschiede in den Werten der erfassten Kriterien.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,7</td>
<td>571</td>
<td>48,6</td>
<td>0,9</td>
<td>1,0</td>
<td>38,0</td>
<td>56,0</td>
</tr>
</tbody>
</table>

Abb. 131: Zeitliche Entwicklung der Trophieparameter vom Woterfitzsee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Bei ruhiger Wetterlage waren im Juli leichte Sauerstoffdefizite in Sedimentnähe zu verzeichnen. Anaerobe Verhältnisse wurden jedoch nicht registriert. Während des Sommers lagen die Konzentrationen an den anorganischen Stickstoffverbindungen Nitrat und Ammonium meist unterhalb der Nachweisgrenzen, so dass zumindest zeitweise eine Stickstofflimitierung der planktischen Primärproduktion eingetreten sein könnte. Die Sichttiefen lagen zum Teil unter 1 m und wurden neben einer nicht auszuschließenden Sedimenttrübe hauptsächlich durch die Planktondichte

1.8.1.4 Flora und Fauna
Die Phytoplanktonzusammensetzung des Sees war im Frühjahr 1995 (mit *Planktothrix limnetica*) und im Herbst (mit *Aphanizomenon flos-aquae* und *Planktothrix agardhii*) hauptsächlich durch fädige Cyanobakterien geprägt. Im Juli trat bei relativ moderaten Sichttiefenverhältnissen um 1 m ein Artengemisch aus Phytoplanktonvertretern verschiedener taxonomischer Zugehörigkeit auf, wobei insbesondere auch Diatomeen (*Asterionella, Fragillaria, Melosira*) beobachtet wurden.

Das Zooplankton wurde zu allen Untersuchungsterminen 1995 von cyclopoiden Copepoden dominiert. Während Cladoceren nur einen geringen Biomasseanteil von etwa 10 % bildeten, waren Rotatorien für die Zooplanktonbiomasse ohne Bedeutung.

Der See zeichnet sich durch ein großes Fischartenvorkommen aus, wobei die Hälfte der Arten häufig auftreten.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus</td>
</tr>
<tr>
<td>s</td>
<td>Weissflossiger Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Rotfeder</td>
<td>Scardinius</td>
</tr>
<tr>
<td>h</td>
<td>Karpfen</td>
<td>Cyprinus</td>
</tr>
<tr>
<td>h</td>
<td>Binnenstint</td>
<td>Osmerus</td>
</tr>
</tbody>
</table>

h = häufig, s = selten
<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio</td>
</tr>
<tr>
<td></td>
<td>s Dreistachliger</td>
<td>Gasterosteus</td>
</tr>
<tr>
<td></td>
<td>Stichling</td>
<td>aculeatus</td>
</tr>
<tr>
<td>s</td>
<td>Bitterling</td>
<td>Rhodeus</td>
</tr>
<tr>
<td></td>
<td>h Blei</td>
<td>Abramis</td>
</tr>
<tr>
<td></td>
<td>h Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys</td>
</tr>
<tr>
<td></td>
<td>s Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca</td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus</td>
</tr>
<tr>
<td>s</td>
<td>Marmorkarpfen</td>
<td>Aristichthys</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
</tbody>
</table>

1.81.5 Nutzung, anthropogener Einfluss
1.82 Ziegelsee

1.82.1 Genese, Lage, Einzugsgebiet und Hydrologie

Der Ziegelsee befindet sich bei Schwerin. Über den Heidensee hat er Verbindung zum Schweriner See und im Süden besteht eine Verbindung zum Medeweger See. Das Einzugsgebiet des Sees ist mit 239,5 km² sehr groß. Wichtigster Zufluss ist der Aubach. Der langjährige mittlere Abfluss ist mit 0,72 m³/s angegeben.

Abb. 132: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.82.2 Topographie und Morphometrie

Der Ziegelsee ist in den Innen- und Außensee unterteilt, letzterer wird nochmals in einen Nord- und Zentralteil unterschieden. Der Zentralteil weist die größte Fläche und zugleich auch größte Tiefe auf, aber auch die anderen Seeteile sind als sehr tief anzusehen.

Tab. 217: Topographie und Morphometrie des Ziegelsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>Seeteil</th>
<th>V [Mio. m³]</th>
<th>A [km²]</th>
<th>z_{max} [m]</th>
<th>z_{mean} [m]</th>
<th>L_{eff} [m]</th>
<th>B_{eff} [m]</th>
<th>U_E [-]</th>
<th>F [-]</th>
<th>z_{epi} [m]</th>
<th>t_R [a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innensee</td>
<td>3,90</td>
<td>0,52</td>
<td>16,5</td>
<td>7,5</td>
<td>1068</td>
<td>580</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordteil</td>
<td>5,41</td>
<td>0,88</td>
<td>19,5</td>
<td>6,1</td>
<td>1435</td>
<td>1235</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zentralteil</td>
<td>20,6</td>
<td>1,59</td>
<td>34,4</td>
<td>13,0</td>
<td>2284</td>
<td>1096</td>
<td>5,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>30,0</td>
<td>3,00</td>
<td>34,4</td>
<td>10,0</td>
<td>2284</td>
<td>1096</td>
<td>2,8</td>
<td>5,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.82.3 Chemische und trophische Charakteristik des Sees

Alle Seeteile des Ziegelsees sind im Sommer thermisch stabil geschichtet. Der See wurde 1994 an 4 Terminen untersucht und nach den Untersuchungsergebnissen als eutroph eingeschätzt. Dabei nimmt der Trophiegradient des Ziegelsees von Norden nach Süden (Nordteil, Zentralteil, Innensee) zu, wobei der Stadtsee eine stark eutrophe Wasserbeschaffenheit mit Tendenz zur Polytrophi e aufweist. Die stark eutrophe Beschaffenheit des Gewässers ist auf vielfältige Belastungen zurückzuführen, die in der Vergangenheit durch die Stadt Schwerin und über das Einzugsgebiet des Aubachs direkt und indirekt in den See gelangten. Daten von 4 Beprobungsterminen (STAUN Schwerin) zwischen April und November 1999 (1 m Tiefe) ergaben insgesamt Schwankungen des pH-Wertes zwischen 7,6 und 8,6 und der hohen Leitfähigkeit zwischen 551 µS/cm und 707 µS/cm im Nord- und Zentralteil, während die Werte im Innensee nochmals auf höherem Niveau von 638 µS/cm bis 841 µS/cm lagen. Im Juni und bis September befand sich das Metalimnion im Nordteil und Innensee etwa in 5 - 9 m Tiefe, im Zentralteil zwischen 4 m und 10 m. Das Hypolimnion war im Innensee bereits ab Juni anaerob, im Nord- und Zentralteil im September (eventuell auch früher, geringe Messfrequenz). Die Aufhebung der Schichtung führte Mitte November zu ausgeglichenen sauerstoffangereicherten Verhältnissen im Innensee und Nordteil, im tiefen Zentralteil war zu dieser Zeit keine Volldurchmischung gegeben, so dass der Tiefenbereich ab 16 m noch anaerob war. Im oberflächennahen Bereich wurden im April und September Sauerstoffübersättigungen gemessen (maximal 130 %). Die Gesamtphosphorkonzentrationen schwankten im Innensee und Zentralteil zwischen 50 µg/l und 80 µg/l, im Nordteil lagen sie zwischen 60 µg/l und 110 µg/l mit höchsten Werten im April. Die oberflächennahen SRP-Konzentrationen fielen hier dagegen mit maximal 24 µg/l geringer als in den anderen Seeteilen aus, wo sie im November maximal 49 µg/l (Innensee) erreichten. Im Tiefenbereich stiegen die TP-Konzentrationen infolge des Sauerstoffmangels und interner Rücklösung auf ca. 350 µg/l (Zentralteil, Innensee) an, den Ammonium-N-Konzentrationen zeigten im Innensee Spitzenwerte von 1,8 mg/l an. Die oberflächennahen Konzentrationen an Gesamtstickstoff lagen im Außensee in 1 m Tiefe zwischen 0,8 mg/l und 3,0 mg/l. Im Innensee wurden noch wesentlich höhere TN-Konzentrationen registriert, die im April maximal 7,0 mg/l ergaben. Auffallend hoch war jeweils der Nitratanteil, was auf einen starken Einfluss landwirtschaftlicher Nährstoffeinträge hindeutet. Die sehr hohen Nitrat-Ausgangskonzentrationen von 6,3 mg/l (Innensee), 2,0 mg/l (Zentralteil) bzw. 1,1 mg/l (Nordteil) nahmen dann bis September bzw. November auf 0,4 - 0,6 mg/l ab. Das Vegetationsmittel der Chlorophyll a-Konzentrationen fiel in den einzelnen Seeteilen mit 10 - 14 µg/l im Vergleich zu den zeitweilig hohen Nährstoffkonzentrationen moderat aus, dabei überstiegen auch die Chlorophyll-Maxima im September nicht 14 µg/l. Entsprechend gering waren die Phytoplanktonbiomassen bei relativ hohen sommerlichen Sichttiefen. Im Juni wurde ein Klarwasserstadium registriert. Die Calciumkonzentrationen zeigten insgesamt Schwankungen zwischen 77 mg/l und 117 mg/l mit den höchsten Werten im Innensee. Die Trophiebewertung anhand der Untersuchungsergebnisse 1999 ergab für alle Seeteile einen schwach eutrophen (e1) Zustand. Die aktuellen Trophieparameter des Jahres 2001 kennzeichnen den Innensee und Zentralteil nach LAWA-Bewertungsansatz (LAWA 1998) weiterhin als schwach eutroph (e1), den Nordteil dagegen als mesotroph. Auffallend hoch sind weiterhin die Gesamtphosphorkonzentrationen im Frühjahr, im Vegetationsmittel ergeben sich größere Schwankungen. Der trophische Referenzzustand, ermittelt auf der Grundlage der morphometrischen Parameter
mittlere Tiefe und Tiefengradient, weist den geschichteten See nach (LAWA 1998) als natürlicherweise oligotroph (o) aus.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Innensee</td>
<td>8,3</td>
<td>591</td>
<td>8,3</td>
<td>1,7</td>
<td>1,9</td>
<td>40,0</td>
<td>150</td>
</tr>
<tr>
<td>Zentralteil</td>
<td>8,4</td>
<td>516</td>
<td>17,3</td>
<td>2,8</td>
<td>1,0</td>
<td>44,3</td>
<td>115</td>
</tr>
<tr>
<td>Nordteil</td>
<td>8,4</td>
<td>508</td>
<td>8,2</td>
<td>2,6</td>
<td>1,0</td>
<td>36,7</td>
<td>60,0</td>
</tr>
</tbody>
</table>

Abb. 133: Zeitliche Entwicklung der Trophieparameter vom Innensee des Ziegelsees (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

1.82.4 Flora und Fauna

Im Untersuchungszeitraum April - November 1999 kam es zu einer Frühjahrsalgenblüte, die besonders im Innensee ausgeprägt war und hier zu Biomassekonzentrationen von 10,0 mg/l führte. Neben centrischen Diatomeen waren hieran auch die Arten Synedra acus und Synedra ulna beteiligt. Im Außensee lag die Biomasse im April nur bei 1,9 mg/l und wurde hier nur im September mit Werten von 2,1 - 2,7 mg/l übertroffen. Im Nordteil setzte sich die Phytoplanktongemeinschaft im April zu etwa

Das Zooplankton entwickelte im Nordteil geringere Biomassen als in den anderen Seeteilen, insgesamt ergab sich ein Konzentrationsbereich von 0,9 - 3,8 mg/l. Im April und November dominierten eindeutig Copepoden die Zooplanktonzusammensetzung, im Juni und September war der Anteil der Cladoceren insbesondere im Innensee (maximal 66 %) und im September auch der der Rotatorien im Innensee und Zentralteil sehr hoch. Im Innensee überwog die Art *Asplanchna priodonta*, im Zentralteil dagegen *Synchaeta* spec. Wichtigste Cladocerenarten waren *Bosmina coregoni* und *Daphnia* spec. Die Copepoden waren durch die Gattungen *Cyclops* und *Eudiaptomus* vertreten. Das Vorhandensein eines relativ hohen filtrierwirksamen Zooplanktonbestands sowie die verhältnismäßig geringen Phytoplanktonbiomassen führten augenscheinlich zu einer besseren Wasserbeschaffenheit, als sie noch 1994 oder gar 1992 beobachtet worden war.

Der See weist ein großes Fischartenvorkommen auf, von denen viele jedoch nur selten anzutreffen sind.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
<th>Artdatei</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
<td>fluviatilis</td>
</tr>
<tr>
<td>h</td>
<td>Zander</td>
<td>Stizostedion</td>
<td>lucioperca</td>
</tr>
<tr>
<td>s</td>
<td>Regenbogenforelle</td>
<td>Salmo</td>
<td>gairdneri</td>
</tr>
<tr>
<td>s</td>
<td>Giebel</td>
<td>Carassius</td>
<td>auratus</td>
</tr>
<tr>
<td>s</td>
<td>Aland</td>
<td>Leuciscus</td>
<td>idus</td>
</tr>
<tr>
<td>s</td>
<td>Rapfen</td>
<td>Aspius</td>
<td>aspius</td>
</tr>
<tr>
<td>h</td>
<td>Binnenstint</td>
<td>Osmerus</td>
<td>esperlanus</td>
</tr>
<tr>
<td>s</td>
<td>Döbel</td>
<td>Leuciscus</td>
<td>cephalus</td>
</tr>
<tr>
<td>h</td>
<td>Aal</td>
<td>Anguilla</td>
<td>anguilla</td>
</tr>
<tr>
<td>h</td>
<td>Blei</td>
<td>Abramis</td>
<td>brama</td>
</tr>
<tr>
<td>s</td>
<td>Dreistachliger Stichling</td>
<td>Gasterosteus</td>
<td>aculeatus</td>
</tr>
<tr>
<td>s</td>
<td>Quappe</td>
<td>Lota</td>
<td>lota</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
<td>carassius</td>
</tr>
<tr>
<td>s</td>
<td>Graskarpfen</td>
<td>Ctenopharyngod</td>
<td>idella</td>
</tr>
<tr>
<td>Häufigkeit der Art</td>
<td>deutscher Name</td>
<td>Artnamen</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Silberkarpfen</td>
<td>Hypophthalmichthys molitrix</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Steinbeißer</td>
<td>Cobitis taenia</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Güster</td>
<td>Blicca bjoerkna</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Hecht</td>
<td>Esox lucius</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Rotfeder</td>
<td>Scardinius erythrophthalmus</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Plötze</td>
<td>Rutilus rutilus</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Schlammpeitzger</td>
<td>Misgurnus fossilis</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Karpfen</td>
<td>Cyprinus carpio</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Kleine Maräne</td>
<td>Coregonus albula L.</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca tinca</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus albumus</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Gründling</td>
<td>Gobio gobio</td>
<td></td>
</tr>
</tbody>
</table>

1.82.5 Nutzung, anthropogener Einfluss

1.83 Zierker See

1.83.1 Genese, Lage, Einzugsgebiet und Hydrologie

Abb. 134: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999)

1.83.2 Topographie und Morphometrie

Trotz eines sehr unregelmäßigen Uferverlaufs zeigt der See eine rundliche Gestalt. Er ist sehr flach.

Tab. 220: Topographie und Morphometrie des Zierker Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

<table>
<thead>
<tr>
<th>V</th>
<th>A</th>
<th>Z_{max}</th>
<th>Z_{mean}</th>
<th>L_{eff}</th>
<th>B_{eff}</th>
<th>U_E</th>
<th>F</th>
<th>Z_{epi}</th>
<th>t_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mio. m³]</td>
<td>[km²]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[m]</td>
<td>[-]</td>
<td>[-]</td>
<td>[m]</td>
<td>[a]</td>
</tr>
<tr>
<td>5,68</td>
<td>3,47</td>
<td>3,5</td>
<td>1,6</td>
<td>2671</td>
<td>2080</td>
<td>1,8</td>
<td>0,5</td>
<td>7,4</td>
<td></td>
</tr>
</tbody>
</table>
1.83.3 Chemische und trophische Charakteristik des Sees

Daten von 4 Beprobungsterminen (LUNG 1999) zwischen April und Oktober 1996 (in 1 m Tiefe) ergaben Schwankungen des pH-Wertes zwischen 8,6 und 9,0 und der Leitfähigkeit zwischen 471 µS/cm und 577 µS/cm. Die Gesamtnitrat-konzentrationen lagen oberflächennah im Maximum bei 2,68 mg/l (April) und im Minimum bei 0,058 mg/l (Oktober). Dabei nahmen die Nitrat-N-Konzentrationen im See ausgehend von 0,21 mg/l im April auf < 0,001 mg/l im Sommer ab, die Ammonium-N-Konzentrationen betrugen zwischen 0,011 mg/l und 0,415 mg/l. Auch die Gesamtnitritkonzentrationen von 100 - 181 µg/l an der Oberfläche lagen wie schon in den Vorjahren auf sehr hohem Niveau. Die SRP-Konzentrationen waren hingegen mit 2 - 4 µg/l sehr gering. Die maximale Sauerstoffübersättigung wurde im Juni gemessen und lag bei 124 %, das Chlorophyll a-Maximum von 140 µg/l wurde hingegen im Oktober registriert. Die mittlere sommerliche Sichttiefe lag bei nur 0,3 m. Die Calcium-Konzentrationen waren mit Werten zwischen 58,1 mg/l (August) und 83,7 mg/l (April) hoch.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8,8</td>
<td>264</td>
<td>100,9</td>
<td>0,4</td>
<td>1,6</td>
<td>58,5</td>
<td>35,0</td>
</tr>
</tbody>
</table>
1.83.4 Flora und Fauna

Der See ist durch ganzjährig hohe Phytoplanktonbiomassen geprägt. Die bereits 1991/1992 beobachtete Cyanobakteriendominanz im Phytoplankton war auch 1996 und 1997 typisch für den See. Im Jahr 1996 (April - August) wurde die maximale Phytoplanktonbiomasse (FM) von 68,1 mg/l im August registriert, die Cyanobakterien hatten hieran einen Biomasseanteil von 96,4 %. Im April und Juni lag dieser bei 70,8 % bzw. 60,7 %. Zweitstärkste Klasse waren im April die Cryptophyceen mit einem Biomasseanteil von allerdings nur 11,6 % an der Gesamtbiomasse von 33,6 mg/l. Diatomeen leisteten insgesamt nur einen geringen Beitrag zur Biomasse und waren lediglich im Juni mit einem FM-Anteil von 35,6 % stärker beteiligt. Vermutlich aufgrund einer Schönwetterperiode kam es im Frühsommer 1997 zu einer Phytoplanktonmassenentwicklung mit extremen Biomassekonzentrationen von 152,3 mg/l (Mai) bzw. 174,4 mg/l (Juli), die durch Cyanobakterien verursacht war (81,4 % und 75,6 %-FM-Anteil). Zwischen März und Dezember 1997 varierte ihr Biomasseanteil zwischen 60,0 % (Oktober) und 88,0 % (März). Als weitere Phytoplanktonklassen fielen nur Diatomeen ins Gewicht. Sie waren von April - Juli und im Dezember mit FM-Anteilen zwischen 15,2 % (Mai) und 29,4 % (Dezember) codominant vertreten.

Die Artenvielfalt des Zooplanktons ist nach wie vor sehr gering. Rotatorien dominieren das Zooplankton gemessen an den Abundanzen. Die Gesamtbiomasse
war zwischen April und Oktober des Jahres 1996 bei Konzentrationen zwischen 0,09 mg/l und 4,18 mg/l im Verhältnis zur hohen Trophie zeitweilig gering. Im April waren Copepoden, gefolgt von Rotatorien stärkste Biomassebildner. Cladoceren entwickelten im Juni ihre maximalen Anteile von 76,9 %. Im August und Oktober dominierten dann erneut Copepoden, ihre maximalen Biomasseanteile von 92,2 % bildeten sich im August aus. Parallel zu den hohen Phytoplanktonbiomassen des Jahres 1997 ergab sich auch eine schlagartige Zooplanktonvermehrung. So wurde im Mai 1997 ein extrem hoher Biomassepeak von 93 mg FM/l registriert, im April lag die Konzentration noch bei 0,28 mg/l. Im weiteren Jahresverlauf ging sie dann bis Oktober auf 0,48 mg/l zurück. Bis Mai dominierten Copepoden mit Anteilen von 86,1 % (April) und 66,8 % (Mai). Im Mai waren die Anteile der Copepoden, Cladoceren und Rotatorien sehr ähnlich, die restlichen 12,1 % entfielen auf Sonstige. Im Juli dominierten dann Cladoceren und Copepoden mit etwa gleichen Biomassen, in der Folge dann wiederum eindeutig Copepoden mit maximalen Biomasseanteilen von 97,7 % und 96,7 % im August und Oktober.

Der See weist einen sehr großen Reichtum an Fischarten auf, von denen mehr als die Hälfte häufig vorkommen.

<table>
<thead>
<tr>
<th>Häufigkeit der Art</th>
<th>deutscher Name</th>
<th>Artname</th>
</tr>
</thead>
<tbody>
<tr>
<td>h Wels</td>
<td>Silurus</td>
<td>glanis</td>
</tr>
<tr>
<td>h Dreistachliger Stichling</td>
<td>Gasterosteus</td>
<td>aculeatus</td>
</tr>
<tr>
<td>s Döbel</td>
<td>Leuciscus</td>
<td>cephalus</td>
</tr>
<tr>
<td>s Marmorkarpfen</td>
<td>Aristichthys</td>
<td>nobilis</td>
</tr>
<tr>
<td>h Silberkarpfen</td>
<td>Hypophthalmichthys</td>
<td>molitrix</td>
</tr>
<tr>
<td>h Güster</td>
<td>Blicca</td>
<td>bjoerkena</td>
</tr>
<tr>
<td>h Plötze</td>
<td>Rutilus</td>
<td>rutilus</td>
</tr>
<tr>
<td>h Moderlieschen</td>
<td>Leucaspius</td>
<td>delineatus</td>
</tr>
<tr>
<td>h Blei</td>
<td>Abramis</td>
<td>brama</td>
</tr>
<tr>
<td>h Hecht</td>
<td>Esox</td>
<td>lucius</td>
</tr>
<tr>
<td>s Binnenstint</td>
<td>Osmerus</td>
<td>esperlanus</td>
</tr>
<tr>
<td>s Gründling</td>
<td>Gobio</td>
<td>gobio</td>
</tr>
<tr>
<td>s Karpfen</td>
<td>Cyprinus</td>
<td>carpio</td>
</tr>
<tr>
<td>s Quappe</td>
<td>Lota</td>
<td>lota</td>
</tr>
<tr>
<td>h Aal</td>
<td>Anguilla</td>
<td>anguilla</td>
</tr>
<tr>
<td>h Zander</td>
<td>Stizostedion</td>
<td>lucioperca</td>
</tr>
<tr>
<td>h Rotfeder</td>
<td>Scardinius</td>
<td>erythrophthalmus</td>
</tr>
<tr>
<td>s Graskarpfen</td>
<td>Ctenopharyngod</td>
<td>idella</td>
</tr>
<tr>
<td>Häufigkeit der Art</td>
<td>deutscher Name</td>
<td>Artname</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>s</td>
<td>Ukelei</td>
<td>Alburnus</td>
</tr>
<tr>
<td>s</td>
<td>Karausche</td>
<td>Carassius</td>
</tr>
<tr>
<td>s</td>
<td>Schleie</td>
<td>Tinca</td>
</tr>
<tr>
<td>h</td>
<td>Barsch</td>
<td>Perca</td>
</tr>
<tr>
<td>h</td>
<td>Kaulbarsch</td>
<td>Gymnocephalus</td>
</tr>
<tr>
<td>s</td>
<td>Bitterling</td>
<td>Rhodeus</td>
</tr>
</tbody>
</table>

1.83.5 Nutzung, anthropogener Einfluss

2 Abbildungsverzeichnis

Abb. 1: Tiefenkarte des Barniner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 13

Abb. 2: Tiefenkarte des Bergsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 17

Abb. 3: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 20

Abb. 4: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 22

Abb. 5: Zeitliche Entwicklung der Trophieparameter vom Borgwallsee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 23

Abb. 6: Tiefenkarte des Breiten Luzin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 26

Abb. 7: Zeitliche Entwicklung der Trophieparameter vom Breiten Luzin (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 28

Abb. 8: Tiefenkarte des Bützower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 31

Abb. 9: Zeitliche Entwicklung der Trophieparameter vom Bützower See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 33

Abb. 10: Cambser See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 36

Abb. 11: Carwitzer See/Zansen (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 39

Abb. 12: Zeitliche Entwicklung der Trophieparameter vom Carwitzer See, Südtiefe Carwitz (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 41

Abb. 13: Conventer See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 43

Abb. 14: Dabelowsee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 45

Abb. 15: Zeitliche Entwicklung der Trophieparameter vom Dabelowsee, Hauptteil (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 49
Abb. 16: Damerower See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 53

Abb. 17: Tiefenkarte der Lieps (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 57

Abb. 18: Zeitliche Entwicklung der Trophieparameter vom Die Lieps (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 63

Abb. 19: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 68

Abb. 20: Zeitliche Entwicklung der Trophieparameter vom Dobbertiner See, Hauptteil, SSW Dobbertin (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 69

Abb. 21: Tiefenkarte der Döpe (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 65

Abb. 22: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 74

Abb. 23: Zeitliche Entwicklung der Trophieparameter vom Drewitzer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 71

Abb. 24: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 77

Abb. 25: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 79

Abb. 26: Feldberger Haussee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 82

Abb. 27: Zeitliche Entwicklung der Trophieparameter vom Feldberger Haussee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 85

Abb. 28: Tiefenkarte des Flachen See Klocksin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 88

Abb. 29: Tiefenkarte des Fleesensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 94

Abb. 30: Tiefenkarte des Galenbecker Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 97

Abb. 31: Zeitliche Entwicklung der Trophieparameter vom Galenbecker See, Ostteil (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium
M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 90

Abb. 32: Goldberger See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).. 93

Abb. 33: Gothensee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 96

Abb. 34: Zeitliche Entwicklung der Trophieparameter vom Gothensee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 98

Abb. 35: Tiefenkarte des Groß Labenzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 100

Abb. 36: Zeitliche Entwicklung der Trophieparameter vom Groß Labenzer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 102

Abb. 37: Großer Brückentinsee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).. 104

Abb. 38: Großer Dambecker See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).. 107

Abb. 39: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 110

Abb. 40: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 113

Abb. 41: Zeitliche Entwicklung der Trophieparameter vom Großen Labussee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 114

Abb. 42: Großer See bei Pinnow (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 116

Abb. 43: Zeitliche Entwicklung der Trophieparameter vom Großen See bei Pinnow (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 117

Abb. 44: Großer Sternberger See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 119

Abb. 45: Zeitliche Entwicklung der Trophieparameter vom Großer Sternberger See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 120
Abb. 46: Großer Wariner See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 124

Abb. 47: Großer Wostevitzer Teich (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 128

Abb. 48: Tiefenkarte des Hohen Sprenger Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 130

Abb. 49: Tiefenkarte des Inselsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 133

Abb. 50: Zeitliche Entwicklung der Trophieparameter vom Inselsee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 134

Abb. 51: Tiefenlinien des Jabeler See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 137

Abb. 52: Zeitliche Entwicklung der Trophieparameter vom Jabeler See (Vegetationsmittelwerte, April - Oktober) (Daten der BTU Cottbus, LS Gewässerschutz, 2001) & (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 139

Abb. 53: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 143

Abb. 54: Zeitliche Entwicklung der Trophieparameter vom Käbelicksee/Nordteil (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 144

Abb. 55: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 147

Abb. 56: Zeitliche Entwicklung der Trophieparameter vom Klein Pritzer See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 148

Abb. 57: Tiefenkarte des Kölpinsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 151

Abb. 58: Krakower Obersee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 155

Abb. 59: Krakower Untersee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 156

Abb. 60: Zeitliche Entwicklung der Trophieparameter vom Krakower Obersee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium
Abb. 90: Zeitliche Entwicklung der Trophieparameter vom Putzarer See
(Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 231

Abb. 91: Röggeliner See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 233

Abb. 92: Tiefenkarte des Rugensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 236

Abb. 93: Zeitliche Entwicklung der Trophieparameter vom Rugensee
(Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 237

Abb. 94: Rühner See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 239

Abb. 95: Tiefenkarte des Oberen Schloßsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 242

Abb. 96: Zeitliche Entwicklung der Trophieparameter vom Oberen Schloßsee
(Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 244

Abb. 97: Tiefenkarte des Schmacher Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 247

Abb. 98: Zeitliche Entwicklung der Trophieparameter vom Schmacher See
(Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 248

Abb. 100: Zeitliche Entwicklung der Trophieparameter vom Schmalen Luzin
(Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 254

Abb. 101: Tiefenkarte des Schmollensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 258

Abb. 102: Zeitliche Entwicklung der Trophieparameter vom Schmollensee
(Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 260

Abb. 103: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) ... 262

Abb. 104: Schweriner Innensee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 265
Abb. 105: Schweriner Außensee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 266

Abb. 107: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 274

Abb. 109: Zeitliche Entwicklung der Trophieparameter vom Teterower See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 278

Abb. 110: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 281

Abb. 111: Tiefer Trebbower See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 284

Abb. 112: Zeitliche Entwicklung der Trophieparameter vom Tiefer Trebbower See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 285

Abb. 113: Tiefwarensee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 287

Abb. 114: Zeitliche Entwicklung der Trophieparameter vom Tiefwarensee (Mittelwerte der Vegetationsperiode von April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 289

Abb. 115: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 292

Abb. 116: Zeitliche Entwicklung der Trophieparameter vom Toller Trebbower See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 294

Abb. 118: Tiefenkarte des Tressower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 300

Abb. 119: Zeitliche Entwicklung der Trophieparameter vom Tressower See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 302
Abb. 120: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 304

Abb. 121: Zeitliche Entwicklung der Trophieparameter vom Upahler See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 306

Abb. 122: Wanzkaer See (Langer See) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 308

Abb. 123: Zeitliche Entwicklung der Trophieparameter vom Seeteil Wanzka (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 310

Abb. 124: Tiefenkarte des Wockersees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 312

Abb. 125: Zeitliche Entwicklung der Trophieparameter vom Wockersee (Vegetationsmittelwerte, April – Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 313

Abb. 126: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 315

Abb. 128: Zeitliche Entwicklung der Trophieparameter vom Wolgastsee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 319

Abb. 129: Woseriner See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 322

Abb. 130: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 325

Abb. 131: Zeitliche Entwicklung der Trophieparameter vom Woterfitzsee (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 326

Abb. 132: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 329

Abb. 133: Zeitliche Entwicklung der Trophieparameter vom Innensee des Ziegelsees (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 331

Abb. 134: Ausschnitt aus topographischer Karte (Landesvermessungsamt Mecklenburg-Vorpommern 1999) .. 334

Abb. 135: Zeitliche Entwicklung der Trophieparameter vom Zierker See (Vegetationsmittelwerte, April - Oktober) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 336
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tab. 1:</th>
<th>Topographie und Morphometrie des Barniner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab. 3:</td>
<td>Makrozoobenthosvorkommen im oberen Sublitoral außerhalb der Makrophytenzone während einer Frühsommerprobung mittels Bodengreifer (Mischprobe aus allen Hols von 12 Sektoren). Siebmaschenweite: 200 µm (Institut für angewandte Ökologie GmbH 2001)</td>
<td>16</td>
</tr>
<tr>
<td>Tab. 4:</td>
<td>Topographie und Morphometrie des Bergsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)</td>
<td>17</td>
</tr>
<tr>
<td>Tab. 6:</td>
<td>Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand November 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten...</td>
<td>19</td>
</tr>
<tr>
<td>Tab. 7:</td>
<td>Topographie und Morphometrie des Bolzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)</td>
<td>20</td>
</tr>
<tr>
<td>Tab. 9:</td>
<td>Topographie und Morphometrie des Borgwallsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)</td>
<td>22</td>
</tr>
<tr>
<td>Tab. 11:</td>
<td>Topographie und Morphometrie des Breiten Luzin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)</td>
<td>26</td>
</tr>
</tbody>
</table>

Tab. 14: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand September 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten... 30

Tab. 15: Topographie und Morphometrie des Bützower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)................................. 32

Tab. 17: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand September 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten... 34

Tab. 18: Topographie und Morphometrie des Cambser Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)................................. 37

Tab. 20: Topographie und Morphometrie des Carwitzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)................................. 40

Tab. 22: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand August 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten... 43
Tab. 23: Topographie und Morphometrie des Conventer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 46

Tab. 25: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand Juli 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten... 47

Tab. 26: Topographie und Morphometrie des Dabelowsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 48

Tab. 29: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand August 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten... 52

Tab. 30: Topographie und Morphometrie des Damerower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 53

Tab. 32: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand Juli 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten... 55

Tab. 33: Topographie und Morphometrie der Lieps (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 57

Tab. 34: Vegetationsmittelwerte (April-Oktober) chemischer und trophie relevanter Parameter des Jahres 2001, Oberfläche (Ausnahme TPFrüh: Mittelwert der Monate März und April 2001) (Daten vom Umweltministerium M-V,
Tab. 35: Topographie und Morphometrie des Dobbertiner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 58

Tab. 38: Topographie und Morphometrie der Döpe (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 65

Tab. 40: Topographie und Morphometrie des Drewitzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 69

Tab. 42: Topographie und Morphometrie des Dümmer .. 71

Tab. 43: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanter Parameter des Jahres 2001 (Ausnahme TPFrüh: Mittelwert der Monate März und April 2001) ... 72

Tab. 44: Topographie und Morphometrie des Feisnecksees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) 74

Tab. 46: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand November 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten... 76
Tab. 47: Topographie und Morphometrie des Feldberger Haussees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 77

Tab. 49: Topographie und Morphometrie des Flachen See Klocksin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 82

Tab. 51: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand November 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten ... 84

Tab. 52: Topographie und Morphometrie des Fleesensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 85

Tab. 54: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand November 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten ... 87

Tab. 55: Topographie und Morphometrie des Galenbecker Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 89

Tab. 57: Topographie und Morphometrie des Goldberger Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 94

352
Tab. 59: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand Juli 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten...

Tab. 60: Topographie und Morphometrie des Gothensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 63: Topographie und Morphometrie des Groß Labenzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 64: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanter Parameter des Jahres 1999 vom Groß Labenzer See (Seeteil Labenz) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 65: Topographie und Morphometrie des Großen Brückentinsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 68: Topographie und Morphometrie des Großen Dambecke Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 70: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand August 1995. Kleinfischarten sind
aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen
insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft
und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten. 109

Tab. 71: Topographie und Morphometrie des Großen Fürstenseer Sees (Daten
vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und
Nachhaltige Entwicklung - Seenprojekt, 2002)……………………………….. 110

Tab. 72: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanter
Parameter des Jahres 1995, Oberfläche (Ausnahme TP\textsubscript{Früh}; Mittelwert der
Monate März und April 1995) (Daten vom Umweltministerium M-V,
Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung -
Seenprojekt, 2002)……………………………………………………………… 111

Tab. 73: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf
Basis von Fisherbefragungen, Stand August 1995. Kleinfischarten sind
aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen
insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft
und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten. 112

Tab. 74: Topographie und Morphometrie des Großen Labussee (Daten vom
Umweltministerium M-V, Abteilung Integrierter Umweltschutz und
Nachhaltige Entwicklung - Seenprojekt, 2002)……………………………….. 113

Tab. 75: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanter
Parameter des Jahres 2001, Oberfläche (Ausnahme TP\textsubscript{Früh}; Mittelwert der
Monate März und April 2001) (Daten vom Umweltministerium M-V,
Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung -
Seenprojekt, 2002)……………………………………………………………… 114

Tab. 76: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf
Basis von Fisherbefragungen, Stand August 1995. Kleinfischarten sind
aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen
insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft
und Fischerei Mecklenburg-Vorpommern 2002) h = häufig, s = selten.. 115

Tab. 77: Topographie und Morphometrie des Großen Sees bei Pinnow (Daten vom
Umweltministerium M-V, Abteilung Integrierter Umweltschutz und
Nachhaltige Entwicklung - Seenprojekt, 2002)……………………………….. 116

Tab. 78: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanter
Parameter des Jahres 2001, Oberfläche (Ausnahme TP\textsubscript{Früh}; Mittelwert der
Monate März und April 2001) (Daten vom Umweltministerium M-V,
Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung -
Seenprojekt, 2002)……………………………………………………………… 117

Tab. 79: Topographie und Morphometrie des Großen Sternberger Sees (Daten
vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und
Nachhaltige Entwicklung - Seenprojekt, 2002)……………………………….. 119

Tab. 80: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanter
Parameter des Jahres 1998, Oberfläche (Ausnahme TP\textsubscript{Früh}; Mittelwert der
Monate März und April 1998) (Daten vom Umweltministerium M-V,
Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung -
Seenprojekt, 2002)……………………………………………………………… 120

Tab. 81: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf
sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen
Tab. 82: Topographie und Morphometrie des Großer Wariner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 84: Makrozoobenthosvorkommen im oberen Sublitoral außerhalb der Makrophytenzone während einer Frühjahrsbeprobung mittels Bodengreifer (Mischprobe aus allen Hols von 12 Sektoren). Siebmaschenweite: 200 µm (Institut für angewandte Ökologie GmbH 2001)

Tab. 86: Topographie und Morphometrie des Großer Wostevitzer Teichs (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 87: Topographie und Morphometrie des Hohen Sprenzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 89: Topographie und Morphometrie des Inselsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 92: Topographie und Morphometrie des Nordbeckens (JABN), des Mittelbeckens (JABM), des Südbeckens (JABS) sowie des gesamten Jabeler Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)

Tab. 93: Vegetationsmittelwerte (April - Oktober) chemischer und trophierelevanter Parameter des Jahres 1999 im Epilimnion (Ausnahme TPF\textsubscript{Früh}: Mittelwert
der Monate März und April 1999) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).. 138

Tab. 95: Topographie und Morphometrie des Käbelicksees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).. 143

Tab. 98: Topographie und Morphometrie des Klein Pritzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 147

Tab. 100: Topographie und Morphometrie des Kölpinsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)................................. 151

Tab. 103: Topographie und Morphometrie der Seeteile Krakower Ober- (KO) und Untersee (KU) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)...... 157

Tab. 104: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanten Parameter des Jahres 1999, Oberfläche des Krakower Oberssees (KO) und des Krakower Untersees (BS= Binnensee, StS= Stadtsee, Nt= Nordtiefe, SS= Serrahner Seeteil, St= Südtiefe), (Ausnahme TP_Früh:
Tab. 105: Topographie und Morphometrie des Krüselinsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 158
Tab. 107: Topographie und Morphometrie des Kummerower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 162
Tab. 110: Topographie und Morphometrie des Lankower See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 169
Tab. 113: Topographie und Morphometrie des Lebehnscher Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 173
Tab. 116: Topographie und Morphometrie des Malchiner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 177

Tab. 119: Topographie und Morphometrie des Malkwitzer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 182

Tab. 122: Topographie und Morphometrie des Medeweger Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 185

Tab. 124: Vorkommen und Häufigkeit von potentiell zu erwartenden Fischarten auf Basis von Fischerbefragungen, Stand Oktober 1995. Kleinfischarten sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten. 188

Tab. 125: Topographie und Morphometrie des Mickowsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 189

Tab. 127: vorläufige Topographie und Morphometrie der Müritz, AM = Außenmüritz (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) 192

Tab. 131: Topographie und Morphometrie des Neuklostersees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 200

Tab. 133: Topographie und Morphometrie des Neumühler Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 204

Tab. 136: Topographie und Morphometrie des Neustädter Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) .. 207

Tab. 141: Topographie und Morphometrie des Paschensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 214

Tab. 143: Topographie und Morphometrie des Pinnower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 218

Tab. 147: Topographie und Morphometrie des Plauer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 222

360
Tab. 150: Topographie und Morphometrie des Probst Jesarer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 227

Tab. 152: Topographie und Morphometrie des Putzarer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 230

Tab. 154: Topographie und Morphometrie des Röggeliner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 233

Tab. 157: Topographie und Morphometrie des Rugensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 236

Tab. 159: Topographie und Morphometrie des Rühner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 239

sind aufgrund des Einsatzes von Reusen, Stellnetzen und Zugnetzen insgesamt unterrepräsentiert (Landesforschungsanstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern 2002). h = häufig, s = selten. 241

Tab. 162: Topographie und Morphometrie des Oberen Schloßsee (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 243

Tab. 165: Topographie und Morphometrie des Schmacher See (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 247

Tab. 168: Topographie und Morphometrie des Schmalen Luzin (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).. 253

Tab. 171: Topographie und Morphometrie des Schmollensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).. 259

Tab. 172: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanter Parameter des Jahres 2000, Oberfläche (Ausnahme TPFrüh: Mittelwert der Monate März und April 2000) (Daten vom Umweltministerium M-V,
Tab. 173: Topographie und Morphometrie des Schweingartensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 259

Tab. 176: Topographie und Morphometrie des gesamten Schweriner Sees (GS) und der Seeteile Innensee (IS) und Außensee (AS) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 267

Tab. 180: Topographie und Morphometrie des Tempzin-der Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 274

Tab. 182: Topographie und Morphometrie des Teterower Sees. (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002) ... 277

Tab. 183: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelanter Parameter des Jahres 1997, Oberfläche (Ausnahme TP\textsubscript{Früh}: Mittelwert der
Monate März und April 1997) (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 278

Tab. 184: Topographie und Morphometrie des Tiefen Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002).......................... 281

Tab. 187: Topographie und Morphometrie des Tiefen Trebbower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 284

Tab. 189: Topographie und Morphometrie des Tiefwarensees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 288

Tab. 192: Topographie und Morphometrie des Tollensesees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 293

Tab. 194: Topographie und Morphometrie des Treptowsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 297
Tab. 197: Topographie und Morphometrie des Tressower Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)	301
Tab. 200: Topographie und Morphometrie des Upahler Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)	305
Tab. 203: Topographie und Morphometrie des Wanzkaer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)	308
Tab. 205: Topographie und Morphometrie des Wockersees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)	309
Tab. 206: Vegetationsmittelwerte (April-Oktober) chemischer und trophierelevanter Parameter des Jahres 2001, Oberfläche (Ausnahme TPFrüh: Mittelwert der	312
Tab. 207: Topographie und Morphometrie des Woezer Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 313

Tab. 209: Topographie und Morphometrie des Wolgastsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 318

Tab. 212: Topographie und Morphometrie des Woseriner Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 323

Tab. 214: Topographie und Morphometrie des Woterfitzsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 325

Tab. 217: Topographie und Morphometrie des Ziegelsees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002)... 329

Tab. 220: Topographie und Morphometrie des Zierker Sees (Daten vom Umweltministerium M-V, Abteilung Integrierter Umweltschutz und Nachhaltige Entwicklung - Seenprojekt, 2002). 334

4 Literatur

http://www.agentur-wessien.de/UmweltreportMV/Bilder/p27.pdf
http://www.mv-regierung.de/laris/pages/navigat/791.htm
http://www.mvweb.de/angeln/88.html
http://www.polyplan-gmbh.de/polyplan/Polyplan/de/1/gewaesser/4.html?fix=true

LUNG M-V (Hrsg.), 1999: Grundlagen für ein Sanierungs- und Restaurierungskonzept der Seen in Mecklenburg-Vorpommern.

(MVweb GmbH & Co.KG 2002)

(MVweb GmbH & Co.KG 3 A.D.)

Ventz, D., 1964: Der Schweriner See, seine gütemäßige Eignung für eine Trinkwasserentnahme. Z.ges.Hyg. 10. 439 - 448
