

Forecast Optimisation by Correction and Combination methods for System Integration (FOCCSI)

- Dragana Nikodinoska and Felix Müsgens -

und Energie aufgrund eines Beschlusses des Deutschen Bundestage

Bundesministeriun für Wirtschaft

Gefördert durch

The research goal:

Low forecasting errors for solar photovoltaic (PV) and wind feed-in forecasts

The research question:

Whether PV and wind feed-in **"meta-forecasts"** with dynamic elastic net outperform: individual forecasts and other benchmarks

Motivation:

a) Net electricity generation from renewable energy sources (RES) in Germany increased from 19.2 % in 2010 to 46 % in 2019;

b) Precise RES feed-in forecasts aim to reduce the uncertainty related to these variable energy sources and to ensure system stability;

c) Short term RES feed-in forecasts are used by: plant operators (to manage power plants and to minimize penalties due to deviation between forecasted and produced energy), system operators (to determine the reserve requirements and to meet real time loads) and traders (to optimize their trading activities) **Data:**

- covers the period 2012–2018 for PV / 2010–2018 for wind (obtained in cooperation with 50Hertz) $\,$

- approximately 25 % / 32 % of total installed PV / wind capacity in Germany

- quarter-hourly, totalling 245,472 / 315,552 realizations of PV / wind feed-in (in MW)

- day-ahead PV / wind forecasts (at 9 a.m.) for feed-in as provided by the different forecasts providers (F1–F6 / F7)

The "meta-forecast":

 $-\tilde{\varphi}_{it}$ are the i = 1, ..., m individual forecasts at t; $-\beta_{0,t'}$ and $\beta_{i,t'}$ are the combination weights – the determination of the coefficients is based on historical information available up to: $t \le t'$

PV results:

"Meta forecasts" with DELNET outperform the

simple average (SA) and best individual forecasts (F2)

- Overall: DELNET has 13.4% lower RMSE than SA and 4% lower than F2

Year	RMSE [MW]				
	SA	K	DELNET	F2	
2012	218	213	184	193	
2013	272	249	249	272	
2014	256	295	249	263	
2015	256	260	249	256	
2016	261	249	237	240	
2017	334	277	274	277	
2018	337	263	269	272	
Overall	283	263	245	255	

Our contribution:

- We introduce dynamic data pre-processing to cope with quality issues in the PV and wind datasets

- Our forecasting framework relies on DELNET to address multi-collinearity among the individual RES forecasts

- Our study provides an **empirical contribution to the short-term renewable energy forecasting** literature by using unique, high-frequency datasets for both PV and wind feed-in in Germany

- The framework could have **wider application** for RES forecasting in individual power plants, smaller grid areas, systems, regions or other countries

Dynamic Elastic Net (DELNET) with Dynamic Data Pre-processing (objective function):

$$\min_{\left(\beta_{0,t'},\boldsymbol{\beta}_{t'}\right)} \frac{1}{2N} \sum_{t=t'-N+1}^{t'} \left(\varphi_t - \beta_{0,t'} - \widetilde{\boldsymbol{\varphi}}_t^T \boldsymbol{\beta}_{t'}\right)^2 + \lambda \left[\alpha \|\boldsymbol{\beta}_{t'}\|_1 + (1-\alpha) \|\boldsymbol{\beta}_{t'}\|_2^2 / 2\right]$$

 $-\beta_{0,t'}^*$ and $\boldsymbol{\beta}_{t'}^* = (\beta_{1,t'}^*, ..., \beta_{m,t'}^*)^T$ the optimal model coefficients; $-\tilde{\boldsymbol{\varphi}}_t^T = (\tilde{\varphi}_{1t}, ..., \tilde{\varphi}_{mt})^T$ includes the *m* individual forecasts for each *t* from the history: [t' - N + 1, t'];

 $-\varphi_t$ - the associated realizations of PV and wind power;

- $(\lambda \|\boldsymbol{\beta}_{t'}\|_1)$ - "LASSO"-penalty and $(\lambda \|\boldsymbol{\beta}_{t'}\|_2^2/2)$ - "Ridge"-penalty;

- $\lambda=0$ - the objective function leads to ordinary least squares (OLS) regression;

Wind results:

DELNET forecasts are more precise than SA and F5 - Overall: DELNET Wind or has which is **6.1%**

lower RMSE than SA and **3.5%** lower than F5

Year	RMSE [MW]				
	SA	K	DELNET	F2	
2012	588	623	552	627	
2013	601	598	590	605	
2014	579	549	542	561	
2015	717	684	656	688	
2016	664	611	611	611	
2017	755	733	716	728	
2018	795	708	717	721	
Overall	660	630	611	633	

