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ABSTRACT 

In this article, we theoretically derive and analyze several important properties of the 

simple average combination. Starting from an insightful expression for the mean 

squared error, we formulate the necessary and sufficient conditions for the occurrence 

of a perfect forecast. Additionally, we derive further performance characteristics of the 

simple average such as lower and upper limits for the mean squared error. The mean 

squared error of the combination is practically always between these limits with a 

certain probability to exceed the best individual forecast. Subsequently, we introduce 

and analyze two criteria, which determine when the combined forecast is superior to the 

individual forecasts. Finally, we test and confirm the most important results in several 

Monte Carlo experiments as well as with data from the M4 Forecast Competition. These 

partly new findings contribute to a complete theoretical understanding of the simple 

average combination and are useful to improve the prediction quality. 

Keywords: analytical investigation, equal weight combination, general performance, mean 

squared error 

JEL classification: C53 

1 INTRODUCTION 

It is well known that forecast combinations are a proven procedure to reach a higher forecast 

quality for a given set of competing forecasts. Since the initial work of Bates and Granger 

(1969), many alternative methods have been developed to combine a given set of forecasts. 

The spectrum includes e.g. simple linear combinations like the simple average or combination 

weights expressed by the relative mean squared error (Stock and Watson, 2001) as well as 

more sophisticated approaches based on regression weights (Granger and Ramanathan, 1984), 

time-varying regime-switching weights (Guidolin and Timmermann, 2009) or Bayesian 

model averaging (Madigan and Raftery, 1994; Jackson and Karlsson, 2004). A basic overview 

about forecast combinations can be found e.g. in Timmermann (2006) or Moral-Benito 

(2015) and the references therein. The resulting combined forecasts are usually better than 

the best individual forecast. This follows e.g. from extensive studies which analyses the 

performance of forecast combinations in different areas (Clemen, 1989), for thousands of time 

series (Makridakis and Hibon, 2000) as well as for linear and non-linear models (Stock and 

Watson, 2001; Stock and Watson, 2004; Marcellino, 2004). 

Despite the significant effort in developing new sophisticated methods, it has been found that 

the simple average (weights equal to 1/𝑁, where 𝑁 is the number of forecasts) is often hard 

to beat by advanced combination procedures. The simple average is frequently used and even 

recommended in literature because of its good performance, its simple structure, and the fact 

that no estimation of model parameters is necessary (see e.g. Granger and Jeon, 2004; Genre 

et al., 2013). Therefore, it is important to understand better the theoretical principles that 

determine its outstanding performance. 

We can divide the studies on the performance of the simple average into two main streams. 

On one hand, we have the analysis of the good and partly superior performance of the simple 
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average compared to other, especially more sophisticated combination approaches. This is 

formally known as the “forecast combination puzzle” (Stock and Watson, 2004). Here the 

majority of literature (c.f. for example Clemen and Winkler, 1986; Hendry and Clements, 

2004 or more recently Smith and Wallis, 2009; Cleaskens et al., 2016; Magnus and De Luca, 

2016, and Chan and Pauwels, 2018) investigate the effects of estimation issues and errors 

occurring in the estimation of model parameters, usually needed in more advanced 

procedures. They concluded that estimated parameters are rarely optimal and often inferior to 

fixed weights. In contrast, Timmermann (2006) and Elliott (2011) follow a slightly different 

argumentation. They consider the loss caused by the estimation process in more advanced 

combination methods and compare it to the possible gain when using optimal models. Elliott 

(2011) found that the optimal parameters are often similar to the weights of the simple 

average, caused by certain, frequently occurring properties of the individual forecasts. It 

follows that the gain compared to fixed equal weights is small and can be outweighed by the 

loss from estimation errors. 

On the other hand, we are interested in the general performance of the simple average, 

especially in comparison to the individual forecasts from which the combination is generated. 

Unfortunately, from the theoretical point of view, little is known about the mathematical 

properties of the simple average combination of forecasts. That concerns issues such as: 

 Is there a perfect forecast1 possible with simple average combination and when yes, 

under which conditions? 

 How bad and how good can the simple average forecast be and when is the simple 

average reaching these limits? 

 When and why can the simple average beat each of the individual forecasts from 

which it is calculated? 

 How can we explain the empirical findings based on theoretical results? 

Recently, Chan and Pauwels (2018) have investigated especially the last two points 

theoretically by introducing a useful variant of the common matrix formalism. Nevertheless, 

why the simple average often outperforms the best individual forecast is still not really 

understood. They unfortunately deliver only a satisfactory answer for the unrealistic 

assumption of completely uncorrelated forecast errors, which can barely explain the empirical 

findings. 

In this article, we want to provide more insights into the questions above and further 

properties of the simple average combination. For this purpose, we derive a formalism, which 

is effective and sufficient to discuss analytically several important properties of the simple 

average combination of 𝑁 ∈ ℕ different unbiased individual forecasts in terms of the mean 

squared error (𝑀𝑆𝐸). Based on these partly new insights, the article contributes to complete 

the theory of simple average combinations. The results are useful for further investigations 

and can help to improve the forecast accuracy through an exact analytical understanding. 

The remainder of the article is organized as follows. In Section 2, we provide the analytical 

discussion, divided in four parts beginning with the derivation of an insightful expression for 

                                                 
1 In the sense of mean squared error. 
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the 𝑀𝑆𝐸 of the simple average combination (Section 2.1). Subsequently, we investigate the 

possibility of perfect forecasts (Section 2.2) as well as the limits on the performance 

(Section 2.3) in simple average combinations. In Section 2.4, we introduce and theoretically 

analyze the criteria, which have to be fulfilled so that the simple average is superior to the 

best individual forecast. In Section 3, we apply these findings to explain the superior 

performance of the simple average, frequently observed in the empirical literature. We 

illustrate our results by a Monte Carlo simulation as well as by an application to the forecasts 

of the M4 Forecast Competition in Section 4 and 5. Section 6 conclude the article. 

2 THE THEORETICAL ANALYSIS OF THE AVERAGE 

COMBINATION 

In the following sections, we provide the theoretical framework for the analyzation of simple 

average combinations. We derive a formalism which is useful and sufficient to discuss 

analytically several properties of the simple average combination under quadratic loss. We 

deliberately avoid the common matrix formalism existing in most articles, because the 

compact and abstract representation sometimes hinders the recognition of deeper connections. 

The changed perspective leads to several, partly new insights that helps to understand the 

general performance of simple average combinations. 

2.1 The MSE of the average combination 

Let 𝜑𝑡, 𝑡 = 1, … , 𝜏 be the observed time series of interest and let 𝜑𝑖𝑡, 𝑖 = 1, … , 𝑁 be 𝑁 

forecasts for the observation 𝜑𝑡. Then we formulate the simple average combination 𝜑𝑁 at 

time 𝑡 by 

 

𝜑𝑁𝑡 =
1

𝑁
∑ 𝜑𝑖𝑡

𝑁

𝑖=1

. (1)

When we define the forecast error of forecast 𝑖 at time 𝑡 as ∆𝜑𝑖𝑡: = 𝜑𝑖𝑡 − 𝜑𝑡, then with (1) we 

can derive the error of the combined forecast: 

 

∆𝜑𝑁𝑡 = (
1

𝑁
∑ 𝜑𝑖𝑡

𝑁

𝑖=1

) − 𝜑𝑡 = (
1

𝑁
∑ ∆𝜑𝑖𝑡

𝑁

𝑖=1

+
1

𝑁
∑ 𝜑𝑡

𝑁

𝑖=1

) − 𝜑𝑡 

  =
1

𝑁
∑ ∆𝜑𝑖𝑡

𝑁

𝑖=1

+ (∑
1

𝑁

𝑁

𝑖=1

− 1) 𝜑𝑡 =
1

𝑁
∑ ∆𝜑𝑖𝑡

𝑁

𝑖=1

.      

(2)

From (2) it follows, that the error of the simple average combination is given by the average 

of the individual forecast errors. This result is typical for each combination approach in which 

the weights sum up to one. Let now ∆𝝋𝑁 ≔ (∆𝜑𝑁1, … , ∆𝜑𝑁𝜏)𝑇 and ∆𝝋𝑖 ≔ (∆𝜑𝑖1, … , ∆𝜑𝑖𝜏)𝑇, 

then the mean value E(∆𝝋𝑁) can be written as 

 

𝐸(∆𝝋𝑁) =
1

𝑁
∑ 𝐸(∆𝝋𝑖)

𝑁

𝑖=1

. (3)
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If we use the standard assumption E(∆𝝋𝑖) = 0, ∀𝑖 (unbiased forecasts), then it results from 

(3) that 𝐸(∆𝝋𝑁) = 0 as well. In this case the 𝑀𝑆𝐸(𝜑𝑁) = E(∆𝝋𝑁)2 + 𝑉(∆𝝋𝑁) of the 

combined forecast is identical with the variance 𝑉(∆𝝋𝑁) of the combined errors. Therefore, 

we find for the 𝑀𝑆𝐸: 

 

𝑀𝑆𝐸(𝜑𝑁) = 𝜎𝑁
2 =

1

𝑁2
[∑ 𝜎𝑖

2 + 2 ∑ ∑ 𝜎𝑖𝑗

𝑗−1

𝑖=1

𝑁

𝑗=2

𝑁

𝑖=1

]. (4)

Here, we have introduced the common abbreviations 𝜎𝑁
2 ≔ 𝑉(∆𝝋𝑁) for the variance of the 

combined errors, 𝜎𝑖
2 ≔ 𝑉(∆𝝋𝑖) for the variance of the individual errors as well as 𝜎𝑖𝑗 ≔

𝐶𝑉(∆𝝋𝑖 , ∆𝝋𝑗) for their covariance. From (4), we can finally obtain an insightful 

representation of the variance of the combined forecast: 

 
𝜎𝑁

2 =
1

𝑁
𝜎̅𝑉 +

𝑁 − 1

𝑁
𝜎̅𝐶𝑉. (5)

In (5) 𝜎̅𝑉 is the average of all 𝑁 error variances 𝜎𝑖
2 of the individual forecasts, given by 

 

𝜎̅𝑉 ≔
1

𝑁
∑ 𝜎𝑖

2

𝑁

𝑖=1

. (6)

Analogous 𝜎̅𝐶𝑉 is the average of all 𝑁(𝑁 − 1)/2 covariances 𝜎𝑖𝑗 between the errors of the 

individual forecasts, which we can write as 

 

𝜎̅𝐶𝑉 ≔
2

𝑁(𝑁 − 1)
∑ ∑ 𝜎𝑖𝑗

𝑗−1

𝑖=1

𝑁

𝑗=2

. (7)

For finite variances 𝜎𝑖
2 and finite covariances 𝜎𝑖𝑗, the average variance 𝜎̅𝑉 and the average 

covariance 𝜎̅𝐶𝑉 are also finite, with values 𝜎̅𝑉 ∈ [𝜎𝑚𝑖𝑛
2 , 𝜎𝑚𝑎𝑥

2 ] and 𝜎̅𝐶𝑉  ∈ [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥]. Here 

are 𝜎𝑚𝑖𝑛 
2 = min{𝜎𝑖 

2| 𝑖 ∈ [1, 𝑁]} and 𝜎𝑚𝑎𝑥 
2 = max{𝜎𝑖 

2| 𝑖 ∈ [1, 𝑁]} the minimum and 

maximum error variance as well as 𝜎𝑚𝑖𝑛 = min{𝜎𝑖𝑗|𝑗 ∈ [2, 𝑁] ∧ 𝑖 ∈ [1, 𝑗 − 1]} and 𝜎𝑚𝑎𝑥 =

max{𝜎𝑖𝑗| 𝑗 ∈ [2, 𝑁] ∧ 𝑖 ∈ [1, 𝑗 − 1]} the minimum and maximum covariance. This is even 

true, when we consider an infinite number 𝑁 of forecasts. In this case (6) and (7) are infinite 

but convergent series, with limit values again in [𝜎𝑚𝑖𝑛
2 , 𝜎𝑚𝑎𝑥

2 ] and [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥] (the proof is 

based on the direct comparison test). We can see from (5), that the error variance of the 

combined forecast is the weighted average of the average variance 𝜎̅𝑉 and the average 

covariance 𝜎̅𝐶𝑉, where the weights sum up to one: 

 1

𝑁
+

𝑁 − 1

𝑁
= 1. (8)

Equation (5) reduces the error variance from a function of a large number of statistical 

parameters to an expression with only two relevant statistical parameters. This is useful for 

the following discussions. 
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2.2 The perfect forecast in average combinations 

We start our discussion of perfect forecasts in simple average combinations with an academic 

case and for a finite number 𝑁 of forecasts. If we assume the unrealistic but simple and often 

discussed scenario of pairwise completely uncorrelated errors (𝜌𝑖𝑗 = 0, ∀𝑖𝑗 with 𝜌𝑖𝑗 as the 

correlation between errors 𝑖 and 𝑗), then, according to (5), the covariance part vanishes and 

the variance of the combined forecast is given by 

 
𝜎𝑁

2 =
1

𝑁
𝜎̅𝑉. (9)

Obviously, under the strong assumption of completely uncorrelated errors and a finite 𝜎̅𝑉 (see 

Section 2.1), 𝜎𝑁
2 is decreasing with increasing the number 𝑁 of forecasts combined, leading to 

a perfect forecast for 𝑁 → ∞. The same result was previously found by Chan & Pauwels 

(2018) discussing the conditions for the superiority of the simple average compared to the 

best individual forecast. They derived the result using a matrix formalism framework. Here it 

follows simply from (5). Note there is an additional case resulting in (9), not discussed by 

Chan & Pauwels (2018). The result as well as the argumentation is also valid in case of a 

perfect cancelling out of the positive and negative error covariances of the individual 

forecasts, because then too 𝜎̅𝐶𝑉 = 0 [see (7)]. 

However, in order to explain the empirical findings, it is necessary to analyze a more realistic 

scenario. Therefore, we have to discuss the entire problem given in (5). From this equation, 

we find for 𝜎̅𝐶𝑉: 

 
𝜎̅𝐶𝑉  ≥ −

1

𝑁 − 1
𝜎̅𝑉. (10)

The relation follows directly from the condition that the variance 𝜎𝑁
2 of the combined error 

must be greater than or equal to zero. Furthermore, we see that a simple average combination 

can deliver a perfect forecast only in case of equality in (10). That means the average 

covariance 𝜎̅𝐶𝑉 has to take a certain non-positive value between −𝜎̅𝑉 for 𝑁 = 2 and zero for 

𝑁 → ∞, depending on the respective number of forecasts and their average variance. This is 

the necessary and sufficient condition for a perfect forecast assuming that the average 

covariance is not vanishing. In practice, this condition is unlikely to be fulfilled, because it is 

well known that in most cases the errors of the individual forecast are positively correlated, 

leading to a positive average covariance 𝜎̅𝐶𝑉. The reason for this general observation is that 

frequently similar model approaches as well as similar data sets are used for the forecasting 

process. This results in similar error structures which, of course, show positive correlations 

(for a deeper discussion see e.g. Elliott, 2011). 

Now, we want to consider (5) for an increasing 𝑁. Since the weights in (5) sum up to one, it 

follows that 𝜎𝑁
2 is more and more dominated by the covariances. For example let 𝑁 = 10, 

then only 10 % of 𝜎̅𝑉 but 90 % of 𝜎̅𝐶𝑉 contributes to 𝜎𝑁
2. For the limit 𝑁 → ∞, we even have 

 
𝜎𝑁

2 = 𝜎̅𝐶𝑉. (11)

That means that 𝜎𝑁
2 is completely independent from a direct contribution of the error 

variances and purely determined by the covariances of the forecast errors. In addition, from 
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(10) as well as (11), we find the unexpected result that for 𝑁 → ∞ the average covariance 

cannot be negative (𝜎̅𝐶𝑉 ≥ 0). It is again necessary to ensure a non-negative variance 𝜎𝑁
2 in 

(11). However, the most important aspect is that even under the extreme assumption 𝑁 → ∞ 

the error variance of the combined forecast is normally not vanishing (c.f. also the last 

paragraph of Section 2.1). This result is not in accordance with Chan & Pauwels (2018) and 

will lead to significantly different conclusions about the performance of the simple average 

combination, especially in comparison to the best individual forecast (see Sections 2.3 

and 2.4). 

From this first analysis, it follows that it is beneficial to use a large number of forecasts that 

are as diverse as possible in simple average combinations. The large number of forecasts 

ensures a small contribution of the individual error variances to the combined error variance 

[see (5)]. The diversification means that we use forecasts, which have a higher probability for 

small or even negative error covariances. Such condition is at least reducing the dominant part 

𝜎̅𝐶𝑉 in (5) or even give a negative sign to 𝜎̅𝐶𝑉 which both lead to a smaller 𝜎𝑁
2. Therefore, we 

have here a theoretical explanation for the “conventional belief” (c.f. Chan & Pauwels, 2018) 

that diversified forecasts are more beneficial in forecast combinations. 

However, these conditions are nearly non-existent in reality. Rather, we have a finite, often a 

small number of forecast as well as highly correlated errors with not rarely similar error 

variances (see e.g. Elliott, 2011; Elliott & Timmermann 2016 or the discussion in Granger and 

Jeon, 2004). Based on these circumstances, we can neither expect something near to a perfect 

forecast from simple average combinations nor use this argument to explain the frequent 

outperformance of the simple average combination compared to the individual forecasts, as 

Chan and Pauwels (2018) proposed it. Therefore, we have to find a more satisfactory answer, 

which is the aim of the following sections. 

2.3 Limits of performance in average combinations 

To analyze the superiority of the simple average compared to the best individual and therefore 

to all individual forecasts, first we analyze the general bounds of the average combination 

performance. Using the limit 𝜎𝑖 
2 → 𝜎𝑚𝑎𝑥 

2 , ∀𝑖, we obtain from (5)2 

 
𝜎𝑁

2 =
1

𝑁
𝜎̅𝑉 +

𝑁 − 1

𝑁
𝜎̅𝐶𝑉 ≤ [

1

𝑁
+

𝑁 − 1

𝑁
𝜌̅] 𝜎𝑚𝑎𝑥 

2 ≔ 𝜎𝑁,𝑚𝑎𝑥
2 , (12)

when 

 
𝜌̅ ≥ 𝜌̅𝑚𝑖𝑛,0 =

1

𝑁 − 1
[

𝜎̅𝑉

𝜎𝑚𝑎𝑥 
2

− 1] +
𝜎̅𝐶𝑉

𝜎𝑚𝑎𝑥 
2

. (13)

Here 𝜌̅ is the average of all 𝑁(𝑁 − 1)/2 correlations 𝜌𝑖𝑗 between the 𝑁 forecast errors ∆𝝋𝑖, 

analogously defined to (7). From (10), we can determine the smallest possible 𝜌̅. If 𝜎𝑖 
2 →

𝜎𝑚𝑎𝑥 
2 , ∀𝑖, then the right hand side of (10) is minimal with −𝜎𝑚𝑎𝑥 

2 /(𝑁 − 1). Simultaneously, 

the left hand side simplifies to 𝜎𝑚𝑎𝑥 
2 𝜌̅ resulting in 

                                                 
2 More precise, we consider the limit of a function: lim

𝜎𝑖 
2→𝜎𝑚𝑎𝑥 

2 ,∀𝑖 
[𝜎𝑁

2(𝜎1 
2, … , 𝜎𝑁 

2 )] = 𝜎𝑁
2(𝜎𝑚𝑎𝑥 

2 , … , 𝜎𝑚𝑎𝑥 
2 ). 
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𝜌̅ ≥ 𝜌̅𝑚𝑖𝑛 = −

1

𝑁 − 1
. (14)

If we combine the minimum number of forecasts (𝑁 = 2), then 𝜌̅𝑚𝑖𝑛 = −1. For the opposite 

case, 𝑁 → ∞, we find that 𝜌̅𝑚𝑖𝑛 → 0. Therefore, we have together 𝜌̅𝑚𝑖𝑛 ∈ [−1,0]. However, 

from (14), it follows, that already for a small number 𝑁 of forecasts, we can have only a 

slightly negative average correlation. Since the correlation 𝜌𝑖𝑗 between the errors is mostly 

positive, we can even expect a positive 𝜌̅ in the majority of cases. 

If 𝜌𝑖𝑗 ≥ 0, ∀𝑖𝑗 ⇒  𝜌̅ ≥ 0 then the inequality (12) is generally true and 𝜎𝑁,𝑚𝑎𝑥
2  is an upper 

bound. The upper bound 𝜎𝑁,𝑚𝑎𝑥
2  is maximized for 𝜌̅ = 1 which follows, when all errors are 

perfectly correlated (𝜌𝑖𝑗 = 1, ∀𝑖𝑗). Since both weights sum up to one [see (8)], we find then 

 
𝜎𝑁

2 ≤ 𝜎𝑚𝑎𝑥 
2 . (15)

That means the error variance of the combined forecast cannot be higher than the highest error 

variance of the individual forecasts. 

In general, we cannot assume that always 𝜌𝑖𝑗 ≥ 0, even if this is likely for the majority of 

cases. In this case, the inequality (12) holds only if 𝜌̅ ≥ 𝜌̅𝑚𝑖𝑛,0 with a certain value 

𝜌̅𝑚𝑖𝑛,0 ∈  [𝜌̅𝑚𝑖𝑛, 1] according to (13). Here, we are interested in the largest 𝜌̅𝑚𝑖𝑛,0 defined as 

𝜌̅𝑚𝑖𝑛,𝑙 which the average correlation 𝜌̅ has to match or even exceed. For a corresponding 

analysis of (13), it is helpful to divide it into two steps. In the first step, we assume once again 

for the correlations 𝜌𝑖𝑗 ≥ 0, ∀𝑖𝑗, which is a common property for forecast errors and therefore 

the more relevant case. Here we should find a value of 𝜌̅𝑚𝑖𝑛,𝑙 for which 𝜌̅ ≥ 𝜌̅𝑚𝑖𝑛,0 is always 

satisfied, because we already expect the validity of (12) for this assumption. With the limit 

𝜎𝑖 
2 → 𝜎𝑚𝑎𝑥 

2 , ∀𝑖, we can maximize 𝜌̅𝑚𝑖𝑛,0 and simultaneously rewrite the average covariance 

as 𝜎̅ = 𝜎𝑚𝑎𝑥 
2 𝜌̅. Using these results in (13) we have for the largest possible 𝜌̅𝑚𝑖𝑛,0, 

 
𝜌̅𝑚𝑖𝑛,𝑙 = 𝜌̅. (16)

Under the assumption that 𝜌𝑖𝑗 ≥ 0, ∀𝑖𝑗  ⇒   𝜌̅ ≥ 0 and according to (13) and (16) as well as 

the related discussion, we can summarize the following result: 

 
𝜌̅ ≥ 𝜌̅𝑚𝑖𝑛,𝑙 ≥ 𝜌̅𝑚𝑖𝑛,0. (17)

Indeed, since 𝜌̅𝑚𝑖𝑛,0 has the maximum value 𝜌̅𝑚𝑖𝑛,𝑙 = 𝜌̅, the average correlation always fulfils 

the condition 𝜌̅ ≥ 𝜌̅𝑚𝑖𝑛,0. Therefore 𝜎𝑁,𝑚𝑎𝑥
2  in (12) is always an upper bound for the error 

variance of the combined forecast, if 𝜌𝑖𝑗 ≥ 0, ∀𝑖𝑗. 

In the second step, we additionally allow for negative correlations 𝜌𝑖𝑗 between the errors. 

Then, the limit 𝜎𝑖 
2 → 𝜎𝑚𝑎𝑥 

2 , ∀𝑖 maximizes again the first term of the sum in (13). The second 

term of the sum however, is not necessarily increasing to his maximum value. We can see 

this, when we rewrite this term as a weighted sum of the correlations. With (7) it follows 
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𝜎̅𝐶𝑉

𝜎𝑚𝑎𝑥 
2

=
2

𝑁(𝑁 − 1)
∑ ∑

𝜎𝑖𝜎𝑗

𝜎𝑚𝑎𝑥 
2

𝑗−1

𝑖=1

𝑁

𝑗=2

𝜌𝑖𝑗. (18)

When we assume now, that the possible negative correlations in (18) have mostly small 

weights 𝜎𝑖𝜎𝑗/𝜎𝑚𝑎𝑥 
2 ≪ 1, while the positive correlations have weights close to one. Then, after 

applying the limiting process 𝜎𝑖 
2 → 𝜎𝑚𝑎𝑥 

2 , ∀𝑖, the negative correlations receive more weight 

(𝜎𝑖𝜎𝑗/𝜎𝑚𝑎𝑥 
2 → 1), whereas the weights of the positive correlations are only slightly changed. 

In such a case, it is possible that 𝜎̅𝐶𝑉/𝜎𝑚𝑎𝑥 
2  has a smaller value after the limiting process, 

because the negative correlations have now an increased contribution to the sum. This leads to 

a reduced summation value. Therefore, it is not guaranteed that the limit 𝜎𝑖 
2 → 𝜎𝑚𝑎𝑥 

2 , ∀𝑖 in 

(13) delivers the largest 𝜌̅𝑚𝑖𝑛,0. 

For a deeper analyses of this point, we now introduce ∆𝜎𝑖 
2 ≔ 𝜎𝑚𝑎𝑥 

2 − 𝜎𝑖 
2 ≥ 0 and 

∆𝜎𝑖𝑗 ≔  𝜎𝑖𝑗,𝑚𝑎𝑥 − 𝜎𝑖𝑗 with 𝜎𝑖𝑗,𝑚𝑎𝑥 ≔ 𝜎𝑚𝑎𝑥 
2 𝜌𝑖𝑗 (∆𝜎𝑖𝑗 ≥ 0 if 𝜌𝑖𝑗 ≥ 0 and ∆𝜎𝑖𝑗 < 0 if 𝜌𝑖𝑗 < 0) 

as the changes of the variance and the covariance terms caused by the limiting process. Then 

from (6), we can write for the limit 𝜎𝑖 
2 →  𝜎𝑚𝑎𝑥 

2 , ∀𝑖: 

 

lim
𝜎𝑖 

2→𝜎𝑚𝑎𝑥 
2 ,∀𝑖 

[𝜎̅𝑉] =
1

𝑁
∑ 𝜎𝑚𝑎𝑥

2

𝑁

𝑖=1

=
1

𝑁
∑ 𝜎𝑖

2

𝑁

𝑖=1

+ ∆𝜎𝑖 
2 = 𝜎̅2 +

1

𝑁
∑ ∆𝜎𝑖 

2

𝑁

𝑖=1

. (19)

Without loss of generality, we can count the 𝑁(𝑁 − 1)/2 individual correlations in (7) by a 

new index (𝑖, 𝑗) → 𝑘 with 𝑘 = 1, … , 𝐾 and 𝐾 ≔ 𝑁(𝑁 − 1)/2. Then the limiting process 

𝜎𝑖 
2 →  𝜎𝑚𝑎𝑥 

2 , ∀𝑖 delivers for (7) 

 

lim
𝜎𝑖 

2→𝜎𝑚𝑎𝑥 
2 ,∀𝑖

[𝜎̅𝐶𝑉]  =
1

𝐾
∑ 𝜎𝑚𝑎𝑥 

2 𝜌𝑘

𝐾

𝑘=1

=
1

𝐾
∑ 𝜎𝑘 + ∆𝜎𝑘

𝐾

𝑘=1

= 𝜎̅ +
1

𝐾
∑ ∆𝜎𝑘

𝐾

𝑘=1

. (20)

Based on these two expressions, it is possible to investigate when 𝜌̅𝑚𝑖𝑛,𝑙, which results from 

𝜌̅𝑚𝑖𝑛,0 and the limit 𝜎𝑖 
2 →  𝜎𝑚𝑎𝑥 

2 , ∀𝑖, is smaller than 𝜌̅𝑚𝑖𝑛,0. Using (19) and (20), we can 

rewrite the inequality 𝜌̅𝑚𝑖𝑛,𝑙 ≤ 𝜌̅𝑚𝑖𝑛,0: 

 

lim
𝜎𝑖 

2→𝜎𝑚𝑎𝑥 
2 ,∀𝑖

[𝜌̅𝑚𝑖𝑛,0]  =
1

𝑁 − 1
[

lim
𝜎𝑖 

2→𝜎𝑚𝑎𝑥 
2 ,∀𝑖 

[𝜎̅𝑉]

𝜎𝑚𝑎𝑥 
2

− 1] +

lim
𝜎𝑖 

2→𝜎𝑚𝑎𝑥 
2 ,∀𝑖

[𝜎̅𝐶𝑉]

𝜎𝑚𝑎𝑥 
2

 

                                          =
1

𝑁 − 1
[
𝜎̅𝑉 +

1

𝑁
∑ ∆𝜎𝑖 

2𝑁
𝑖=1

𝜎𝑚𝑎𝑥 
2

− 1] +
𝜎̅𝐶𝑉 +

1

𝐾
∑ ∆𝜎𝑘

𝐾
𝑘=1

𝜎𝑚𝑎𝑥 
2

 

                                 = 𝜌̅𝑚𝑖𝑛,0 +
1

𝑁(𝑁 − 1)
∑

∆𝜎𝑖 
2

𝜎𝑚𝑎𝑥 
2

𝑁

𝑖=1

+
1

𝐾
∑

∆𝜎𝑘

𝜎𝑚𝑎𝑥 
2

𝐾

𝑘=1

 

= 𝜌̅𝑚𝑖𝑛,𝑙 ≤ 𝜌̅𝑚𝑖𝑛,0.                  

(21)

With 𝐾 ≔ 𝑁(𝑁 − 1)/2 and from the last two lines in (21) it follows that the sum over all 

changes has to be equal to or smaller than zero, i.e. 
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∑ ∆𝜎𝑖 

2

𝑁

𝑖=1

+ 2 ∑ ∆𝜎𝑘

𝐾

𝑘=1

≤ 0. (22)

To determine the influence of the negative correlations and thus the influence of the negative 

covariances, we divide the sum over 𝑘 into a negative and positive part. To this end, we 

assign the 𝐿 terms with negative correlations as ∆𝜎𝑘
−and the 𝐾 − 𝐿 terms with positive 

correlations as ∆𝜎𝑘
+.3 Now, we obtain 𝜌̅𝑚𝑖𝑛,𝑙 ≤ 𝜌̅𝑚𝑖𝑛,0 when 

 
∑ ∆𝜎𝑖 

2

𝑁

𝑖=1

+ 2 ∑ ∆𝜎𝑘
+

𝐾−𝐿

𝑘=1

≤ 2 ∑ |∆𝜎𝑘
−

𝐿

𝑘=1

|. (23)

The inequality (23) means that after the limiting process the summation value over all 

changes ∆𝜎𝑖 
2 ≥ 0 of the variances and all changes 2∆𝜎𝑘

+ ≥ 0 of the positive covariances has 

to be smaller or equal to the summation value over all changes 2|∆𝜎𝑘
−| ≥ 0 of the negative 

covariances. 

In practice, there is a low probability that (23) can be fulfilled by a realistic set of forecasts 

and therefore 𝜌̅𝑚𝑖𝑛,𝑙 according to (16) is still the maximum of 𝜌̅𝑚𝑖𝑛,0. The reason being, is that 

the occurrence of negative error correlations is rare, resulting in 𝐿 ≪ 𝑁 + (𝐾 − 𝐿). Meaning 

we can only expect a small number of positive terms on the right-hand side of (23) compared 

to the left-hand side. In addition, these terms are related to error correlations, which are 

typically small. But then the terms |∆𝜎𝑘
−| are small as well, because |∆𝜎𝑖𝑗| ≔ |𝜎𝑖𝑗,𝑚𝑎𝑥 −

𝜎𝑖𝑗| = |(𝜎𝑚𝑎𝑥 
2 − 𝜎𝑖𝜎𝑗)𝜌𝑖𝑗| is small, if |𝜌𝑖𝑗| ≪ 1. That is especially valid, since there is no 

reason that the coefficient (𝜎𝑚𝑎𝑥 
2 − 𝜎𝑖𝜎𝑗) ≥ 0 in ∆𝜎𝑘

− are systematically large, whereas these 

coefficients are systematically small in ∆𝜎𝑘
+ [see the argumentation following (18)]. Together, 

it is likely that we have a predominance of the terms on the left-hand side in (23) and it is 

𝜌̅𝑚𝑖𝑛,𝑙 ≥ 𝜌̅𝑚𝑖𝑛,0. Therefore, we assume that the condition (17) is fulfilled in nearly all practical 

cases, even when not all error correlations are strictly positive (see also Section 4 and 5). 

Then 𝜎𝑁,𝑚𝑎𝑥
2  from (12) is an upper bond, which restricts the values of 𝜎𝑁

2 upwards. This 

restriction of 𝜎𝑁
2 can be further specified as we show in the Appendix. There we find, that 𝜎𝑁

2 

is in addition always smaller than or equal to the average of all variances of the individual 

forecasts defined in (6). Therefore, it is more precise 

 𝜎𝑁
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2 ≤ 𝜎̅𝑉, if  𝜌̅ ≤ 𝜌̅𝑥, 

𝜎𝑁
2 ≤ 𝜎̅𝑉 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2 , if  𝜌̅ > 𝜌̅𝑥. 
(24)

Here 𝜌̅𝑥 is given by (43) and results from the condition 𝜎̅𝑉 = 𝜎𝑁,𝑚𝑎𝑥 
2 (𝜌̅), which represents the 

intersection between the constant 𝜎̅𝑉 and the function 𝜎𝑁,𝑚𝑎𝑥 
2 (𝜌̅) (see also Figure 1). 

Analogously to (12), we can find a lower bound for the combined forecast. From (5), we 

obtain 

 
𝜎𝑁

2 =
1

𝑁
𝜎̅𝑉 +

𝑁 − 1

𝑁
𝜎̅𝐶𝑉 ≥ [

1

𝑁
+

𝑁 − 1

𝑁
𝜌̅] 𝜎𝑚𝑖𝑛 

2 ≔ 𝜎𝑁,𝑚𝑖𝑛
2 . (25)

                                                 
3 In both cases, we introduce a further new numeration, so that 𝑘 = 1, … , 𝐿 respectively 𝑘 = 1, … , 𝐾 − 𝐿. 
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Here, the inequality (25) holds true in general when 

 
𝜌̅ ≤ 𝜌̅𝑚𝑎𝑥,0 =

1

𝑁 − 1
[

𝜎̅𝑉

𝜎𝑚𝑖𝑛 
2 − 1] +

𝜎̅𝐶𝑉

𝜎𝑚𝑖𝑛 
2 . (26)

Analogues to the analysis of (13), we want to divide the analysis of 𝜌̅𝑚𝑎𝑥,0 in two parts. 

Firstly, we consider again that all correlations are positive, 𝜌𝑖𝑗 ≥ 0, ∀𝑖𝑗. Then the smallest 

𝜌̅𝑚𝑎𝑥,0 possible, defined as 𝜌̅𝑚𝑎𝑥,𝑠, can be found for the limit 𝜎𝑖 
2 → 𝜎𝑚𝑖𝑛 

2 , ∀𝑖, leading to 

𝜌̅𝑚𝑎𝑥,𝑠 = 𝜌̅ [see also (16)]. In that case, it is always 

 
𝜌̅ ≤ 𝜌̅𝑚𝑎𝑥,𝑠  ≤ 𝜌̅𝑚𝑎𝑥,0 (27)

and 𝜎𝑁,𝑚𝑖𝑛
2  is the lower bound for the combined forecast 𝜎𝑁

2 according to (25). In this context, 

we can directly discuss an interesting special case of positive correlations. Let 𝜌𝑖𝑗 = 1, 

∀𝑖𝑗  ⇒   𝜌̅ = 1. Then we obtain from (25) 

 
𝜎𝑁

2 ≥ 𝜎𝑚𝑖𝑛 
2 ,         if   𝜌𝑖𝑗 = 1, ∀𝑖𝑗. (28)

This means, that a simple average combination of forecasts with pairwise perfectly positive 

correlated errors cannot be better than the forecast with the smallest error variance 𝜎𝑚𝑖𝑛 
2 . 

Even if we expect highly positive correlated forecast errors, this case should be very rare. 

Therefore, in general an outperformance of the best individual forecast should be at least 

possible. 

Now, we expand again the analysis on the possibility of negative correlations. Then, similar to 

the discussion of (13), we cannot ensure, that the limit 𝜎𝑖 
2 → 𝜎𝑚𝑖𝑛 

2 , ∀𝑖 minimizes 𝜌̅𝑚𝑎𝑥,0 and 

therefore that 𝜌̅ ≤ 𝜌̅𝑚𝑎𝑥,0. While the first term of the sum in (26) is unchanged by allowing 

for negative correlations, we can again focus the discussion to the second term of the sum. 

The term can be written similarly to (18) as a weighted sum of the correlations: 

 
𝜎̅𝐶𝑉

𝜎𝑚𝑖𝑛 
2 =

2

𝑁(𝑁 − 1)
∑ ∑

𝜎𝑖𝜎𝑗

𝜎𝑚𝑖𝑛 
2

𝑗−1

𝑖=1

𝑁

𝑗=2

𝜌𝑖𝑗 . (29)

In the above case, all weights 𝜎𝑖𝜎𝑗/𝜎𝑚𝑖𝑛 
2  are larger than one with 𝜎𝑖𝜎𝑗/𝜎𝑚𝑖𝑛 

2 → 1 for 

𝜎𝑖 
2 →  𝜎𝑚𝑖𝑛 

2 , ∀𝑖. Independent of this distinguishing property to (18), we can still construct 

theoretically cases in which 𝜎̅𝐶𝑉/𝜎𝑚𝑖𝑛 
2 increases after applying the limiting process. But then, 

there are values of 𝜌̅𝑚𝑎𝑥,0 with 𝜌̅𝑚𝑎𝑥,0 ≤ 𝜌̅𝑚𝑎𝑥,𝑠  and 𝜌̅𝑚𝑎𝑥,𝑠 is not the smallest 𝜌̅𝑚𝑎𝑥,0 

anymore. 

To analyze the point, we can proceed similarly to the investigation of (17). To this end, we 

introduce the variance and covariance changes as ∆𝜎𝑖 
2 ≔ 𝜎𝑚𝑖𝑛 

2 − 𝜎𝑖 
2 ≤ 0 and ∆𝜎𝑖𝑗 ≔

𝜎𝑖𝑗,𝑚𝑖𝑛 − 𝜎𝑖𝑗 with 𝜎𝑖𝑗,𝑚𝑖𝑛 ≔ 𝜎𝑚𝑖𝑛 
2 𝜌𝑖𝑗 (∆𝜎𝑖𝑗 < 0 if 𝜌𝑖𝑗 > 0 and ∆𝜎𝑖𝑗 ≥ 0 if 𝜌𝑖𝑗 ≤ 0).4 With 

calculations analogous to (19) - (23), we can show that 

                                                 
4 We use here the same nomenclature for the changes ∆𝜎𝑖 

2 and ∆𝜎𝑖𝑗 to keep it simple and because we do not 

expect any confusion. 
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Figure 1: Schematic representation of the allowed area of the error variance 𝜎𝑁 
2 (medium and dark grey areas) as 

a function of 𝜌̅. Also depicted are 𝜎𝑁,𝑚𝑖𝑛
2  and 𝜎𝑁,𝑚𝑎𝑥

2  (black solid lines) as well as 𝜌̅𝑚𝑖𝑛, 𝜌̅𝑥, 𝜎𝑚𝑖𝑛
2 , 𝜎̅𝑉, and 𝜎𝑚𝑎𝑥

2  

(dashed lines). 

 
∑ |∆𝜎𝑖 

2|

𝑁

𝑖=1

+ 2 ∑ |∆𝜎𝑘
+|

𝐾−𝐿

𝑘=1

≤ 2 ∑ ∆𝜎𝑘
−

𝐿

𝑘=1

. (30)

Based on this condition and following the same reasoning as in (23), it is likely that the 

inequality (27) can also be fulfilled for negative correlations in the majority of practical cases 

(see also in Section 4 and 5). From here on, we can therefore assume that the conditions (17) 

and (27) are valid and 𝜎𝑁,𝑚𝑎𝑥
2  as well as 𝜎𝑁,𝑚𝑖𝑛

2  are the upper and lower bounds of the error 

variance of the forecast combination with 𝜎𝑁,𝑚𝑖𝑛
2 ≤ 𝜎𝑁

2 ≤ 𝜎𝑁,𝑚𝑎𝑥
2 . 

Figure 1 summarizes the results of the previous investigation. There, we have schematically 

represented the area in which we can expect the variance 𝜎𝑁
2 of the combined forecast 

(medium and dark grey areas) as a function of the average correlation 𝜌̅. The possible 𝜎𝑁
2 are 

confined by the black lines 𝜎𝑁,𝑚𝑎𝑥
2  and 𝜎𝑁,𝑚𝑖𝑛

2  as well as 𝜎̅𝑉 according to (12), (24) and (25) 

where 𝜎𝑁,𝑚𝑎𝑥
2  and 𝜎𝑁,𝑚𝑖𝑛

2  can be rewritten as linear functions of 𝜌̅. In the dark grey area 𝜎𝑁
2 of 

the combined forecast cannot beat the best individual forecast with variance 𝜎𝑚𝑖𝑛
2 , but also 

never exceeds the variance 𝜎𝑚𝑎𝑥
2  of the worst individual forecast [see (15)]. Especially for 

𝜌̅ = 1 there is no combined forecast that can beat the best individual forecast [see (28)]. In the 

medium grey area, the combined forecast is better than each of the individual forecasts and 

reaches a perfect prediction for 𝜌̅ = 𝜌̅𝑚𝑖𝑛 according to (14). This can be seen e.g., when we 

use (14) in (12). Then we find that 𝜎𝑁
2 ≤ 0 ⇒ 𝜎𝑁

2 = 0, because 𝜎𝑁
2 is non-negative. In 

addition, we observe an increasing share of the medium grey area compared to the dark grey 

area for 𝜌̅ →  𝜌̅𝑚𝑖𝑛. Therefore, we can note, that we find an increasing probability for the 

superiority of the combined forecast with a decreasing average correlation. That is again an 

argument to use  

𝜌̅

𝜎𝑚𝑎𝑥
2

10−1

𝜎𝑁,𝑚𝑎𝑥
2

𝜎2

𝜎𝑚𝑖𝑛
2 ≤ 𝜎𝑁 

2 ≤ 𝜎𝑚𝑎𝑥
2

𝜎𝑁 
2 < 𝜎𝑚𝑖𝑛

2

𝜌̅𝑚𝑖𝑛

𝜎𝑉

𝜌̅𝑥

𝜎𝑚𝑖𝑛
2

𝜎𝑁,𝑚𝑖𝑛
2
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diverse individual forecasts. A deeper analysis of the conditions under which we can expect 

that the 𝜎𝑁
2 < 𝜎𝑚𝑖𝑛

2  will be addressed in the next section. 

As the last point in this section, we want to quantify the error variance limits in which we can 

expect the error variance of the combined forecast as well as the maximum improvement 

potential compared to best individual forecast. 

The lower line 𝜎𝑁,𝑚𝑖𝑛
2  and the upper line 𝜎𝑁,𝑚𝑎𝑥

2  in Figure 1 are the theoretical minimum and 

maximum for the variance 𝜎𝑁
2 of the combined forecast. The minimum 𝜎𝑁,𝑚𝑖𝑛

2  can only be 

reached by 𝜎𝑁
2, if all error variances 𝜎𝑖

2 are equal [see (25)]. Then, it is 𝜎𝑖
2 = 𝜎𝑚𝑖𝑛

2 = 𝜎𝑚𝑎𝑥
2 , ∀𝑖 

and the grey areas in Figure 1 are contracting to a line. In this case, it follows that 𝜎𝑁
2 cannot 

be higher than the 𝜎𝑖
2 of the individual forecasts. In all other cases 𝜎𝑁

2 lies between 𝜎𝑁,𝑚𝑖𝑛
2  and 

𝜎𝑁,𝑚𝑎𝑥
2 . In Figure 2 we have depicted the ratio 𝑅 ≔ 𝜎𝑁,𝑚𝑖𝑛

2 /𝜎𝑚𝑖𝑛
2 = 𝜎𝑁,𝑚𝑎𝑥

2 /𝜎𝑚𝑎𝑥
2  based on 

(12) and (25) as a function of 𝜌̅. The function values in this figure can be multiplied with 

𝜎𝑚𝑖𝑛
2   or 𝜎𝑚𝑎𝑥

2   to find the theoretical minimum or maximum variance of 𝜎𝑁
2 for each set of 

given forecasts. For example, in the case of three forecasts with an average error correlation 

𝜌̅ = 0, the variance 𝜎𝑁
2 cannot be lower than (1/3)𝜎𝑚𝑖𝑛 

2  and not be higher than (1/3)𝜎𝑚𝑎𝑥 
2 . 

This case is highlighted in Figure 2. Moreover, we see that the dependence of 𝑅 on the 

number of forecasts 𝑁 is decreasing with increasing 𝑁. For 𝑁 > 𝑁0 and 𝑁0 sufficiently large, 

we can express approximately the theoretical minimum variance 𝜎𝑁,𝑚𝑖𝑛
2  of the combined 

forecast simply by: 

 
𝜎𝑁,𝑚𝑖𝑛

2 ≅ 𝜌̅𝜎𝑚𝑖𝑛 
2 . (31)

From this approximation, we see the minimum possible variance 𝜎𝑁,𝑚𝑖𝑛
2  of the combined 

forecast is determined by a fraction of 𝜎𝑚𝑖𝑛 
2 , where the fraction is simply given by 

𝜌̅ ∈  [𝜌̅𝑚𝑖𝑛, 1]. Note, that the approximation can only be used, when 𝜌̅ ≥ 0, since 𝜎𝑁,𝑚𝑖𝑛
2  is 

non-negative. But this condition is almost always fulfilled for large 𝑁 [see (14)]. 

Analogously, we have 𝜎𝑁,𝑚𝑎𝑥
2 ≅ 𝜌̅𝜎𝑚𝑎𝑥 

2  if 𝜌̅ ≤ 𝜌̅𝑥 for the theoretical maximum of 𝜎𝑁
2. For 

𝜌̅ > 𝜌̅𝑥 the upper bound is given by 𝜎̅𝑉. 

The maximum improvement potential compared to best individual forecast can be expressed 

from the vertical distance between 𝜎𝑚𝑖𝑛
2 − 𝜎𝑁,𝑚𝑖𝑛

2 ≔ ∆𝜎𝑚𝑖𝑛
2  in relation to 𝜎𝑚𝑖𝑛

2  (see Figure 1): 

 ∆𝜎𝑚𝑎𝑥
2

𝜎𝑚𝑖𝑛 
2 =

𝑁 − 1

𝑁
[1 − 𝜌̅] ≅ 1 − 𝜌̅, if    𝑁 > 𝑁0, (32)

with 𝜌̅ ≥  𝜌̅𝑚𝑖𝑛. The more forecasts we consider and the less the associated forecast errors are 

correlated on average, the greater the improvement can be through the combination. If we 

have only a few forecasts and the associated forecast errors are highly correlated, then it is not 

excluded theoretically to be better than the best individual forecast, but the expected gain 

from the combination is rather small. Finally, the question arises under which conditions and 

probability we can access this potential for improvement what is addressed in the next section. 
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Figure 2: Representation of the ratio 𝑅 as function of the average correlation 𝜌̅ for different numbers of forecasts 

𝑁. The grey lines indicate the case of three forecasts with an average correlation of zero (see also the description 

in the text). 

2.4 Superiority of the simple average to the individual forecasts 

In this section, we want to derive suitable criteria for a superiority of the combined forecast 

over the best individual forecast. To this end, firstly we consider again the unrealistic case of 

pairwise completely uncorrelated errors (𝜌𝑖𝑗 = 0, ∀𝑖𝑗). Then, according to (9), the covariance 

part vanishes and the error variance of the combined forecast is given by 𝜎𝑁
2 = (1/𝑁)𝜎̅𝑉. 

Under this strong assumption the necessary and sufficient condition for the superiority of a 

certain individual forecast 𝑖 compared to the simple average can be formulated as 

 
𝜎𝑖

2 < 𝜎𝑁
2 =

1

𝑁
𝜎̅𝑉. (33)

If and only if the error variance 𝜎𝑖
2 of the individual forecast 𝑖 is smaller than the average 

error variance 𝜎̅𝑉 over all forecasts divided by the number 𝑁 of forecasts combined, the 

individual forecast will outperform the average combination. It follows that 𝜎𝑖
2 has to be at 

least half of the average error variance, when we consider the minimum number of forecasts 

(𝑁 = 2) included in a combination. As discussed before, in case of completely uncorrelated 

errors and a finite 𝜎̅𝑉 (see Section 2.1), 𝜎𝑁
2 is decreasing with increasing 𝑁, which leads to a 

perfect forecast for 𝑁 → ∞. That means, it is highly unlikely for an individual forecast to 

outperform the simple average combination, if 𝑁 is large and all forecast errors are 

uncorrelated. Chan & Pauwels (2018) already discussed this result, but it follows here simply 

from (5). Note here too, there is an additional case, not considered by Chan & Pauwels 

(2018). Since the condition as well as the argumentation always holds true when 𝜎̅𝐶𝑉 = 0, it is 

also valid in case of a perfect cancelling out of positive and negative error covariances of the 

individual forecasts. 

N = 2

N = 1000
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In the more realistic case of arbitrary, often positively correlated forecast errors, Chan & 

Pauwels (2018) propose the same explanation given above for the superiority of the simple 

average combination. However, as was shown in Section 2.2, we do not find in this case that 

𝜎𝑁 
2  is vanishing for 𝑁 → ∞. Therefore, we cannot expect to beat each of the individual 

forecasts by simply increasing the number of forecasts combined. Moreover, such argument 

would not explain the superiority of the simple average in the regular case of a finite, not that 

big number of individual forecast. Therefore, we need to find another theoretical explanation 

for the often better performance compared to the individual forecasts. To this end, we 

investigate when the upper bound 𝜎𝑁,𝑚𝑎𝑥
2  is less than or equal to the best individual forecast 

with variance 𝜎𝑚𝑖𝑛 
2 . Then, according to (12), we set 

 
[

1

𝑁
+

𝑁 − 1

𝑁
𝜌̅] 𝜎𝑚𝑎𝑥 

2 ≤ 𝜎𝑚𝑖𝑛 
2 . (34)

Here 𝜌̅ is restricted to a limiting value 𝜌̅𝑙𝑖𝑚, so that 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 ≤ 1, which ensures that the left 

hand side of (34) is less than or equal to 𝜎𝑚𝑖𝑛 
2 . The value of 𝜌̅𝑙𝑖𝑚 can be calculated from the 

equality case in (34).5 It is 

 
𝜌̅𝑙𝑖𝑚 =

1

𝑁 − 1
[𝑁𝜎𝑚𝑚 

2 − 1]. (35)

Here, we have introduced the ratio 𝜎𝑚𝑚 
2 = 𝜎𝑚𝑖𝑛 

2 /𝜎𝑚𝑎𝑥 
2  with 𝜎𝑚𝑚 

2 ∈ (0,1], where we 

explicitly exclude 𝜎𝑚𝑖𝑛 
2 = 0. In this case, we would already have a perfect forecast and no 

forecast combination is needed anymore. The upper limit 𝜌̅𝑙𝑖𝑚 for the average correlation is 

only depending on the number of forecasts as well as the minimum and maximum error 

variances, which are confining the variances of all forecasts included in the combination. 

When 𝑁 is additionally large, 𝜌̅𝑙𝑖𝑚 is practically given by the ratio 𝜎𝑚𝑚 
2 . We have 𝜌̅𝑙𝑖𝑚 

depicted in Figure 3. 

For 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 and under the assumptions of Section 2.3, we find 𝜎𝑁
2 in the triangular light grey 

area in which 𝜎𝑁
2 ≤ 𝜎𝑚𝑖𝑛

2  always holds true. However, we can also see that 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 is a 

relative strict criterion, because it is excluding a relative high amount of possible values for 

𝜎𝑁
2 coming from the medium grey area where we have 𝜎𝑁

2 ≤ 𝜎𝑚𝑖𝑛
2  as well. Therefore, we want 

to additionally introduce a second criterion based on the average variance 

𝜎𝑎𝑣𝑔 
2 ≔  (𝜎𝑚𝑖𝑛 

2 +  𝜎𝑚𝑎𝑥 
2 )/2 which is more related to typical values of 𝜎𝑁

2. Substituting 𝜎𝑚𝑎𝑥 
2  

in (34) by 𝜎𝑎𝑣𝑔 
2 , we get a new limit value for the average correlation 𝜌̅, and we expect that 

𝜎𝑁
2 ≤  𝜎𝑚𝑖𝑛

2  in most of the cases. It follows that 

 
𝜌̅𝑎𝑣𝑔 =

1

𝑁 − 1
[𝑁𝜎𝑚𝑎 

2 − 1] =
1

𝑁 − 1
[2𝑁

𝜎𝑚𝑚 
2

1 + 𝜎𝑚𝑚 
2

− 1]. (36)

Here, we have defined the ratio 𝜎𝑚𝑎 
2 = 𝜎𝑚𝑖𝑛

2 /𝜎𝑎𝑣𝑔 
2 . Since 𝜎𝑚𝑎 

2 ≥ 𝜎𝑚𝑚 
2 , we always get 

𝜌̅𝑎𝑣𝑔 ≥ 𝜌̅𝑙𝑖𝑚. For the right hand side of (36), we have used 𝜎𝑚𝑎𝑥 
2 = 𝜎𝑚𝑖𝑛 

2 /𝜎𝑚𝑚 
2  in 𝜎𝑚𝑎 

2  to 

express 𝜌̅𝑎𝑣𝑔 in terms of the ratio 𝜎𝑚𝑚 
2 . In this way, it is easy to compare 𝜌̅𝑙𝑖𝑚 with 𝜌̅𝑎𝑣𝑔. 

                                                 
5 This value is given by the intersection between 𝜎𝑚𝑖𝑛 

2  and 𝜎𝑁,𝑚𝑖𝑛 
2  in Figure 3. 
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Figure 3: Schematic representation of the allowed area of the error variance 𝜎𝑁 
2 (light, medium and dark grey 

areas) as a function of 𝜌̅. Also depicted are 𝜎𝑁,𝑚𝑖𝑛
2  and 𝜎𝑁,𝑚𝑎𝑥

2  (black solid lines) as well as 𝜌̅𝑚𝑖𝑛, 𝜌̅𝑙𝑖𝑚, 𝜎𝑚𝑖𝑛
2  and 

𝜎𝑚𝑎𝑥
2  (dashed lines). 

In Figure 4, we have represented the relative position of 𝜌̅𝑎𝑣𝑔 and 𝜌̅𝑙𝑖𝑚. We see that 𝜌̅𝑎𝑣𝑔 is 

clearly less restrictive, because it is now allowing to include more of the typical variance 

values around the average line with 𝜎𝑁
2 ≤ 𝜎𝑚𝑖𝑛

2 . These values are indicated by the dashed 

triangle. However, for the less restrictive 𝜌̅𝑎𝑣𝑔, it is possible that we include in rare cases 

some combined forecasts with 𝜎𝑁
2 > 𝜎𝑚𝑖𝑛

2  (see the upper corner of the dashed triangle). 

Nevertheless, in most cases 𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 should be a sufficient criterion to decide if we can 

expect superiority of the combined forecast over the individual forecasts (see also Section 4 

and 5). In case of 𝜌̅ > 𝜌̅𝑎𝑣𝑔 it is more and more unlikely to find a superior combined forecast 

with 𝜎𝑁
2 ≤ 𝜎𝑚𝑖𝑛

2  although it is not excluded. 

In Figure 5 we have represented the possible 𝜌̅𝑙𝑖𝑚 and 𝜌̅𝑎𝑣𝑔 given in (35) and (36) as functions 

of the ratio 𝜎𝑚𝑚 
2 = 𝜎𝑚𝑖𝑛 

2 /𝜎𝑚𝑎𝑥 
2  for different numbers 𝑁 of forecasts. We see, that in case of 

using the minimum number of forecasts in the combination (𝑁 = 2), all values between zero 

and one are possible for 𝜌̅𝑙𝑖𝑚 and 𝜌̅𝑎𝑣𝑔. For increasing 𝑁, this range is in both cases shrinking 

to only positive 𝜌̅𝑙𝑖𝑚 and 𝜌̅𝑎𝑣𝑔, in accordance to the fact, that no average correlation can be 

smaller than 𝜌̅𝑚𝑖𝑛 [see (14)]. As discussed before, we see that 𝜌̅𝑎𝑣𝑔 > 𝜌̅𝑙𝑖𝑚 with the exception 

𝜎𝑚𝑚 
2 = 0 and 𝜎𝑚𝑚 

2 = 1, where we have 𝜌̅𝑎𝑣𝑔 = 𝜌̅𝑙𝑖𝑚.  

From the condition (17) we know, that 𝜎𝑁
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2 , which practically holds true for each 𝜌̅ 

determined by the set of forecasts considered. Then we can finally summarize [together with 

(35)] that 

 
𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚  ⇒  𝜎𝑁

2 ≤ 𝜎𝑁,𝑚𝑎𝑥 
2 ≤ 𝜎𝑚𝑖𝑛

2 . (37)

 

𝜌̅

𝜎𝑚𝑖𝑛
2

𝜎𝑚𝑎𝑥
2

10−1

𝜎𝑚𝑖𝑛
2 ≤ 𝜎𝑁 

2 ≤ 𝜎𝑚𝑎𝑥
2

𝜎𝑁,𝑚𝑖𝑛
2

𝜎𝑁,𝑚𝑎𝑥
2

𝜌̅𝑙𝑖𝑚

𝜎2

𝜎𝑁 
2 < 𝜎𝑚𝑖𝑛

2

𝜌̅𝑚𝑖𝑛
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Figure 4: Schematic representation of the allowed area of the error variance 𝜎𝑁 
2 (light, medium and dark grey 

areas) as a function of 𝜌̅. Also depicted are 𝜎𝑁,𝑚𝑖𝑛
2  and 𝜎𝑁,𝑚𝑎𝑥

2  (black solid lines) as well as 𝜌̅𝑚𝑖𝑛, 𝜌̅𝑙𝑖𝑚 , 𝜌̅𝑎𝑣𝑔, 

𝜎𝑚𝑖𝑛
2  and 𝜎𝑚𝑎𝑥

2  (dashed lines). In addition, typical values for 𝜎𝑁 
2  are indicated as a dashed triangle. 

 

Figure 5: Representation of the 𝜌̅𝑙𝑖𝑚  and 𝜌̅𝑎𝑣𝑔 as functions of the ratio 𝜎𝑚𝑚 
2 = 𝜎𝑚𝑖𝑛 

2 /𝜎𝑚𝑎𝑥 
2  for different numbers 

𝑁 of forecasts. 

While (37) is always true under our weak assumptions, we expect in most cases for the error 

variance of combined forecasts 𝜎𝑁
2 ≤ 𝜎𝑚𝑖𝑛

2  when 𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 (see Figure 4 as well as Section 4 

and 5). 

3 EXPLANATION OF THE EMPIRICAL FINDINGS 

We want to use the theoretical results of the previous sections to explain the empirical 

finding, that simple average combinations often outperform the best individual forecast. To 

𝜌̅

𝜎2

𝜎𝑚𝑖𝑛
2

𝜎𝑚𝑎𝑥
2

10−1

𝜎𝑁,𝑚𝑖𝑛
2

𝜎𝑁,𝑚𝑎𝑥
2

𝜌̅𝑙𝑖𝑚 𝜌̅𝑎𝑣𝑔

𝜎𝑎𝑣𝑔
2

𝜎𝑚𝑖𝑛
2 ≤ 𝜎𝑁 

2 ≤ 𝜎𝑚𝑎𝑥
2

𝜎𝑁 
2 < 𝜎𝑚𝑖𝑛

2

𝜌̅𝑚𝑖𝑛

N = 2N = 2

N = 1000N = 1000
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this end, we have depicted in Figure 6 the behavior of 𝜎𝑁 
2  as a function of 𝜌̅ for an increased 

ratio 𝜎𝑚𝑚 
2 ∈ (0,1] which occurs when 𝜎𝑚𝑖𝑛 

2 → 𝜎𝑚𝑎𝑥 
2  (indicated in the figure by the black 

arrow). Compared to Figure 4 and according to Figure 5, we observe in this case an increasing 

𝜌̅𝑙𝑖𝑚 and 𝜌̅𝑎𝑣𝑔 leading to a higher probability that 𝜌̅ is satisfying the condition (37) as well as 

the less restrictive condition 𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔. From this observation, we can note: The closer 𝜎𝑚𝑚 
2  is 

to one, the greater the probability that the combined forecast will outperform the best 

individual forecast. 

According to Elliott (2011) the error variances of the individual forecasts are indeed often 

very similar, resulting in 𝜎𝑚𝑚 
2  frequently close to one (see also the discussion in Granger and 

Jeon, 2004). This leads to a high positive value of 𝜌̅𝑙𝑖𝑚 and 𝜌̅𝑎𝑣𝑔. Then, as previously showed, 

it is very likely that the average correlation of the forecast errors 𝜌̅ is smaller than 𝜌̅𝑙𝑖𝑚, 

fulfilling the condition (37). In addition there is an even higher probability for 𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔. In 

this case, we find directly, that the combined forecast is better than the best individual 

forecast. But even, when 𝜎𝑚𝑚 
2  deviates stronger from one, we can expect a superiority of the 

simple average forecast when the average correlation of the errors is not too large. Here we 

find again, that it is beneficial to use diverse individual forecasts in simple average 

combinations. Both arguments together are our explanation for the superiority of the average 

combination compared to the individual forecasts often found in literature. This effect is 

mostly based on the widespread properties of the individual forecasts and does not follow 

from a better performance of the combination with increasing the number 𝑁 of forecasts 

included [see (11)]. On the contrary, we observe a weak dependency of the criteria 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 

and 𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 from  𝑁, when 𝑁 is not too small (see Figure 5). That means from 𝑁 ≅ 10 a 

higher number of forecasts has only a minor contribution to the superiority of the simple 

average. More important is a high ratio 𝜎𝑚𝑚 
2 ∈ (0,1] of the minimum and maximum error 

variance of the individual forecasts. 

Conversely, that means too, that in case of 𝜎𝑚𝑚 
2 ≪ 1 (𝜎𝑚𝑖𝑛 

2 ≪ 𝜎𝑚𝑎𝑥 
2 ), we have 𝜌̅𝑙𝑖𝑚 ≅

𝜌̅𝑎𝑣𝑔 → 𝜌̅𝑚𝑖𝑛 [see (14)]. Then it is unlikely that 𝜌̅ is small enough, since 𝜌̅ is normally 

determined by higher positive correlations 𝜌𝑖𝑗. Here, at least the best individual forecast can 

outperform the average combination. 

4 NUMERICAL ILLUSTRATION 

In this section, we illustrate our theoretical findings by a simple numerical experiment. This 

experiment is based on sets of six correlated, normally distributed error samples. Both 

assumptions are common and often fairly well fulfilled by realistic error samples. To generate 

such kind of forecast errors in our simulation, we start with a set of six normally distributed 

errors, 𝜺′ = (𝜀1
′ , … , 𝜀6

′ )𝑇with mean vector 𝝁′ = (𝜇1
′ , … , 𝜇6

′ )𝑇 = 𝟎 (𝟎 is the (6 × 1) zero 

vector) and covariance matrix 𝚺′ = 𝑰 (𝑰 is the (6 × 6) identity matrix). Then, we can generate  
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Figure 6: Schematic representation of the allowed area of the error variance 𝜎𝑁 
2 (light, medium and dark grey 

areas) for the shift 𝜎𝑚𝑖𝑛
2 → 𝜎𝑚𝑎𝑥

2  as a function of 𝜌̅. Also depicted are 𝜎𝑁,𝑚𝑖𝑛
2  and 𝜎𝑁,𝑚𝑎𝑥

2  (black solid lines) as 

well as 𝜌̅𝑚𝑖𝑛, 𝜌̅𝑙𝑖𝑚 , 𝜌̅𝑎𝑣𝑔, 𝜎𝑚𝑖𝑛
2  and 𝜎𝑚𝑎𝑥

2  (dashed lines). In addition, typical values for 𝜎𝑁 
2 are indicated as a 

dashed triangle. 

a set of correlated errors 𝜺 with certain 𝝁 and 𝚺 by using the transformation (see also Diebold 

& Mariano 1995)6 

 
𝜺 = 𝝁 + 𝑪𝜺′. (38)

Here 𝑪 is a lower triangular matrix resulting from a Cholesky decomposition of 𝚺. In this 

experiment and according to the theory presented here, we choose 𝝁 = 𝟎 [see Section 2.1]. In 

order to generate a large amount of different error samples 𝜺, we define two error variances in 

𝚺 as 𝜎𝑚𝑖𝑛 
2  and 𝜎𝑚𝑎𝑥 

2  and choose the remaining variances randomly between them. 

Furthermore, all correlations and therefore all covariances in 𝚺 are also random but are 

restricted to a certain interval [𝜌1, 𝜌2]. In this way, we generate different error samples 𝜺, 

where in general only 𝜎𝑚𝑖𝑛 
2  and 𝜎𝑚𝑎𝑥 

2  are the same. Finally, we combine the six errors of 

each sample according to Equation (2) and compute the variance of the combined error. 

However, there is one problem with this kind of error generation process. Not each 

compilation of randomly chosen 𝜌𝑖𝑗 ∈ [𝜌1, 𝜌2] is allowed. For example, imagine we have two 

highly negative correlated error samples, then a third error sample cannot also be highly 

negative correlated with both of them. With one of them, the third sample should have most 

likely a positive correlation. In such scenarios the Cholesky decomposition of 𝚺 is 

nonexistent. For more than three error samples, the discussion of allowed correlations shows a 

strongly increasing complexity. In order to not further extend the theoretical part of this 

                                                 
6 In our numerical example, we do not generate errors with serial correlation, because we believe that serial 

correlation is mainly a problem for combination methods in which the model coefficients has to be estimated 

(see Gauss–Markov theorem). 

𝜌̅

𝜎2

𝜎𝑚𝑖𝑛
2

𝜎𝑚𝑎𝑥
2

𝜌̅𝑚𝑖𝑛 10−1

𝜎𝑁,𝑚𝑎𝑥
2

𝜌̅𝑙𝑖𝑚 𝜌̅𝑎𝑣𝑔

𝜎𝑎𝑣𝑔
2

𝜎𝑁,𝑚𝑖𝑛
2

𝜎𝑚𝑖𝑛
2 ≤ 𝜎𝑁 

2 ≤ 𝜎𝑚𝑎𝑥
2

𝜎𝑁 
2 < 𝜎𝑚𝑖𝑛

2
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article, we pragmatically use only samples in which the decomposition and therefore the 

transformation according to (38) exists. 

In Figure 7, the results of this experiment are presented. The Subfigures A – D in Figure 7 

represent the error variance 𝜎𝑁 
2  of the combined forecast as a function of 𝜌̅ for different ratios 

𝜎𝑚𝑚 
2  (A: 𝜎𝑚𝑚 

2 = 4/5, B: 𝜎𝑚𝑚 
2  =  3/5, C: 𝜎𝑚𝑚 

2 = 2/5, D: 𝜎𝑚𝑚 
2 = 1/5). The individual 

correlations 𝜌𝑖𝑗 are randomly chosen from [−0.2, 0.7] to explicitly allow for negative 

correlations. The average correlation 𝜌̅ is then calculated from these 15 individual 

correlations 𝜌𝑖𝑗 of each error set generated. 

As expected from the theoretical analyses in cases A – D, all 𝜎𝑁 
2  are confined between 𝜎𝑁,𝑚𝑖𝑛 

2  

and 𝜎𝑁,𝑚𝑎𝑥 
2  (grey solid lines), even though we find negative individual correlations in the 

generated data (see discussion in Section 2.3). In A and B, all 𝜌̅ are smaller than the strict 

limit 𝜌̅𝑙𝑖𝑚 and indeed it is always the case that 𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2 . In Subfigure C only roughly half 

of the 𝜎𝑁 
2  have an average correlation 𝜌̅ smaller than 𝜌̅𝑙𝑖𝑚. Still, most 𝜎𝑁 

2  are smaller than 

𝜎𝑚𝑖𝑛 
2 . Here, we have an example that in some cases 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 is a too strict criterion for the 

superiority of the combined forecast. In contrast, the second criterion 𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 is violated 

only for one single 𝜎𝑁 
2 . Therefore, we find that according to this criterion, the majority of 𝜎𝑁 

2  

is smaller than 𝜎𝑚𝑖𝑛 
2 . The few occurring exceptions are expected and have been discussed in 

Section 2.4. Finally, in Subfigure D the majority of 𝜎𝑁 
2 has a 𝜌̅ > 𝜌̅𝑎𝑣𝑔, and indeed we obtain 

now the result that most of the 𝜎𝑁 
2  cannot beat the variance 𝜎𝑚𝑖𝑛 

2  of the best individual 

forecast. 

5 EMPIRICAL ILLUSTRATION 

To verify empirically our most important theoretical results further, we use the data of the M4 

Forecasting Competition (Makridakis et al., 2020). We investigate all 100.000 times series of 

the package. The package contains hourly, daily, weekly, monthly, quarterly and yearly time 

series and related forecasts for different forecasting problems and forecasting horizons. A 

detailed description of the data can be found in Makridakis et al. (2020). For each time series 

are 25 forecasts available. In our investigation, we combine the 5, 10 und 15 best forecasts of 

each time series according to (1) and compute 𝜎𝑁 
2 , 𝜎𝑚𝑖𝑛 

2 , 𝜎𝑚𝑎𝑥 
2 , 𝜎̅𝑉, 𝜎𝑁,𝑚𝑖𝑛 

2 and 𝜎𝑁,𝑚𝑎𝑥 
2  as 

well as 𝜌̅, 𝜌̅𝑙𝑖𝑚 and 𝜌̅𝑎𝑣𝑔. Subsequently, we analyze these results with respect to our 

theoretical findings. The results are represented in Table 1 and Table 2 where we have 

calculated the percentage of forecasts fulfilling our theoretical restrictions to 𝜎𝑁 
2   in 

dependence on the properties of 𝜌̅ for the three different combinations as well as various types 

of times series. 
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Figure 7: Representation of the error variance 𝜎𝑁 
2  based on a variety of error sets. Each set is consisting of six 

correlated, normally distributed error samples. The error sets are depicted for different ratios 𝜎𝑚𝑚 
2 =

𝜎𝑚𝑖𝑛 
2 /𝜎𝑚𝑎𝑥 

2 . A: 𝜎𝑚𝑚 
2 = 4/5, B: 𝜎𝑚𝑚 

2  =  3/5, C: 𝜎𝑚𝑚 
2 = 2/5, D: 𝜎𝑚𝑚 

2 = 1/5. The upper bound 𝜎𝑁,𝑚𝑎𝑥 
2  and 

the lower bound 𝜎𝑁,𝑚𝑖𝑛 
2 are represented by grey lines. 

In accordance to (15) and (42), we find in all cases that 𝜎𝑁 
2 ≤ 𝜎𝑚𝑎𝑥 

2 and 𝜎𝑁 
2 ≤ 𝜎̅𝑉 which has to 

be true in general and is independent of 𝜌̅. Moreover, we find that 𝜎𝑁 
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2 and 𝜎𝑁 
2 ≥

𝜎𝑁,𝑚𝑖𝑛 
2 in the majority of cases [see (12) and (25)]. Meaning that most forecast combinations 

follow our assumptions and 𝜎𝑁,𝑚𝑎𝑥 
2 as well as 𝜎𝑁,𝑚𝑖𝑛 

2  are indeed an upper and lower bound for 

𝜎𝑁 
2  as discussed in Section 2.3. The strongest deviation from our expectation, we find for the 

daily time series (𝜌̅ > 𝜌̅𝑎𝑣𝑔) where only slightly more than 90 % of the forecast combinations 

respecting these limits. Typically, however, the values are 100% or just below and are valid 

for all 𝜌̅. Finally, we analyze the forecast combinations regarding 𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2 . When 𝜌̅ >

𝜌̅𝑎𝑣𝑔 (see Section 2.4) it is unlikely, that the combination can outperform the best individual 

A B

C D
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forecast and therefore, we expect only a small percentage of combinations with 𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2 . 

The findings in Table 1 and Table 2 support exactly this behavior. Mostly, only a few percent 

or even less of the forecast combinations are superior to best individual forecast. The 

percentage of forecast combinations with 𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2  is strongly increasing when 𝜌̅ from 

𝜌̅𝑙𝑖𝑚 < 𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔. We observe values between 42.86 % and 90.00 % in which higher values 

clearly dominate. Overall, on average 71.5 % of the combined forecasts are better than the 

best individual forecast if the average correlation 𝜌̅ is from the interval (𝜌̅𝑙𝑖𝑚, 𝜌̅𝑎𝑣𝑔]. For 

𝜌̅ ≤  𝜌̅𝑙𝑖𝑚 near to all forecast combinations are superior to the best individual forecast. The 

few exceptions are resulting from cases in which the upper bound 𝜎𝑁,𝑚𝑎𝑥 
2  is violated. In these 

cases of course, it is possible that 𝜎𝑁 
2 > 𝜎𝑚𝑖𝑛 

2  as well (see also Figure 3). However, the 

percentage of combinations with 𝜎𝑁 
2 > 𝜎𝑚𝑖𝑛 

2  has to be smaller than or equal to the percentage 

of combinations violating 𝜎𝑁 
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2 , which is obviously fulfilled in each case of our 

analysis. 
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Table 1: PERCENTAGES OF FORECAST COMBINATIONS FULFILLING THE RESTRICTIONS FOR 𝜎𝑁 
2  IN DEPENDANCE ON 𝜌̅ FOR THE 5, 10, AND 15 BEST 

FORECASTS COMBINED. 

  Forecasts combined: 5 Forecasts combined: 10 Forecasts combined: 15 

  𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 
𝜌̅ > 𝜌̅𝑙𝑖𝑚 

𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 
𝜌̅ > 𝜌̅𝑎𝑣𝑔 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 

𝜌̅ > 𝜌̅𝑙𝑖𝑚 

𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 
𝜌̅ > 𝜌̅𝑎𝑣𝑔 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 

𝜌̅ > 𝜌̅𝑙𝑖𝑚 

𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 
𝜌̅ > 𝜌̅𝑎𝑣𝑔 

Hourly 

Time 

Series: 

414 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑎𝑥 

2  100.00 100.00 100.00 100.00 100.00 100.00 NA 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎̅𝑉 100.00 100.00 100.00 100.00 100.00 100.00 NA 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2  100.00 100.00 100.00 100.00 100.00 100.00 NA 100.00 100.00 

𝜎𝑁 
2 ≥ 𝜎𝑁,𝑚𝑖𝑛 

2  100.00 100.00 100.00 100.00 100.00 100.00 NA 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2  100.00 81.13 9.92 100.00 79.66 11.75 NA 75.00 5.28 

Daily 

Time 

Series: 

4227 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑎𝑥 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎̅𝑉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2  96.40 98.15 90.82 100.00 98.57 90.62 100.00 100.00 91.96 

𝜎𝑁 
2 ≥ 𝜎𝑁,𝑚𝑖𝑛 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2  97.30 60.49 0.13 100.00 47.14 0.29 100.00 42.86 0.19 

Weekly 

Time 

Series: 

359 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑎𝑥 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎̅𝑉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≥ 𝜎𝑁,𝑚𝑖𝑛 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2  100.00 72.73 1.85 100.00 59.26 2.75 100.00 90.00 3.16 
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Table 2: PERCENTAGES OF FORECAST COMBINATIONS FULFILLING THE RESTRICTIONS FOR 𝜎𝑁 
2  IN DEPENDANCE ON 𝜌̅ FOR THE 5, 10, AND 15 BEST 

FORECASTS COMBINED. 

  Forecasts combined: 5 Forecasts combined: 10 Forecasts combined: 15 

  𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 
𝜌̅ > 𝜌̅𝑙𝑖𝑚 

𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 
𝜌̅ > 𝜌̅𝑎𝑣𝑔 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 

𝜌̅ > 𝜌̅𝑙𝑖𝑚 

𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 
𝜌̅ > 𝜌̅𝑎𝑣𝑔 𝜌̅ ≤ 𝜌̅𝑙𝑖𝑚 

𝜌̅ > 𝜌̅𝑙𝑖𝑚 

𝜌̅ ≤ 𝜌̅𝑎𝑣𝑔 
𝜌̅ > 𝜌̅𝑎𝑣𝑔 

Monthly 

Time 

Series: 

48000 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑎𝑥 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎̅𝑉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2  99.76 99.94 99.96 99.63 100.00 99.97 100.00 99.69 99.99 

𝜎𝑁 
2 ≥ 𝜎𝑁,𝑚𝑖𝑛 

2  99.84 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2  99.84 77.11 2.19 100.00 71.52 1.33 100.00 69.29 1.01 

Quarterly 

Time 

Series: 

24000 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑎𝑥 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎̅𝑉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2  99.61 99.80 99.97 99.07 100.00 99.98 100.00 100.00 100.00 

𝜎𝑁 
2 ≥ 𝜎𝑁,𝑚𝑖𝑛 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2  99.71 76.87 2.15 100.00 71.11 1.40 100.00 75.93 1.09 

Yearly 

Time 

Series: 

23000 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑎𝑥 

2  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎̅𝑉 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2  98.28 99.28 99.88 95.29 99.66 99.95 100.00 100.00 99.95 

𝜎𝑁 
2 ≥ 𝜎𝑁,𝑚𝑖𝑛 

2  99.50 99.94 100.00 97.65 100.00 100.00 100.00 100.00 100.00 

𝜎𝑁 
2 ≤ 𝜎𝑚𝑖𝑛 

2  98.89 81.36 4.19 98.82 80.48 3.22 100.00 74.47 2.14 
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6 CONCLUSION 

This article presents a theoretical analysis of several properties of simple average 

combinations. Our analysis is based on an insightful and effective mathematical description of 

the simple average combination problem, where we deliberately do not follow the common 

matrix formalism. This makes it possible for us to obtain deeper insights into the fundamental 

performance of this combination approach. 

In this context, we derive the necessary and sufficient conditions for a perfect combination 

result, which occurs when the combined forecast has a 𝜎𝑁 
2 = 0. From the investigation and 

for the very unlikely case of perfectly uncorrelated forecast errors, we can reproduce existing 

results in the literature. Here the perfect forecast occurs only for an infinite number of 

forecasts, since then, the error variance is decreasing with increasing number of forecasts. We 

show additionally that the above mentioned condition and the corresponding argumentation 

are also valid in the case of a perfect cancelling out of positive and negative error covariances, 

which was not discussed before. However, such case is also very unlikely, since negative 

error covariances are usually rare and simultaneously close to zero. 

Furthermore, in the more realistic scenario of arbitrary, often highly positive correlated errors, 

we provide a new condition. We show that this condition is practically impossible to be 

satisfied under normal circumstances. The reason again is based on the unlikely existence of 

negative error covariances. Therefore, we have in general only a very low probability to 

produce a perfect forecast from the simple average combination. Under the given assumptions 

here, the perfect forecast is not achievable even if we use an infinite number of individual 

forecasts, because in our results we do not find a vanishing error variance by simply 

increasing the number of forecasts. Instead, we show that the influence of the individual error 

variances on the error variance of the combination is indeed vanishing but the influence of the 

covariances, which quite fast dominate, is not. Here the dominance of the covariances occurs 

already for a realistic high number of forecasts. 

Subsequently, we derive several further performance properties of the simple average 

combination. We show that the combined forecast is never inferior to the forecast with the 

highest error variance and is even superior to the average of all error variances of the 

individual forecasts. Moreover, if we combine a set of perfectly positive correlated errors, we 

cannot beat the best individual forecast. In all other cases, we show that the error variance of 

the combined forecast lies between a theoretical maximum and minimum error variance and 

can but does not have to be superior to all individual forecasts. However, the probability for 

superiority increases as the average correlation of the errors decrease. The advantages of 

using diverse forecasts in the simple average combination are thus confirmed. 

Based on these results, we introduce two criteria for the allowed average error correlation, 

which will determine if a simple average combination is superior to all individual forecasts 

included in the combination. Both criteria, the strict and the less strict, are only dependent on 

the number of forecasts and the ratio between the minimum and the maximum error variance. 

The criteria are more admissive when the ratio is closer to one. With these criteria, we can 
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explain the empirical finding that the simple average indeed often outperforms the best 

individual forecast. The effect is resulting mostly from similar error variances as a widespread 

property of the individual forecasts. These as well as the most important other theoretical 

results are empirically tested and confirmed in several Monte Carlo experiments as well as for 

100.000 time series and 300.000 forecast combinations based on the data of the M4 Forecast 

Competition. 

Finally, we conclude, that the simple average combination benefits from a large number of 

diverse forecasts with similar error variances. The large number of forecasts ensures a small 

contribution of the individual error variances to the combined error variance. The diversity of 

forecasts results in a higher probability for small or even negative error covariances. This 

leads to a reducing effect on the dominating part 𝜎̅𝐶𝑉 in 𝜎𝑁
2. Furthermore, the diversity helps 

to fulfil the criteria of superiority, because we can expect a smaller average correlation. 

Simultaneously, these criteria are more tolerant, if the error variances are similar. This allows 

the combined forecast to beat the best individual forecast. Conversely, if we have a set of 

forecasts with highly correlated errors and very different error variances the simple average is 

most likely not the best combination strategy. In such cases, using simply the best individual 

forecast or a more advanced combination approach would most probably outperform the 

simple average (see also the discussion of the forecast combination puzzle in Timmermann, 

2006; Elliott, 2011 and Claeskens, 2016). 

APPENDIX 

Starting from the second term in (5) and using the generalized Triangle inequality as well as 

the Cauchy-Schwarz inequality, we obtain: 

 
𝑁 − 1

𝑁
𝜎̅𝐶𝑉  =

2

𝑁2
∑ ∑ 𝜎𝑖𝑗

𝑗−1

𝑖=1

𝑁

𝑗=2

≤
2

𝑁2
∑ ∑ |𝜎𝑖𝑗|

𝑗−1

𝑖=1

𝑁

𝑗=2

≤
2

𝑁2
∑ ∑ √𝜎𝑖

2𝜎𝑗
2

𝑗−1

𝑖=1

𝑁

𝑗=2

. (39)

In the last expression on the right hand side of (39), we have the geometrical mean of 𝜎𝑖
2 and 

𝜎𝑗
2 which is always smaller than or equal to the arithmetic mean of both quantities. Therefore, 

we can further write 

 
𝑁 − 1

𝑁
𝜎̅𝐶𝑉 ≤

2

𝑁2
∑ ∑

𝜎𝑖
2 + 𝜎𝑗

2

2

𝑗−1

𝑖=1

𝑁

𝑗=2

=
1

𝑁2
∑ ∑(𝜎𝑖

2 + 𝜎𝑗
2)

𝑗−1

𝑖=1

𝑁

𝑗=2

. (40)

Rearranging the terms of the last sums in (40) according equal indices leads to 

 𝑁 − 1

𝑁
𝜎̅𝐶𝑉 ≤

1

𝑁2
{(𝜎1

2 + 𝜎2
2) + [(𝜎1

2 + 𝜎3
2) + (𝜎2

2 + 𝜎3
2)] + ⋯ 

                 + [(𝜎1
2 + 𝜎𝑁

2) + (𝜎2
2 + 𝜎𝑁

2) + ⋯ + (𝜎𝑁−1
2 + 𝜎𝑁

2)]} 

                       =
1

𝑁2
{(𝑁 − 1)𝜎1

2 + (𝑁 − 1)𝜎2
2 + ⋯ + (𝑁 − 1)𝜎𝑁

2}   

    =
(𝑁 − 1)

𝑁

1

𝑁
{𝜎1

2 + 𝜎2
2 + ⋯ + 𝜎𝑁

2}               

(41)
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    =
(𝑁 − 1)

𝑁
𝜎̅𝑉.                                                   

It follows, that 𝜎̅𝐶𝑉 ≤ 𝜎̅𝑉 which with (5) yield 

 
𝜎𝑁

2 =
1

𝑁
𝜎̅𝑉 +

𝑁 − 1

𝑁
𝜎̅𝐶𝑉 ≤ [

1

𝑁
+

𝑁 − 1

𝑁
] 𝜎̅𝑉 = 𝜎̅𝑉. (42)

This means that the error variance of the combined forecast is always smaller than or equal to 

the average error variance of all individual forecasts. From the intersection between 𝜎̅𝑉 and 

𝜎𝑁,𝑚𝑎𝑥
2 (𝜌̅) (see Figure 1), we finally find a 𝜌̅𝑥 with 

 
𝜌̅𝑥  =

1

𝑁 − 1
[

𝜎̅𝑉

𝜎𝑚𝑎𝑥
2

− 1]. (43)

Then, it is 

 𝜎𝑁
2 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2 ≤ 𝜎̅𝑉, if  𝜌̅ ≤ 𝜌̅𝑥, 

𝜎𝑁
2 ≤ 𝜎̅𝑉 ≤ 𝜎𝑁,𝑚𝑎𝑥 

2 , if  𝜌̅ > 𝜌̅𝑥. 
(44)
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