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ABSTRACT 

Asymmetric cost pass-through between crude oil and retail fuel prices ("Rockets and 
Feathers") has been analysed for different countries and time periods. However, few 
studies have been conducted for the German market. Furthermore, this study 
differentiates between company types and regions in this context. We compare price 
setting behaviour of independent and major brand stations following oil price changes. 
Furthermore, we differentiate between regions with higher and lower population 
densities. We establish an error correction model with a novel data set from the years 
2011 to 2012. Our results confirm significant differences between price setting behaviour 
after oil price changes of major brand stations and other stations. 
 

Keywords: diesel price; error correction model; oil price, retail fuel; rockets and feathers; 
spatial analysis 

1 INTRODUCTION 

Transport is an essential good. Within individual transport, fuel costs have one of the highest 
shares of all cost components (Belzowski, 2015, Hagman et al., 2016). Retail fuel prices also 
influence consumption and investment decisions in the transport sector and beyond (Moutinho 
et al., 2017). Not surprisingly, retail fuel pricing strategies are the topic of intense and 
controversial public and political discussions in many countries of the world.  

In the German market, such discussions lead to an analysis of the retail fuel sector and its 
mechanisms of competition by the Federal Cartel Authorities (FCO, 2011). The authors 
conclude that five major brands have a market dominating position on the German retail fuel 
market. This result is opposed by the International Energy Agency (IEA, 2014) which states 
that ‘Germany has a highly deregulated and competitive oil market’ characterized by a ‘large 
number of independents in the […] retail sector’. The German government established a market 
transparency platform for fuel within the FCO in 2013, but the debate is still ongoing. 

One way to analyse price setting behaviour is to compare input costs and prices. In the context 
of fuel prices, it is often analysed whether fuel prices increase faster than they decrease after oil 
price changes (which are a major driver of retail gasoline price developments). Such 
asymmetric cost pass-through, also referred to as “Rockets and Feathers”, can be interpreted as 
evidence for market power even though other factors also contribute to asymmetric price 
movements (see e.g. Borenstein et al., 1997, Balke et al., 1998, Brown and Yücel, 2000, 
Kaufmann and Laskowski, 2005).  

Our paper analyses asymmetric cost pass-through in the German diesel retail market. The main 
contribution is that our data set enables us to differentiate between brand stations (e.g. Aral, 
Esso or Shell) and independent petrol stations (IPS), as well as between petrol stations in 
densely and less densely populated areas. On this basis, we contribute to the controversy 
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whether the German diesel retail market is “dominated by the top 5 stations” or “competitive”. 
Furthermore, an analysis of differences in pricing strategies between IPS and brand stations as 
well as by population density is interesting in an international context as many markets have 
both IPS and brands as well as more and less densely populated areas.  

We adapt an error correction model (ECM) to test whether German diesel prices increase or 
decrease at the same speed after corresponding oil price changes. With the help of this model, 
we can test for potential positive asymmetries, i.e. diesel prices responding faster to increasing 
oil prices than to decreasing oil prices (the “Rockets and Feathers” hypothesis). To analyse our 
main research questions, we separate the diesel price data of five brands (Aral, Jet, Esso, Shell 
and Total) from the other data, because the former are considered the dominant firms by FCO, 
2011. Similarly, we separate price data for IPS, also referred to as no-logo retailer networks, 
from all other data. These have more autonomy than brand stations with respect to pricing and 
marketing strategies (FCO, 2011). Furthermore, IPS might have different incentives for 
strategic price setting behaviour: unlike brand stations, IPS may have lower incentives to 
increase prices because they do not control other stations profiting from higher prices and thus 
have lower incentives for strategic behaviour (see e.g. Ausubel and Cramton, 2002). For both 
subsets, we a) test whether they differ in average prices, b) test for (asymmetric) cost pass-
through and c) compare adjustment speed levels after oil price increases and decreases between 
the respective subset and the remaining stations. 

Furthermore, we also analyse whether population density influences results by splitting our data 
set into two subgroups (one with high and one with low population density). Regional 
population densities in Germany vary between urban and rural areas. While urban districts have 
high population densities (Munich having the highest density with 4,668 inhabitants per km2), 
rural areas have significantly lower population densities (the lowest in the Prignitz in north-east 
Germany with 36 inhabitants per km2, Federal Statistical Office, 2015). The distribution of 
petrol stations in Germany correlates with population densities (see data and maps from FIPR, 
2015). Hence, Figure 1 shows a higher concentration of stations in urban areas such as Berlin, 
Munich, Hamburg, Frankfurt and the Ruhr area. In contrast, in more rural areas, petrol stations 
are more sparsely distributed and, therefore, there may be lower competition intensity between 
stations. In analogy to station types, our paper analyses whether population density per km2 in 
a district, as an indicator of station density, affects a) average prices, b) (asymmetric) cost pass-
through and c) adjustment speed levels after oil price increases and decreases. 
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Figure 1: Distribution of petrol stations in Germany (map by authors, data from ESRI, 2015). 

 

The remainder of this paper is organised as follows: Chapter 2 gives an overview of the 
literature related to our analysis. Chapter 3 explains major characteristics of our data set. In 
chapter 4, we test our data set on the cointegration relationship between diesel prices and oil 
prices and establish an ECM to determine whether there are asymmetries in cost pass-through. 
Chapter 5 presents the results. We also discuss the most relevant findings of our analysis in that 
chapter. Chapter 6 concludes and identifies areas of further research. 

2 LITERATURE 

The high public and political interest in retail fuel prices is reflected in a large and varied 
literature. Eckert (2013) performed a literature overview and found 26 articles on asymmetries 
and pass-through of shocks and 24 on station level price dispersion and price differentials. Most 
of the 26 articles on asymmetries confirm some form of asymmetries of retail prices after 
upstream price adjustments. However, more than 80 % of the studies analysed in that overview 
use data from North America (USA or Canada).  

Given the large and varied literature on gasoline retailing, we will restrict our literature survey 
based on the focus of our paper. We start with a discussion of asymmetries and - after a brief 
introduction on the relationship between retail fuel and oil prices - concentrate on ‘semi-
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asymmetric’ error correction models. As we also analyse differences between brands and non-
brand asymmetric pricing strategies as well as population density, we continue with a discussion 
of the few papers analysing differences in asymmetries in combination with either population 
density and/or brands. Lastly, we discuss studies on the German market.1 

The relationship between retail fuel and crude oil prices - or other input products - can be 
analysed with different methodological approaches. Frey and Manera (2007) as well as 
Perdiguero-García (2013) differentiate five main methods to analyse asymmetric cost pass-
through in the retail fuel market: autoregressive distributed lag models, partial adjustment 
models, error correction models, regime switching models and as a last subgroup their 
multivariate extensions (e.g. vector autoregressive models). Error correction models (ECM) are 
one of the most widely used methods. Engle and Granger (1987) describe the idea of error 
correction simply as ‘a proportion of the disequilibrium from one period is corrected in the next 
period’. Therefore, error correction models disclose adjustment speeds back towards the long-
term equilibrium. They can be established in multiple ways. Usually, error correction models 
contain residuals as error correction terms which are estimated from a cointegration 
relationship. To detect asymmetries, specific parts, e.g. the error correction or distributed lag 
terms can be decomposed with the help of threshold values. 

A subgroup of asymmetric ECMs are ‘semi-asymmetric’ ECMs (Balaguer and Ripollés, 2012). 
These were used in a similar context by Granger and Lee (1989), Bachmeier and Griffin (2002), 
Kaufman and Laskowski (2005), Contín-Pilart et al. (2009) and Balaguer and Ripollés (2012). 
The distinguishing feature of this approach is that it analyses potential asymmetries of the 
cointegration relationship’s lagged residuals only, i.e. the error correction terms.2 Therefore, a 
semi-asymmetric ECM tests for potential asymmetries on the long-term equilibrium adjustment 
parameters (error correction terms). Focussing on literature applying semi-asymmetric ECMs 
to test for asymmetries, Kaufman and Laskowski (2005) use a model similar to our paper for 
monthly US gasoline data (in 12 US states for the years from 1986 to 2002). The threshold 
value they use to decompose the error correction terms is the lagged crude oil price change. 
Results show that symmetric price responses of retail fuel are present in most of the analysed 
US states. Contín-Pilart et al. (2009) and Balaguer and Ripollés (2012) use ECMs for the 
analysis of the Spanish market. Contín-Pilart et al. (2009) conclude, based on weekly data, that 
gasoline prices in Spain respond symmetrically to gasoline spot prices from 1993 to 2004. 
Balaguer and Ripollés (2012), based on daily data, also do not find asymmetries for the years 
2006 to 2009 between wholesale prices for refined oil and retail gasoline and diesel prices.  

                                                 
1  We also include research results for the German gasoline market because literature on German diesel price 

characteristics is currently rare. 
2  We also analysed an asymmetric model approach (see appendix A.5) and found comparable results to the 

reference case presented in chapter 5. 
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In terms of our research questions, few studies evaluated the influence of station brands and/or 
spatial distribution on asymmetric pricing strategies.3 Verlinda (2008) analyses comparable 
characteristics with a weekly station level data set from Orange County4 over nine months in 
the years 2002 and 2003. Price-response asymmetry is given for the aggregated data set. 
Furthermore, the author shows that brand stations have higher price-response asymmetries than 
unbranded stations but concludes that he cannot measure any effect between population size 
and asymmetries. Balmaceda and Soruco (2008) analyse weekly station level data from 44 
petrol stations in Santiago5 between 2001 and 2004. The authors find asymmetries regarding 
retail prices after wholesale price changes in their data set. Furthermore, the results show that 
brand stations have a stronger price-adjustment asymmetry than unbranded stations. It is 
noteworthy that their results are derived in an “unusual”6 market environment as stations in 
their data set usually adjust prices once a week (after the monopolistic refinery supplier 
announces recent price changes). Faber (2015) also uses an asymmetric ECM for the Dutch 
market from 2006 to 2008. His station-specific results show that 38 % of the stations in the data 
set do respond asymmetrically for the market of retail gasoline. Furthermore, the author found 
asymmetric behaviour of certain brands, but there was no correlation with regions or population 
sizes in the Dutch market. 

In the German context, our paper is the first to analyse the rockets and feathers hypothesis 
differentiated by brands and population density. The following eight papers analyse asymmetric 
cost pass-through in Germany – but without the latter differentiation. Kirchgässner and Kübler 
(1992) analysed price adjustment effects of West-German gasoline and its relationship with 
spot prices from the Rotterdam fuel market. They draw on 216 monthly data observations from 
1972 to 1989 and find asymmetries during the 1970s but symmetry for the 1980s. Lanza (1991) 
analyses the situation in West-Germany from 1980 to 1990, finding asymmetry between retail 
and refinery gasoline prices. Galeotti et al. (2003) investigate price setting characteristics for 
crude oil and retail gasoline prices from Germany and four other European countries with 
ECMs. The German sample comprises the period from 1985 to 1997. The authors conclude that 
there are asymmetries between these prices in Germany. Grasso and Manera (2007) use three 
different ECM approaches (asymmetric, threshold autoregressive and threshold cointegration) 
with monthly data for the period from 1985 to 2003. The authors find evidence of asymmetry 
for Germany for the first two models. Kristoufek and Lunackova (2015) analyse weekly 
gasoline and oil prices for Germany and six other countries for the years 1996 to 2014. The 
authors introduced two new test formats in addition to a more standard ECM (based on Galeotti 
et al., 2003). Their results do not show asymmetric adjustments for their preferred test 

                                                 
3  Many studies however analyse that retail prices in general are influenced by such characteristics (see e.g. 

Barron et al., 2004, Firgo et al., 2015 and the literature cited therein).  
4  Orange County is a county in California, USA, comprising 2,460 km2, i.e. less than 1 % of the German 

landmass. 
5  Santiago is the capital of Chile with a landmass of 641 km2 (the Santiago Metropolitan Region comprises 

15,403 km2).  
6  See ibid, p. 630. 
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methodology in any country. However, standard ECM calculation showed asymmetric 
characteristics for Germany and Belgium. Asane-Otoo and Schneider (2015) analyse German 
gasoline and diesel prices on a weekly level. In the case of diesel, the authors found positive 
asymmetries between 2003 and 2007 (more rapid price reactions to Brent crude oil price 
increases than decreases) and symmetric adjustment for 2009-2013. They also analyse city level 
data for the four largest German cities but do not compare it to other regions. Bagnai and Ospina 
(2016) use monthly retail fuel and crude oil data from 1999 to 2015 for different European 
countries, including Germany. With the recently introduced approach of nonlinear 
autoregressive distributed lag (NARDL) the authors show for the German case that over the 
full time period a negative asymmetry is given. Kreuz and Müsgens (2016) analysed 
asymmetries in the German diesel retail market for the period from 2011 to 2012. However, the 
paper also does not analyse spatial characteristics like urban and rural diesel retail prices and 
the pricing patterns of the five mayor brands. The last two papers in this literature discussion 
differentiate brands and spatial effects but not with an ECM. Kihm et al. (2016) use quantile 
regressions to analyse deviations from cost-based pricing in a station-specific panel of German 
retail stations. They conclude that low and high priced stations pass on more of input price 
increases than station with average prices. Haucap et al. (2017) analyse causes for specific price 
levels of German retail stations. The authors show that premium brands charge the highest 
prices, while increased competition (i.e. heterogeneous stations in close proximity) decreases 
absolute price levels.  

3 DATABASE 

Haucap et al. (2017) argue that historically, ‘comprehensive pricing data sets for empirical 
investigations have been difficult to obtain as gasoline and diesel are sold through numerous 
local gas stations’. Nowadays, fuel pricing data is more widely available in many countries. 
One main reason for the increase in data quality is that private websites publish retail prices 
which customers can update with their smartphones when refuelling. Consumers can also 
provide location data and brand names.  

We use such a bottom-up data set for the following analysis. The information set was gathered 
from an online platform (http://www.benzinpreis-aktuell.de) where users can voluntarily report 
information. We concentrate our analysis on retail diesel, which is the petroleum product with 
the highest consumption in Germany (IEA, 2014) and Europe (Eurostat, 2016). Our database 
comprises 25,616 diesel data points for the two calendar years 2011 and 2012 (on average about 
35 reported prices each day). Prices are reported fairly identical over the weekdays, with slightly 
more prices for Mondays.7 A data point comprises a price (in Euros per litre), a point in time 
(yyyy,mm,dd,hh,mm,ss), a postal code (five digits) and a station brand.8 Note that specific 

                                                 
7  More reported prices on Monday may be explained by higher demand on Mondays (FCO, 2011). 
8  When data points did not include specific brand names, we included them in Non IPS and Non Top Five 

subsets. This is a cautious approach as we may underestimate differences between subsets. 
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stations cannot always be unambiguously identified based on postal codes and brands. In 
contrast to earlier work carried out in this period, our data enables us to differentiate between 
brands and regions.  

We analyse seven different price data series consisting of different (sub-)sets. We start using 
all diesel price data (All Data). In addition, we establish two time series to analyse independent 
petrol stations: one time series with the prices from all IPS (subset IPS) and another series from 
the remaining data, i.e. all other stations (Non IPS). IPS prices have a share of 20 % of all data 
points (compared to a market share of about 18 % for those years, based on the German 
Petroleum Industry, 2012). Furthermore, we generate two time series by isolating the price data 
from the five major brands in the German retail fuel market, which we call Top Five: Aral, 
Shell, Total, Esso and Jet. Again, we complement the Top Five time series with another series 
consisting of all other stations (Non Top Five). Finally, we analyse two more subsets related to 
prices from administrative districts in Germany with either high or low population densities 
(PopDens high and PopDens low). Low population densities are assumed in districts with less 
than 1,000 people per square kilometre and higher population densities for districts above that 
threshold.  

In each data (sub-)set, 104 weekly diesel data points (52 weeks in 2011 and 2012) are calculated 
as the average of seven consecutive days starting on Mondays. Each daily value is the average 
of all prices reported for that day in the respective data series. We use weekly data for our 
analysis due to a lack of data for several days in all (sub-)sets. The following Table 1 shows 
both the mean of each category’s weekly averages as well as the number of data points in each. 
Looking at the means, we can confirm that IPS are cheaper than Non IPS stations. Furthermore, 
the Top-Five Brands are on average more expensive than Non Top Five and prices in districts 
with high population density (PopDens high) are lower than in areas with low population 
density (PopDens low). However, we discovered through two-sample-t-tests that we cannot 
reject the null hypothesis of identical price averages between two subsets (last three lines of 
Table 1). 
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Data 
Mean of weekly averages 

[€ per litre] 

Number of price 
observations 

All Data 1.4301 25,616 

IPS 1.4280 5,173 

Non IPS 1.4311 20,443 

Top Five 1.4364 9,161 

Non Top Five 1.4258 16,455 

PopDens high 1.4249 7,768 

PopDens low 1.4313 17,848 

Two-sample-t-test 

IPS vs. Non IPS     -0.45 (0.6532) 

Top Five vs. Non Top Five   1.5658 (0.1189) 

PopDens high vs. PopDens low  -0.9149 (0.3613) 

Table 1: Data characteristics. Notes: for two-sample-t-test, p-value in brackets ( ), significance codes: 
0.01 (***), 0.05 (**), 0.1 (*). 

The weekly crude oil data series is calculated from daily closing prices of Brent oil (in Euros 
per litre). As no oil prices are quoted for weekends, we assume oil prices on Saturdays are equal 
to the closing price on the Friday before. For Sundays, we assume the opening price of the 
following Monday. This step harmonises oil data with diesel data.9 Figure 2 shows resulting 
weekly prices for the seven diesel time series and oil prices over the years 2011 and 2012. The 
oil price time series and different diesel categories show comparable price movements.  

                                                 
9 Using daily opening prices (instead of closing prices) does not change our results in a meaningful way. 
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Figure 2: Weekly diesel and Brent oil prices for the years 2011 and 2012. 

 

As people voluntarily report prices, our online sample is not necessarily unbiased. However, 
Atkinson (2008) compares an online data set for Guelph, Ontario, with balanced panel collected 
data and concludes that ‘spotters [i.e. voluntarily reported online data] do not tend to report a 
station’s price more often if its price is higher or lower relative to the citywide mode or mean 
prices.’ Furthermore, Kihm et al. (2016) also work with data gathered from a German online 
platform (‘Clever Tanken’). They argue that the average monthly deviation between online 
price data and representative market prices is less than 1 %. To further evaluate our data set, 
we also compared it with an official weekly benchmark from the European Commission (note 
that this can only be done for all data, as more disaggregated data is not available from the 
European Commission) as well as with ‘Clever Tanken’s data. Some statistics for both 
comparisons are shown in the following Table 2. In particular, the mean absolute percentage 
error, i.e. the average deviation between our data and both the European Commission data as 
well as Clever Tanken is below 2 % - on a weekly level.  
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Diesel price data 

(used in this 
paper) 

European  
Commission 

Clever  
Tanken 

Mean 1.4301 1.4376 1.4555 
Standard deviation 0.0479 0.0694 0.053 
Mean squared error - 0.0011 0.0008 

Mean absolute percentage 
error [%]  

- 1.99 1.73 

Table 2: Descriptive statistics and comparison between the used data in this paper and the diesel data 
from the European Commission (2018) and Clever Tanken (2018).   

4 METHODOLOGY 

To establish our ECM, the following procedure is carried out: We firstly test our data for 
cointegration with the help of the Engle-Granger two-step cointegration procedure (Engle and 
Granger, 1987). The first part includes testing the original data and first differences for unit 
roots and stationarity with the help of the Augmented Dickey-Fuller test (ADF-test). Results 
need to show that all data series in levels are non-stationary and differences are stationary on 
the same order of integration, e.g. I(1). The second part of the Engle-Granger procedure 
contains the test for stationarity of the residuals of the long-term relationship between the two 
possibly cointegrated time series which, in our case, are diesel and crude oil prices. If the 
residuals of the long-term relationship are stationary, the two time series are cointegrated. 
Subsequently we use the estimated residuals as error correction term for the ECM. The 
calculation for the cointegration relationship and the construction of the ECM will be presented 
in this chapter, the test for stationarity of the original data and its first differences is included in 
the appendix. We use the statistical software ‘R’ to implement our work (R Core Team, 2016). 

4.1 Cointegration Relationship 

With the help of the Engle-Granger two-step cointegration procedure, we test crude oil prices 
(as independent variable) and the respective diesel data (sub-)set (as dependent variable) for 
cointegration, i.e. a stable long-term relationship between diesel and oil prices. Tests are often 
done with the help of OLS, however, following Contín-Pilart et al. (2009) we chose a DOLS 
also including lagged oil price changes (see Eq. 1). Results for the OLS are presented in the 

appendix. In (1), ߬௧ are the residuals and ߠ is a constant, ݊ is the number of lags with the latter 

determined based on the BIC.  

௧݈݁ݏ݁݅݀  ൌ ߠ ൅ ߤ ௧݈݅݋ ൅෍ߚ௜ ௧ି௜݈݅݋∆

௡

௜ୀ଴

൅ ߬௧ (1)

Table 3 shows the optimal cointegration relationships, which maximises the absolute value of 
the BIC for each of the seven data series. With the residuals of (1), we again use the ADF-test 

to test for the stationarity of the time series without intercepts or trends. If the residuals ߬௧ are 
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stationary, we can assume a long-term relationship exists. The results in Table 3 show that the 
residuals are indeed stationary. Therefore, we can conclude that diesel and oil price data are 
cointegrated. 

 All Data IPS Non IPS Top Five 
Non Top 

Five 
PopDens 

high 
PopDens 

low 

 ߠ
0.8045*** 
(0.0336) 

0.7945*** 
(0.0416) 

0.8166*** 
(0.0318) 

0.8011*** 
(0.0324) 

0.7876*** 
(0.0374) 

0.7932*** 
(0.0425) 

0.8033*** 
(0.0315) 

 ௧݈݅݋	
1.1974*** 
(0.06384) 

1.2127*** 
(0.07911) 

1.1761*** 
(0.0605) 

1.2158*** 
(0.0616) 

1.2215*** 
(0.0711) 

1.21*** 
(0.0809) 

1.2018*** 
(0.06) 

 ௧݈݅݋∆	
-0.7427*** 

(0.1634) 
-0.6962*** 

(0.2026) 
-0.7607*** 

(0.1549) 
-0.7278*** 

(0.1578) 
-0.7474*** 

(0.1821) 
-0.7301*** 

(0.2072) 
-0.7313*** 

(0.1535) 

Adj. R² 0.78 0.70 0.79 0.79 0.75 0.69 0.80 

BIC -478.1006 -434.3437 -489.0982 -485.311 -456.0903 -429.6965 -491.8856 

ADF-test 
[lags] 

-3.8151*** 
[0] 

-3.4683**  
[0] 

-3.7926*** 
[0] 

-3.2179**  
[1] 

-4.6738*** 
[1] 

-3.5504*** 
[1] 

-3.8223*** 
[0] 

Table 3: Cointegration relationship (DOLS) with 102 observations for each data set. Notes: standard 
errors in parenthesis ( ), significance codes: 0.01 (***), 0.05 (**), 0.1 (*), ADF-test for cointegration 

without constant and trend, optimal lag length for the cointegration relationship and ADF-test chosen by 
BIC, critical values from MacKinnon (1991). 

4.2 Error Correction Model 

Once cointegration is confirmed, an error correction model (ECM) can be established. An ECM 
describes a dynamic adaptation process between cointegrated variables, in our case diesel and 
oil prices.  

௧݈݁ݏ݁݅݀∆  ൌ ௧ିଵ߬ߛ ൅෍ߴଵ,௝∆݈݅݋௧ି௝

௄

௝ୀ଴

൅෍ߴଶ,௜∆݈݀݅݁݁ݏ௧ି௜ ൅ ௧ߝ

௅

௜ୀଵ

 (2)

The ECM relationship expressed in (2) defines the relationship between changes in diesel prices 
and (lagged) oil price changes and lagged diesel price changes. The short-term impact of lagged 

oil price changes and lagged diesel price changes is measured by	ߴଵ and ߴଶ. ܭ and ܮ are the 

respective lag length. Furthermore, ߬௧ିଵ are the lagged residuals from the cointegration 

relationship between diesel and oil prices (see Equation (1)). The coefficient ߛ is a long-term 

equilibrium adjustment parameter, which measures the significance of one-period lagged 
residuals. It determines the speed of adjustment between oil and diesel prices (cointegration 
relationship). Therefore, it should always be negative in sign.  

Our aim is to analyse asymmetries of diesel price changes after oil prices have increased or 
decreased. Therefore, we have to differentiate between positive and negative changes of oil 
prices (also used in Bachmeier and Griffin, 2002, Kaufman and Laskowski, 2005, Contín-Pilart 



14 

 

et al., 2009, Balaguer and Ripollés, 2012). This is achieved by decomposing ߬ in equation (3), 

which shows our semi-asymmetric ECM. The threshold variable for the distinction 

(decomposition) of the residual time series ߬௧ is the sign of the change of the Brent oil price 

ሺ∆݈݅݋௧ሻ. Positive changes correspond to oil price increases and vice versa. The model evaluates 
the potential asymmetry of the adjustment speed back into the long-term equilibrium with the 

help of the error correction terms gained from (1). The coefficient ߛା (ିߛ) estimates the 

adjustment speed if oil prices are increasing (decreasing). The optimal lag length is again 
determined based on the BIC. 

௧݈݁ݏ݁݅݀∆  ൌ ௧ିଵ߬ߛ ൅෍ߴଵ,௝∆݈݅݋௧ି௝

௄

௝ୀ଴

൅෍ߴଶ,௜∆݈݀݅݁݁ݏ௧ି௜ ൅ ௧ߝ

௅

௜ୀଵ

 (3)

where 

߬௧
ା ൌ ߬௧ ∧ ߬௧ି ൌ 0, ௧݈݅݋∆	݂݅ ൐ 0, 

߬௧ି ൌ ߬௧ ∧ ߬௧
ା ൌ 0, ௧݈݅݋∆	݂݅ ൑ 0,	 

௧݈݅݋∆ ൌ ௧݈݅݋ െ  ௧ିଵ݈݅݋

The crucial question in terms of asymmetric price adjustment is whether ߛା and ିߛ are 

different. We use the Wald-test (F-test) to test for the null hypothesis of ߛା ൌ  As Cook et .ିߛ
al. (1999) discuss the relatively low strength of the F-test in the context of ECMs, we bootstrap 
the F-statistics with the help of residual bootstrapping (see comparable adaptations in Galeotti 
et al., 2003, Grasso and Manera, 2007 and the discussion in Contín-Pilart et al., 2009). This 
bootstrapping approach increases the reliability of tests for symmetry with restricted data sets 
by calculating replications with the help of random sampling with replacement. The following 
method for residual bootstrapping was used to bootstrap the F-test for the ECM (see e.g. 
Mooney and Duval, 1996): (a) Calculate the model with original data; (b) calculate residuals of 

the model ߝ௜ ൌ ௜ܻ െ ෠ܻ௜; (c) resample residuals randomly with replacements; (d) generate a 
bootstrapped vector of the dependent variable by adding the resampled vector of residuals to 

the fitted dependent values ௕ܻ
∗ ൌ ෠ܻ ൅ ௕ߝ

∗෡ ; (e) regressing ௕ܻ
∗ on the exogenous variables; 

(f) conduct hypothesis test for bootstrapped estimators - in our case, the Wald-test (F-test) for 
the error correction parameters. We obtained newly simulated dependent variables, estimated 
model parameters and computed the F-statistic 1,000 times. Higher levels of replications do not 
show significantly different results.  

Finally, we conduct two-sample-t-tests, both for the original data and bootstrapped data, to test 

for the null hypothesis of ߛ௫ା ൌ ௫ିߛ)	௬ାߛ ൌ  ௬ି) between IPS and Non IPS, Top Five and Nonߛ

Top Five, as well as for PopDens high and PopDens low. 
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5 RESULTS 

Table 4 shows the results for our seven ECMs (containing All Data as well as subsets for IPS, 
Non IPS, Top Five, Non Top Five, regions with high and low population densities). We find 
that changes in the crude oil price are the major driver for short-term diesel price changes in 
our model (rows one and two). Lagged diesel price differences (row three) do not have enough 
explanatory power to be included when parameters are selected according to BIC. 

The results with respect to asymmetric price adjustments will be analysed in two steps: In a first 

step, we will compare ߛା and ିߛ for all seven data series and analyse the Rockets and Feathers 
hypothesis. We provide test results both based on data sets before and after bootstrapping 
results. In a second step, we will discuss differences in adjustment speeds between the three 
data sets IPS, Top Five and PopDens high and the remaining stations in each subset (Non IPS, 
Non Top Five and PopDens low respectively), e.g. comparing adjustment speed levels of diesel 
prices after oil price increases between IPS and Non IPS.  

A comparison of the two parameters ߛା and ିߛ (row four and five) shows that ߛା has higher 

absolute values in all (sub-)sets, meaning that oil price increases are faster transferred to diesel 
prices than oil price decreases.10 However, based on the results of the Wald test, we cannot 

reject the null hypothesis of equal error correction terms (ߛା ൌ  .in six categories (row nine) (ିߛ
The exception are the Top-Five-brands, which show asymmetry on the 10 % significance level. 
Table 4 also shows the number of rejections in percentage terms after 1,000 replications 

(bootstrapping) with a significance level of 5 % (Bootstrapped ߛା ൌ  in [%], row ten). We ିߛ
interpret high rejection frequencies as larger than 15 % of all calculated cases (see Cook et al., 
1999, Galeotti et al., 2003, Grasso and Manera, 2007). Based on these assumptions, we reject 
the null hypothesis of equal error correction parameters in six out of seven categories (the 
exception being Non Top Five stations) and conclude that there is asymmetric price setting in 
those cases. 

Based on results both before and after bootstrapping, we deduce the following: The Rockets 
and Feathers hypothesis is confirmed for the dominant Top Five stations. For these stations, we 

can reject ߛା ൌ  both before and after bootstrapping. This is especially noteworthy in ିߛ

comparison to the Non Top Five, where we can reject the null hypothesis of ߛା ൌ  neither ିߛ

before nor after bootstrapping. In all other cases, despite observing that ߛା has higher absolute 

values, we can reject the null hypothesis of ߛା ൌ  .only after bootstrapping ିߛ

  

                                                 
10  The Durbin-Watson statistic (DW-test, row 7) is applied to analyse autocorrelation of the error terms. The 

DW-test finds no evidence of autocorrelation. 
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 All Data IPS Non IPS Top Five 
Non  

Top Five 
PopDens 

high 
PopDens

low 

 ௧݈݅݋∆
0.3937*** 
(0.1007) 

0.4668*** 
(0.1226) 

0.3662*** 
(0.0982) 

0.4312*** 
(0.1179) 

0.4009*** 
(0.109) 

0.3943** 
(0.1612) 

0.4398*** 
(0.0913) 

 ௧ିଵ݈݅݋∆
0.7455*** 
(0.1006) 

0.6265*** 
(0.1225) 

0.7547*** 
(0.0981) 

0.6599*** 
(0.1178) 

0.7375*** 
(0.1087) 

0.7805*** 
(0.1617) 

0.7166*** 
(0.0911) 

 - - - - - - - ௧ିଵ݈݁ݏ݁݅݀∆

 ାߛ
-

0.3051*** 
(0.0947) 

-0.2977*** 
(0.0866) 

-0.3267*** 
(0.0978) 

-0.5001*** 
(0.1147) 

-0.2695*** 
(0.0957) 

-0.4447*** 
(0.1075) 

-0.3007*** 
(0.0957) 

 ିߛ
-0.1525* 
(0.0816) 

-0.1444* 
(0.083) 

-0.158* 
(0.0828) 

-0.2096** 
(0.0961) 

-0.1937** 
(0.0832) 

-0.2736** 
(0.1122) 

-0.1456* 
(0.077) 

Adj. R² 0.51 0.40 0.52 0.44 0.47 0.37 0.56 

DW-test 2.1 2.1 2.16 2.23 2.3 2.18 2.14 

BIC -567.2634 -527.9382 -572.4459 -535.8472 -552.0267 -472.3857 -587.1351

p-value 

ାߛ ൌ   ିߛ
0.2253 0.2046 0.1914 0.055* 0.5519 0.2745 0.2104 

Bootstrapped  

ାߛ ൌ  [%] ିߛ
25.2 28.1 28.2 49.5 9.7 20.0 24.1 

t-value ߛ௫ା ൌ  ௬ାߛ

(Bootstrapped) 

- 

(-) 

2.22** 

(2.16**) 

-15.44*** 

(-15.35***) 

-10.01***  

(-10.63***) 

t-value ߛ௫ି ൌ  ௬ିߛ

(Bootstrapped) 

- 

(-) 

1.16 

(1.5) 

-1.25 

(-1.59) 

-9.41***  

(-9.55***) 

Table 4: Estimates for the error correction model with 100 observations for each data set. Notes: lag 
length chosen by BIC, standard error in parentheses, significance codes: 0.01 (***), 0.05 (**), 0.1 (*), 
bootstrapping: bootstrapped ࢽା ൌ  gives the percentages of rejections of the null hypothesis of [%] ିࢽ

equal error correction terms with a significance level of 5 %, bootstrapped ࢞ࢽା ൌ ି࢞ࢽ ା and࢟ࢽ ൌ  [%] ି࢟ࢽ
gives the test results for model characteristics after 1,000 replications of both models. 

After bootstrapping, our general findings are in line with the work by Galeotti et al. (2003). 
Compared to Asane-Otoo and Schneider (2015), we find more asymmetries. For their weekly 
German diesel data set, they found positive asymmetry for the period from 2003 to 2007 but 
not for the time period 2009 to 2013.  

The last four rows in Table 4 analyse the relationship between complementary subsets. In 
particular, they show the results of the two-sample-t-tests with the null hypothesis of identical 
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adjustment speeds (e.g. ߛூ௉ௌ
ା ൌ ூ௉ௌ	ே௢௡ߛ

ା ) between different subsets. While results in row four 

show that Top Five adjust faster after oil price increases than Non Top Five stations, row eleven 

confirms this by rejecting the null hypothesis of identical ߛା between Top Five and Non Top 

Five (-15.44, significant on the 1 % level). Thus, the dominating players – Aral, Shell, Total, 
Esso and Jet – increase prices faster after oil price increases than all other stations. This outcome 
correlates with the findings of Verlinda (2008) for Orange County, Balmaceda and Soruco 
(2008) for Santiago and the FCO (2011) for Germany. The latter concludes that price changes 
are often initiated by Aral or Shell and rapidly adopted by the other three top brands. 

Interestingly, our results show that while ߛା is significantly different between Top Five and 

Non Top Five, ିߛshow comparable adjustment speed levels. Hence, the Top Five stations are 
not as fast to pass on oil prices decreases into lower diesel prices and show comparable 
characteristics like all other stations. 

Analysing differences in price setting strategies between petrol stations in densely and less 
densely populated areas, we find that stations in regions with higher population densities show 
significantly faster adjustment speed levels, both after oil price increases and after oil price 
decreases. This might result from an easy monitoring of prices for both retail stations and 
customers from numerous close competitors and hence rapidly following individual price 
adaptations. On the contrary, less densely populated regions show lower adjustment speed 
levels after oil price changes (Kihm et al., 2016). Comparing our results regarding population 
densities to Asane-Otoo and Schneider (2015), they found that retail prices in extremely densely 
populated metropolitan areas (Berlin and Munich) have lower adjustment speeds to wholesale 
price increases compared to decreases. However, they did not compare this to data from less 
densely populated areas or their German average as they used a different data set (daily diesel 
prices from December 2013 to September 2014 in Berlin and Munich compared to weekly data 
from 2003 to 2013 for all of Germany). 

Lastly comparing adjustment speeds between IPS and Non IPS, adjustments after oil price 

increases (ߛା) are different on the 5 % level (1.984), with IPS showing lower adjustment 
speeds. No significant differences can be found after oil price decreases. Hence, IPS’ lower 
reaction speed on oil price increases seems the only difference between IPS and Non IPS. These 
results may be caused by the same pricing strategies being profit-maximizing for both 
categories, or by IPS simply mirroring the pricing strategies of the market. Alternatively, 
dependence on main petrol brands may drive IPS to follow, e.g. due to the influence of 
vertically integrated market players on refinery prices (FCO, 2011), although they follow less 
fast after oil price increases.  

We also tested the robustness of our results with model variations and present the results in the 
appendix. To begin with, our main conclusions based on the reference model (Table 4) do not 
significantly change when using price data in logs instead of levels (see Table A.4 in the 
appendix). In addition, we calculated an asymmetric model (see Eq. A.4, instead of our semi-
asymmetric reference in Eq. 3). Table A.5 shows the model selected by BIC. It confirms again 
a relatively low explanatory power of lagged diesel price changes as they are omitted by BIC. 
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In terms of asymmetric price adjustment, the model shows comparable results to our main 
findings. 

6 CONCLUSION 

This paper analyses asymmetries in the German diesel retail market for the calendar years 2011 
and 2012. We use weekly diesel prices from a countrywide bottom-up data set and analyse the 
price relationship with Brent crude oil prices. Our disaggregated data enables us to separate the 
data set into subsets. Thus, we quantified the impact of the oil price on seven different diesel 
price data (sub-)sets: all diesel prices in our data set, diesel prices from independent petrol 
stations (IPS) and all Non IPS respectively, diesel prices from the five dominant brands (Top 
Five) and all Non Top Five stations respectively, as well as diesel prices from regions with 
higher and lower population densities.  

Our results show that diesel prices follow increases in oil prices faster than decreases in all 
cases. Before bootstrapping results, testing for significance of these asymmetries confirms them 
for Top Five stations only. After bootstrapping the ECM and testing for significant 
asymmetries, the results show asymmetric price setting behaviour in six out of seven cases: All 
Stations, IPS, Non IPS, Top Five, as well as stations in high and low population areas.  

Hence, we find significant differences in price setting behaviour between Top Five stations and 
other stations. This confirms their influence as price setters during price increases: They follow 
oil price increases faster and more pronounced than the other stations. However, results do not 
confirm such behaviour after oil price reductions. Our results reveal little differences in 
asymmetric cost pass-through between IPS and Non IPS. We offered profit maximizing by IPS 
as well as dominant firms’ influence on IPS as possible explanations. Furthermore, petrol 
stations in regions with higher population densities and lower population densities differ with 
respect to their adjustment speeds: petrol stations in regions with higher population densities 
react both significantly faster to oil price increases as well as to oil price decreases. Further 
research may analyse the relationship between brands and their spatial distribution in more 
detail (certain brands may be found more often in less densely populated areas). 

In terms of policy implications, we find evidence for asymmetric cost pass-through in the 
German diesel retail market. Furthermore, asymmetric cost pass-through is most significant for 
stations from the Top Five brands – which have the highest market share and thus may be 
particularly interested in strategic pricing behaviour. In the light of these results, the 
introduction of the market transparency platform by FCO seems a step in the right direction. 

Further research might focus on the analysis of structural changes of pricing patterns before and 
after market transparency changes. Those might occur because of (1) technological innovations 
or (2) regulatory changes. While the technological innovations within recent years enabled 
researchers to work with bottom-up data with higher frequencies in more regions, regulatory 
changes might modify the transparency of a market for both suppliers and customers. Therefore, 
analysis might concentrate on the comparison of pricing patterns before and after those changes. 
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In the case of Germany, future work could in particular focus on the analysis of the symmetry 
of pricing patterns after the full establishment of the mentioned market transparency platform 
in late 2013. 

  



20 

 

APPENDIX A: TEST FOR STATIONARITY AND 
COINTEGRATION 

Establishing an ECM with cointegrated time series data requires tests for the original data’s 
order of integration. We need to know the order of integration to ensure that the two possibly 
cointegrated time series have the same order of integration. We test with the (Augmented) 
Dickey-Fuller test (ADF-test) whether the relevant time series is stationary, which is commonly 
used in those methodological approaches and introduced by Dickey and Fuller (1979). We use 
the ADF-test with a constant and a trend for data in levels, because of trend characteristics and 
significances (equation A.1) and without a constant or trend (equation A.2) for first differences 
(see Figure 2 for raw data). 

௧ݕ∆ ൌ ଴ߙ ൅ ݐଵߙ ൅ ௧ିଵݕߚ ൅෍ߜ௜∆ݕ௧ି௜ ൅ ௧ߝ

௣

௜ୀଵ

 (Eq. A.1) 

௧ݕ∆ ൌ ௧ିଵݕߚ ൅෍ߜ௜∆ݕ௧ି௜

௣

௜ୀଵ

൅  ௧ (Eq. A.2)ߝ

The variable ݕ௧ represents the price data for oil or diesel. α଴ is a constant, that is needed because 

the plotted data in levels show a nonzero mean, and αଵ is the trend for the data in levels. No 
constant and trend need to be included for the data of first differences. The reminder of both 

equations is identical. ε is the error term. If ߚ is 0, the process is non-stationary (null 
hypothesis). If we reject the null hypothesis, we can conclude that our data is stationary. To test 

stationarity, we compare the t-statistics for ߚ against a non-standard distribution (Pfaff, 2008). 

We use the BIC for the optimal lag length. The outcomes (Table A.1) show that all seven time 
series are stationary for their first differences while they are not stationary at levels. Hence, we 
can assume they are I(1). We also controlled with the help of the KPSS Unit Root Test 
(alternative hypothesis: no stationarity) and obtained comparable results (integration order of 
I(1), see Table A.2). 

Table A.3 gives the results for the cointegration relationship estimated with OLS and 
Equation A.3. Results show that residuals are stationary, as in the case of DOLS. Therefore, we 
can conclude that a cointegration relationship exists between diesel and oil prices. 

௧݈݁ݏ݁݅݀ ൌ ߠ ൅ ߤ ௧݈݅݋ ൅ ߬௧ (Eq. A.3) 
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 Oil D(Oil) Diesel D(Diesel) 

All Data -2.9159 -6.7101*** -2.9467 -7.0347*** 

IPS -2.9159 -6.7101*** -3.1024 -7.0693*** 

Non IPS -2.9159 -6.7101*** -2.8711 -6.5139*** 

Top Five -2.9159 -6.7101*** -2.6962 -6.6104*** 

Non Top Five -2.9159 -6.7101*** -2.8938 -6.6777*** 

PopDens high -2.9159 -6.7101*** -3.1042 -7.9302*** 

PopDens low -2.9159 -6.7101*** -2.9917 -6.7383*** 

Table A.1: Results of ADF-tests with 104 observations for each data set (respectively 103 for first 
differences). significance codes: 0.01 (***), 0.05 (**), 0.1, optimal lag length for all cases is 1 – chosen by 

BIC. 
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 Oil D(Oil) Diesel D(Diesel) 

All Data 1.32*** 0.0885 1.6982*** 0.1348 

IPS 1.32*** 0.0885 1.8619*** 0.1357 

Non IPS 1.32*** 0.0885 1.5323*** 0.1411 

Top Five 1.32*** 0.0885 1.7266*** 0.1412 

Non Top Five 1.32*** 0.0885 1.5592*** 0.1519 

PopDens high 1.32*** 0.0885 1.7441*** 0.2073 

PopDens low 1.32*** 0.0885 1.57***  0.1366 

Table A.2: Results of KPSS-test with lags equal 2 with 102 observations for each data set (respectively 101 
for first differences), significance codes: 0.01 (***), 0.05 (**), 0.1 (*). 

 
 
 

 All Data IPS Non IPS Top Five 
Non Top 

Five 
PopDens 

high 
PopDens 

low 

 ߠ
0.8279*** 
(0.0363) 

0.8164*** 
(0.0433) 

0.84057*** 
(0.03486) 

0.8241*** 
(0.0351) 

0.81120*** 
(0.03975) 

0.8162*** 
(0.0444) 

0.8264*** 
(0.0344) 

 ௧݈݅݋	
1.1519*** 

(0.069) 
1.17*** 
(0.0823) 

1.12948*** 
(0.06629) 

1.1712*** 
(0.0668) 

1.17573*** 
(0.07560) 

1.1653*** 
(0.0844) 

1.157*** 
(0.0653) 

Adj. R² 0.73 0.67 0.74 0.75 0.71 0.65 0.76 

BIC -463.4035 -427.4701 -471.4758 -470.0756 -444.6812 -422.2712 -474.4615 

ADF-test 
[lags] 

-3.493***  
[1] 

-3.1966**  
[1] 

-3.5089*** 
[1] 

-3.5574*** 
[1] 

-3.4757**  
[1] 

-3.8013*** 
[1] 

-4.4156*** 
[0] 

Table A.3: OLS cointegration relationship with 102 observations for each data set. Notes: ADF-test for the 
residuals of the OLS relationship without constant or trend, optimal lag length chosen by BIC, critical 

values from MacKinnon (1991), standard errors in parenthesis ( ), significance codes: 0.01 (***), 0.05 (**), 
0.1 (*). 
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APPENDIX B: FURTHER ROBUSTNESS CALCULATION OF 
ECM 

Table A.4 shows results for the reference ECM but with all price data entering in logs.  

 

 All Data IPS Non IPS Top Five 
Non 

Top Five 
PopDens 

high 
PopDens

low 

 ௧݈݅݋∆
0.3991*** 
(0.1007) 

0.4731*** 
(0.1226) 

0.3717*** 
(0.0983) 

0.4397*** 
(0.1174) 

0.4078*** 
(0.1090) 

0.4041** 
(0.1618) 

0.4451*** 
(0.0914) 

 ௧ିଵ݈݅݋∆
0.7397*** 
(0.1007) 

0.6209*** 
(0.1225) 

0.7489*** 
(0.0982) 

0.6507*** 
(0.1173) 

0.7297*** 
(0.1089) 

0.769*** 
(0.1614) 

0.7113*** 
(0.0913) 

 - - - - - - - ௧ିଵ݈݁ݏ݁݅݀∆

 ାߛ
-

0.4412*** 
(0.1367) 

-0.4304*** 
(0.1247) 

-0.4686*** 
(0.1411) 

-0.7403*** 
(0.1647) 

-0.3827*** 
(0.1379) 

-0.6391*** 
(0.1516) 

-0.4302*** 
(0.139) 

 ିߛ
-0.2210* 
(0.1194) 

-0.2087* 
(0.1213) 

-0.2307* 
(0.121) 

-0.3037** 
(0.1398) 

-0.2860** 
(0.1218) 

-0.3969** 
(0.1633) 

-0.215* 
(0.1126) 

Adj. R² 0.51 0.40 0.52 0.45 0.47 0.37 0.55 

DW-test 2.09 2.1 2.15 2.2 2.28 2.16 2.13 

BIC -567.2253 -527.9637 -572.3054 -536.7919 -551.8906 -472.8794 -586.915 

p-value 

ାߛ ൌ   ିߛ
0.228 0.2057 0.2039 0.0458** 0.6005 0.2803 0.2325 

Bootstrapped  

ାߛ ൌ  [%] ିߛ
23.4 26.5 26.6 56.8 8.1 19.2 21.4 

t-value ߛ௫ା ൌ
 ௬ାߛ

(Bootstrapped) 

- 

(-) 

2.03** 

(2.21**) 

-16.65*** 

(-17.47***) 

-10.15*** 

(-10.78***) 

t-value ߛ௫ି ൌ
 ௬ିߛ

(Bootstrapped) 

- 

(-) 

1.28 

(1.19) 

-0.95 

(-1.28) 

-9.17*** 

(-9.32***) 

Table A.4: Estimates for the error correction models with logged data with 100 observations for each data 
set. Notes: lag length chosen by BIC, standard error in parentheses, significance codes: 0.01 (***), 0.05 
(**), 0.1 (*), bootstrapping: bootstrapped ࢽା ൌ  gives the percentages of rejections of the null [%] ିࢽ

hypothesis of equal error correction terms with a significance level of 5 %, bootstrapped ࢞ࢽା ൌ  ା and࢟ࢽ
ି࢞ࢽ ൌ  .gives the test results for model characteristics after 1,000 replications of both models [%] ି࢟ࢽ
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Table A.5 shows results for an asymmetric ECM selected by BIC. 

௧݈݁ݏ݁݅݀∆ ൌ െ1ݐ൅߬ߛ
൅ ൅ െ1ݐെ߬ߛ

െ ൅ ෍ ଵ,௠ߴ
ା ௧ି௠ା݈݅݋∆ ൅

௄

௠ୀ଴

෍ ଵ,௠ߴ
ି ௧ି௠ି݈݅݋∆

௄

௠ୀ଴

 

൅෍ߴଶ,௡
ା ௧ି௡ା݈݁ݏ݁݅݀∆ ൅

௅

௡ୀଵ

෍ߴଶ,௡ି ௧ି௡ି݈݁ݏ݁݅݀∆

௅

௡ୀଵ

൅  ௧ߝ

(Eq. A.4) 

௧݈݅݋∆
ା ൌ ௧݈݅݋∆ ∧ ௧ି݈݅݋∆ ൌ 	௧݈݅݋∆	݂݅	0 ൐ 0, 

௧ି݈݅݋∆ ൌ ௧݈݅݋∆ ∧ ௧݈݅݋∆
ା ൌ ௧݈݅݋∆	݂݅	0 ൏ 0; 

௧݈݁ݏ݁݅݀∆
ା ൌ ௧݈݁ݏ݁݅݀∆ ∧ ௧ି݈݁ݏ݁݅݀∆ ൌ 	௧݈݁ݏ݁݅݀∆	݂݅	0 ൐ 0, 

௧ି݈݁ݏ݁݅݀∆ ൌ ௧݈݁ݏ݁݅݀∆ ∧ ௧݈݁ݏ݁݅݀∆
ା ൌ ௧݈݁ݏ݁݅݀∆	݂݅	0 ൏ 0 
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 All Data IPS Non IPS Top Five 
Non  

Top Five 
PopDens 

high 
PopDens

low 

௧݈݅݋∆
ା 

0.4372*** 
(0.1585) 

0.4279** 
(0.1928) 

0.4209*** 
(0.1544) 

0.3452* 
(0.1854) 

0.5018*** 
(0.171) 

0.5288** 
(0.227) 

0.5076*** 
(0.1289) 

௧݈݅݋∆
ି 

0.3463** 
(0.1669) 

0.5087** 
(0.2034) 

0.3049* 
(0.1626) 

0.5213*** 
(0.1949) 

0.2877 
(0.1797) 

0.229  
(0.234) 

0.3716*** 
(0.1321) 

௧ିଵ݈݅݋∆
ା  

0.7173*** 
(0.1579) 

0.6557*** 
(0.1924) 

0.7278*** 
(0.1538) 

0.7336*** 
(0.1849) 

0.6916*** 
(0.17) 

0.8611*** 
(0.2231) 

0.6777*** 
(0.1264) 

௧ିଵ݈݅݋∆
ି - 

0.7731*** 
(0.1675) 

0.597*** 
(0.2039) 

0.7793*** 
(0.1631) 

0.5839*** 
(0.1957) 

0.7783*** 
(0.1805) 

0.657*** 
(0.2374) 

0.7497*** 
(0.1346) 

 ାߛ
-0.304*** 
(0.0957) 

-0.2969*** 
(0.0876) 

-0.3252*** 
(0.0988) 

-0.4968*** 
(0.1158) 

-0.2648*** 
(0.0966) 

-0.4396*** 
(0.1078) 

-0.2964*** 
(0.0966) 

 ିߛ
-0.1527* 
(0.0824) 

-0.1444* 
(0.0838) 

-0.1574* 
(0.0836) 

-0.2086** 
(0.097) 

-0.194** 
(0.0838) 

-0.2651** 
(0.1128) 

-0.1425* 
(0.0777) 

Adj. R² 0.4966 0.387 0.5072 0.4303 0.4646 0.3648 0.548 

DW-test 2.1 2.1 2.2 2.2 2.3 2.2 2.1 

BIC -558.1901 -518.8019 -563.483 -527.0423 -543.5209 -464.8965 -578.5476

p-value 

ାߛ ൌ   ିߛ
0.2342 0.2117 0.1981 0.0592* 0.5822 0.2661 0.218 

p-value 

௧݈݅݋∆
ା ൌ ௧݈݅݋∆

ି 
0.7204 0.7941 0.6395 0.5536 0.4351 0.36 0.463 

p-value 

௧ିଵ݈݅݋∆
ା ൌ ௧ିଵ݈݅݋∆

ି  
0.8264 0.8498 0.8352 0.6153 0.7517 0.5326 0.6971 

Bootstrapped  

ାߛ ൌ  [%] ିߛ
22.5 25.7 25.8 50.1 7.0 18.5 23.5 

t-value ߛ௫ା ൌ  ௬ାߛ

(Bootstrapped) 

- 

(-) 

2.14** 

(1.93*) 

-15.38*** 

(-16.33***) 

-9.89*** 

(-10.41***) 

t-value ߛ௫ି ൌ  ௬ିߛ

(Bootstrapped) 

- 

(-) 

1.1 

(1.58) 

-1.14 

(-1.01) 

-8.95*** 

(-9.84***) 

Table A.5: Estimates for the asymmetric error correction models with one lag and short-run asymmetries 
with 100 observations for each data set. Notes: lag length chosen by BIC, standard error in parentheses, 

significance codes: 0.01 (***), 0.05 (**), 0.1 (*), bootstrapping: bootstrapped ࢽା ൌ  gives the [%] ିࢽ
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percentages of rejections of the null hypothesis of equal error correction terms with a significance level of 

5 %, bootstrapped ࢞ࢽା ൌ ି࢞ࢽ ା and࢟ࢽ ൌ  gives the test results for model characteristics after 1,000 [%] ି࢟ࢽ

replications of both models. 
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