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ABSTRACT 

This paper analyses market values of wind energy converters at the individual turbine level on 

a very large scale. Such an analysis is usually precluded by the lack of detailed public data on 

the stock of wind turbines. We therefore present a general method to estimate incomplete 

turbine stock data and generate hourly yields of individual turbines based on completed 

turbine stock data and highly disaggregated hourly wind speed data. On this basis, we 

calculate hourly infeed and annual market values of up to 25,700 wind turbines in Germany 

from 2005 to 2015. We show the spread in market values on turbine level, quantify regional 

differences and discuss the effect of turbine age on market values. We show that turbines in 

central Germany have, on average, lower market values than turbines in the north, south or far 

west of Germany. Furthermore, we show that modern turbines reach higher market values 

than older turbines. We also analyse the drivers of market values, differentiating between 

infeed-price correlation and standard deviation. 

JEL-Classification: D49, Q21, Q42 

Index Terms: renewable energy sources, wind energy, bottom-up modeling, cost 

minimization, market value, power curves 

Highlights: 

 We present a method to estimate unknown stock data on installed wind turbines. 

 Reanalysis data and a cost-scaling model are used to determine LCOE-minimal 

turbines. 

 We calculate the hourly infeed of 25,700 German wind turbines for years 2005–2015. 

 Market values of turbines are found to differ by region and turbine age. 

 We analyse and illustrate the drivers of performance on the individual turbine level. 

1 INTRODUCTION 

Electricity generation from wind energy has grown rapidly worldwide in the last two decades 

(IEA 2016). This growth will likely continue owing to technological progress and the increase 

in demand for environmentally friendly electricity. Hence, the influence of wind energy on 

the electricity system — and the effect on wholesale electricity prices in particular, described 

as the merit order effect (Sensfuss et al., 2008) — is a topic of interest for researchers 

worldwide. 

However, as wind shares rise, so does the importance of taking the analysis one step further, 

i.e. to assess how the infeed of a wind energy converter
1
 (WEC) influences its own market 

value, commonly regarded as the wind’s marginal value in the day-ahead market. As an 

intermittent energy source with nearly zero marginal costs is increasingly deployed, its market 

value drops. This phenomenon triggered research on the extent of this effect and its 

                                                 
1 
 We use the terms “WEC” and “turbine” interchangeably. 
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consequences for electricity systems. Following the seminal paper of Lamont (2008), several 

authors have assessed reductions in market value and the parameters influencing this 

phenomenon (Hirth, 2013; Joskow, 2011; Mills and Wiser, 2014; Obersteiner and Saguan, 

2010; Winkler et al., 2016). A decrease in market values also influences the competitiveness 

of renewables (Green and Léautier, 2015; Hirth, 2015; Reichelstein and Sahoo, 2015) and a 

possible need for prolonged subsidisation (Kopp et al., 2012). 

Most of these studies only analyse a fleet’s average market value (see Ortner et al, 2016, for a 

literature overview).
2
 The question remains, to what extent is the fleet’s value representative 

of an individual turbine? In other words, how much does an individual turbine’s market value 

vary around the fleet’s average? This lack of research is surprising since Lamont’s (2008) 

main insight was that market value is a function of the covariance of an energy source’s 

infeed and electricity prices. However, especially in larger markets, wind conditions within 

the market — and thus individual infeeds — are not identical but highly variable. Due to 

varying weather conditions individual values differ by location. Schmidt et al. (2013) proved 

this for a relatively small country like Austria. For Germany, Grothe and Müsgens (2013) 

showed that market values for identical turbines differed significantly across the 37 reference 

locations and the twelve months of data they analysed. 

Furthermore, the infeed at a certain location (and thus a WEC’s individual market value) 

varies depending on the WEC technology used. This is important for two reasons. First, 

technological progress in the field is significant: WECs did not simply get larger in terms of 

hub height, rated power and rotor size; they also changed in the relation of rotor to capacity. 

In Germany and the USA, the growth in rotor size has outpaced capacity growth, since 2011 

onwards (Ender and Neddermann, 2015; DeutscheWindGuard, 2016; Wiser and Bolinger, 

2016). Second, rotor scaling leads to larger capacity factors and to different infeed structures, 

with repercussions for electricity systems (Fraunhofer IWES, 2013). 

The lack of research on market values on the level of individual turbines may be explained by 

the unavailability of data on the hourly infeed of individual turbines.
3
 To determine a turbine-

specific infeed in a market, one needs disaggregated data on wind speed and detailed 

information on the turbines installed: the start-up date, the deployed power curve (which maps 

wind speeds to electricity generation), the location and the hub height. As already noted in 

Becker (2017), complete datasets are quite rare and usually available datasets have large 

information gaps. For Germany, Europe’s largest wind market, there is no public dataset with 

                                                 
2 

 Hirth and Müller (2016) quantify the difference in market values of a modern wind fleet to an older one, 

finding that modern turbines reach higher market values. However, as turbines in a market are neither 

identically designed nor exposed to identical wind conditions, the question remains to what extent statements 

on “the” value are meaningful for single turbines. 
3 
 Hourly generation data for individual turbines is rarely published as it is business-sensible information of 

investors. 
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the above mentioned information.
4
 The need for an estimation or gap filling method is also 

present at the European level: although Gonzalez Aparicio et al (2016) used data from a 

commercial provider in modelling hourly infeed for the EMHIRES dataset, it still required 

comprehensive processing to fill considerable gaps (essentially hub heights and power 

curves
5
). Their processing followed a gap-filling approach based on reliable data on existing 

wind farms. For the German market, Becker (2017) applied more sophisticated statistical 

methods to complete missing data. We will present an alternative to both approaches. 

Partly due to information requirements imposed by subsidisation schemes, at least some data 

on the wind sector is available in most countries. Usually, installation numbers and 

aggregated annual infeed data are publicly available. This paper presents an economical 

approach to estimating WEC-specific hourly infeed based on other available information in a 

system. This is achieved in two steps: First, the data on a WEC’s technical parameters is 

completed by deriving deployed power curves and hub heights for all capacities installed. 

Power curves are estimated based on the WEC model and height, which minimizes levelised 

cost of energy (LCOE) at the WEC’s position, with investment costs estimated using a mass-

cost model. In a second step, this WEC data is combined with hourly, locational wind speeds 

at the turbine height to calculate hourly infeed. 

We applied this approach to Germany. We then used the completed stock data to calculate 

hourly yields and individual market values of ~25,700 individual turbines, comparing them to 

the average market value of all German turbines. Based on this empirical approach, our paper 

is the first to analyse market values on the level of individual turbines on such a large scale. 

Our results are available in the online appendix to this paper, along with completed stock data 

and historical market values. Contributing to the literature on the economics of wind energy, 

we answer three research questions: 

1. Methodology: How can a WEC’s hourly infeed be estimated based on incomplete data? 

2. Structure: What is the historical development of turbine market values in Germany? 

3. Drivers: What influences the difference in market values observed? 

The answer to the first question presents a methodological contribution, which can also be 

applied to other wind markets. The answers to the second and third questions, as well as the 

data offered in the online appendix, are of interest to international researchers who advise 

market designers on the drivers of wind energy market value. These findings may also be 

useful for investors, regulators, wind farm operators and traders in Germany. 

                                                 
4 
 By the end of 2017, a capacity register (Marktstammdatenregister) will come online (see Stratmann, 2016); 

but since stock capacities are only obliged to register within two years from its start, there will not be a 

complete dataset before 2019. 
5  

61 % of hub heights needed to be estimated. 28 % of power curves were missing and henceforth either 

estimated, based on the laws of physics, or assigned the most commonly used turbine in the market. 

Processes results are not published. 
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The remainder of the paper is structured as follows. Section 2 presents the methodology we 

used to complete the information on all turbines in the stock and subsequently calculate the 

hourly infeed and market values from the complete dataset. Section 3 analyses the model 

quality. Section 4 answers our research questions. Conclusions and further research are 

discussed in section 5. 

2 METHODOLOGY AND DATASETS 

This section first analyses the data necessary to calculate turbine-specific market values. We 

then describe our methodological approach to determining these values and apply that 

approach to develop empirical estimates for Germany. 

We define the annual market value (𝑀𝑉𝑗,𝑦 in €/MWh) of a turbine 𝑗 in year 𝑦 as the sum of its 

hourly yield (𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ, in MWh), multiplied by the hourly wholesale price (𝑝𝑦,ℎ, in €/MWh) 

divided by its annual yield: 

 𝑀𝑉𝑗,𝑦 =
∑ 𝑦𝑖𝑒𝑙𝑑

𝑗,𝑦,ℎ
8760
ℎ=1 ⋅ 𝑝

𝑦,ℎ

∑ 𝑦𝑖𝑒𝑙𝑑
𝑗,𝑦,ℎ

8760
ℎ=1

 (1) 

Consequently, the annual market value of the fleet 𝑀𝑉𝑦
𝑓𝑙𝑒𝑒𝑡

 (i.e. all wind turbines in the 

system) is defined as all turbines’ volume-weighted average price: 

 𝑀𝑉𝑦
𝑓𝑙𝑒𝑒𝑡

=  
∑ ∑ 𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ

8760
ℎ=1 ⋅ 𝑝𝑦,ℎ

𝐽
𝑗=1

∑ ∑ 𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ
8760
ℎ=1

𝐽
𝑗=1

=
∑ 𝑦𝑖𝑒𝑙𝑑𝑦,ℎ

𝑓𝑙𝑒𝑒𝑡8760
ℎ=1 ⋅ 𝑝𝑦,ℎ

∑ 𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡8760

ℎ=1

, (2) 

with 𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

= ∑ 𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ
𝐽
𝑗=1 . As we are interested in the market values of single turbines 

compared to the fleet’s value, we introduce absolute performance, which is the difference of 

Eq. (1) and (2): 

 𝑎𝑏𝑠_𝑝𝑓𝑗,𝑦 = 𝑀𝑉𝑗,𝑦 − 𝑀𝑉𝑦
𝑓𝑙𝑒𝑒𝑡

 (3) 

Absolute performance is thus positive when a turbine earns payments above the energy-

weighted average of all turbines in the system (or an imaginary benchmark turbine). A 

performance of zero means that a turbine’s market value corresponds to the energy-weighted 

average value of all turbines in the system. If a turbine were to produce the same amount of 

energy in each hour, its market value would correspond to a baseload technology and thus to 

the annual average day-ahead price (“base price”). 

The absolute performance given by Eq. (3) can be rewritten introducing expectations. This 

assumes that the hourly wholesale electricity price and the corresponding contribution of an 

intermittent energy source such as wind can be interpreted as random variables. 

Consequently, the yearly market value is the expected sum of hourly revenues divided by the 

turbine’s expected annual yield (see also Lamont, 2008): 
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 𝑎𝑏𝑠_𝑝𝑓𝑗,𝑦 = 𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ ⋅ 𝑝𝑦,ℎ) 𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)⁄ − 𝐸(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

⋅ 𝑝𝑦,ℎ) 𝐸(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

)⁄  (4) 

Extending Lamont (2008), Eq. (4) can be reformulated (see also Genoese et al., 2016; 

Jägemann, 2015) according to the following proposition: 

 𝑎𝑏𝑠_𝑝𝑓𝑗,𝑦 = 𝜎(𝑝𝑦,ℎ) ⋅ (𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ, 𝑝𝑦,ℎ) ⋅
𝜎(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)

𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)
− 𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ

𝑓𝑙𝑒𝑒𝑡
, 𝑝𝑦,ℎ) ⋅

𝜎(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

)

𝐸 (𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

)
) (5) 

The proof of this proposition is presented in appendix A. The benefit of Eq. (5) is that it 

reveals the drivers of absolute performance. In the equation, σ refers to standard deviation and 

𝑐𝑜𝑟 to correlation between infeed and prices. We refer to standard deviation divided by 

expected yield as normalized standard deviation. It decreases if the technology runs less 

constantly (see nominator) or achieves higher yields (see denominator). 

Differentiating between infeed-price correlations as a first driver of performance and 

normalized standard deviation as a second, we assert the following. First, the larger a 

turbine’s correlation in comparison to that of the fleet (ceteris paribus) the larger the 

difference in correlations and thus a single turbine’s absolute performance. This holds 

because all standard deviations and expected yields are positive. Second, the smaller (ceteris 

paribus) a turbine’s normalized standard deviation in comparison to that of the fleet, the larger 

its absolute performance. This follows whenever the infeed-price correlation of wind energy 

is negative — which is the case for all turbines in our dataset. 

Since annual wholesale electricity prices vary significantly across years, we complement 

absolute performance with a relative performance measure
6
, which makes performance 

comparable over time: 

𝑟𝑒𝑙_𝑝𝑓𝑗,𝑦 = (𝑀𝑉𝑗,𝑦 − 𝑀𝑉𝑦
𝑓𝑙𝑒𝑒𝑡

) 𝑀𝑉𝑦
𝑓𝑙𝑒𝑒𝑡

⁄  

=

𝜎(𝑝𝑦,ℎ) ⋅ (𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ, 𝑝𝑦,ℎ) ⋅
𝜎(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)

𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)
− 𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ

𝑓𝑙𝑒𝑒𝑡
, 𝑝𝑦,ℎ) ⋅

𝜎(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

)

𝐸(𝑦𝑖𝑒𝑙𝑑
𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

)
)

𝐸(𝑝𝑦,ℎ) + 𝑐𝑜𝑟 (𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

⋅ 𝑝𝑦,ℎ) ⋅
𝜎(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ

𝑓𝑙𝑒𝑒𝑡
)

𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)
⋅ 𝜎(𝑝𝑦,ℎ)

 

(6) 

When discussing relative performance empirically (section 4), we focus on this equation and 

the two components of infeed-price correlations and normalized standard deviations. 

Yet, the analysis requires data on hourly wholesale electricity prices and the WECs’ hourly 

infeed in order to parameterize Eq. (1) to (6). Prices are readily available in many systems 

(e.g. https://www.energidataservice.dk/en for the German, Danish, Swedish and Norwegian 

system), but hourly generation of individual WECs is hardly published. Hence, we developed 

an approach to model this based on other, more readily available data. This approach is 

applied to the German market, but it can also be used in other markets. 

                                                 
6 

 A relative performance above zero means that both absolute performance and market value are larger than 

those of the fleet. 
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The power output of a WEC is based on the laws of physics (see also Gonzalez Aparicio et 

al.; 2016): 

 𝑝𝑜𝑤𝑒𝑟 = 1 2⁄ ⋅ 𝐴 ⋅ 𝑐𝑝(𝑣) ⋅ 𝜌 ⋅ 𝑣3 (7) 

with 𝐴 being the rotor area (in m
2
), 𝑐𝑝 the WEC’s power coefficient (yielding the ratio of 

power extracted from the power in the wind), 𝜌 the air density (in kg/m
2
) at standard 

atmospheric conditions and 𝑣∗ (in m/s) the relevant wind speed at a WEC’s hub height, which 

varies across locations and accelerates with height. 

In economics and business, a WEC’s technical characteristics are usually aggregated in a 

power curve 𝑃𝐶𝑗(𝑣∗), which describes the relation between wind speed and infeed in standard 

atmospheric conditions (independent of hub height): 

 𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ = 𝑃𝐶𝑗(𝑣∗) ⋅ 𝑙𝑗 (8) 

Eq. (8) also includes a loss parameter 𝑙𝑗 (without dimension), which corrects for limited 

availability (outages), wind shadow and electrical losses.
7
 

Hence, the empirical calculation of hourly yields of a single WEC requires data on the WEC’s 

power curve, its linking with hourly wind speeds — corrected for air density at the WEC’s 

position
8
—and information on losses. Accordingly, linking all power curves with wind speeds 

at all WEC positions lets us model hourly yields of a system’s entire fleet bottom up. This 

combination requires the following information: 

a) The number of WECs deployed in a system. 

b) The power curves of the WECs. Each WEC has a model name from a WEC 

manufacturer, and each model name features a distinct power curve given in its 

technical specifications. 

c) The hub heights of the WECs. Unlike the power curve, height is not set in the model 

name as each model is usually available in at least two different heights. 

d) The locations of the WECs (longitude, latitude). 

e) Hourly wind speeds at the WEC positions (i.e. locations and hub heights). 

Information on a) is usually available in developed markets. If the data in points b) to e) is 

missing, it can be estimated based on elements of available data. Depending on the amount 

and type of data, the following approach may need to be adapted, but the general 

methodology can be applied to other systems. 

In the following sections, we first explain how to complete stock data (see 2.1 to 2.1.6 in 

Figure 1 and note that the numbering in the figure corresponds to the section numbering). 

                                                 
7 

 Note that the loss parameter could also vary between years y and hours h. We opted for a parameter 

depending on turbines only based on lack of data for a more precise parametrization (see 2.1.4 and online 

appendix, table 9). 
8 

 Position refers to the three dimensions of longitude, latitude and hub height. Location refers to longitude and 

latitude only. 
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Second, we show how to link hourly wind speeds with all power curves at WEC positions to 

arrive at hourly yields and market values (see 2.2 to 2.2.3 in Figure 1). 

 

Figure 1: Method to complete stock data and its application to model market values. 

To the best of our knowledge, we are the first to apply this economical method and to publish 

disaggregated results on stock data and market values for a complete set of several thousand 

WECs in a country. The remainder of section 2 describes the methodology of each step of 

Figure 1. 

2.1 Completion of stock data 

We first gathered as much data as possible on the power curves, locations and hub heights of 

the stock. Second, we built a database of the WECs, which could be used to estimate WECs 

with unknown power curves and hub heights. Third, we estimated WEC investment costs 

with a mass-cost model. Fourth, we processed wind speed data and calculated yields of all 

WECs coming into consideration for yet undetermined WECs
9
. Fifth, we combined costs and 

yields to calculate the LCOE. We selected WECs with the lowest LCOE to provide the 

missing information (i.e. power curves and hub heights for the undetermined WECs). Sixth, 

we compared annual yields of the completed stock with empirical data. A calibration 

parameter was introduced to match the fleet’s yield with the empirical data and calculations 

were iterated. 

2.1.1 Database of the stock 

The starting point for a stock database is thorough research of public data on national 

regulators, transmission system operators (TSO), statistical offices and other suppliers. In 

Germany, we found that ~25,700 turbines (43 GW) were installed by the end of 2015. For 

capacities with start-up years between January 1994 and July 2014, we used public TSO data 

                                                 
9 

 We use the term “undetermined” for WECs whose power curves and hub heights could not be looked up. 
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(Netztransparenz), covering ~23,200 turbines and corrected for gaps and inaccuracies. For 

each turbine, TSO data contained a unique identity code (linked to support payments under 

the Renewable Energy Act), rated power of the turbine, its start-up date and the postcode of 

its grid connection. Exact geo-coordinates were known or could be traced via Google maps 

for ~10 % of all entries. For the remaining ~90 %, we translated the turbines’ postcodes into 

geo-coordinates using OpenGeoDB, a public database of geo-coordinates of German 

settlements. We then interpreted these as a turbine’s exact location. TSO data revealed neither 

model names (thus power curves) nor hub heights. Based on this data, we did desktop 

research to uncover power curves and hub heights of as many turbines as possible. 

For turbines commissioned since August 2014, public data from the regulator 

(Bundesnetzagentur) — covering around 2,500 turbines — was used as investors had to 

register new turbines (with location, rated power, model name and hub height) after that date 

to receive subsidies. Combining these collections of data, we identified models and positions 

(location and hub height) of 67 % (~17,200 turbines) of the stock. For the remaining 

~8,500 undetermined turbines, we only knew the location, rated power and start-up date. 

Hence, we had to derive power curves and hub heights for one-third of the turbines. 

2.1.2 Database on candidates 

For the undetermined WECs, we built a database of all WECs that could potentially have 

been built. These WECs are referred to as candidates. The input for the database was based 

on model names of the WECs already determined as well as expert interviews on models 

deployed in Germany.
10

 Though this database of candidates may be partly German-specific, it 

can be used internationally as many of the candidates were sold worldwide by manufacturers 

such as Vestas, Siemens or General Electric. However, it can (and most likely should) be 

adjusted for other countries or regions. A candidate is defined by the following six features:
11

 

1) A power curve, specified by the model name. Information on power curves is 

indispensable to calculate yields and can be taken from a model’s technical 

specifications. 

2) A distinct hub height. 

3) Duration of market availability, which defines the years in which a candidate was 

commercially available in a given system. This feature was assumed through a 

combination of stock analysis, internet research, expert interviews and manufacturer 

interviews.
12

 

                                                 
10 

 Note that this database will also serve to model the hourly yields of the determined turbines (to arrive at the 

fleet’s infeed). 
11 

 Features 1) to 4) are needed if transferred to another system, whereas features 5) and 6) are due to our case 

study of Germany. 
12  Market availability may be German-specific, though time spans should not differ largely if transferred to 

other markets. 
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4) A distinct wind class certification. WECs are certified according to the loads and the 

average and peak wind speeds expected on site.
13

 Hence, WECs cannot be built 

invariably at every position. For some models, certification differs with hub height, as 

loads accelerate with height. Internationally, three classifications prevail (I for high-, 

II for medium- and III for low-wind sites). The classification of a site can be 

approximated by its long-run prevailing wind speeds. Legal permissibility was 

assumed if the on-site conditions match a candidate’s certification.
14

 

For our empirical case, the approach to wind-class permissibility was slightly adapted. 

First, as the German wind classifications differ from the international ones (zone IV 

for high- through zone I for low-wind sites), they were also captured in the candidate’s 

database. Second, to derive permissibility of a candidate at a location of an 

undetermined WEC, zone classifications of all administrative districts and 

municipalities — set by the Deutsches Institut für Bautechnik — were converted to 

postcodes and stored in our stock database. Hence, permissibility of a candidate was 

detected by comparing the locational classification with the candidate’s certificate. 

5) Rotor size, specified by the model name. This information was used in our case study 

of Germany to compare a candidate’s total height (hub height plus rotor radius) with 

regional height restrictions.
15

 We therefore studied the uncovered stock data and 

conducted expert interviews on the development of German height limitations, setting 

up a matrix of 99 postcode boundaries with maximum heights permitted (online 

appendix, table 1). 

6) Rated power, specified in TSO data for any capacity installed. 

In total, our database comprised 576 candidates (188 models with several hub heights of 

32 manufacturers; online appendix, table 2). Based on the features listed above, we were able 

to assign a set of commercially available and legally permissible candidates to each 

undetermined WEC
16

. Candidates complying with these criteria were labelled as qualified 

candidates or q-candidates, and each undetermined WEC was assigned at least one q-

candidate. The q-candidates were given the corresponding geo-coordinates of the 

undetermined WECs to calculate their positional yields (see 2.1.4) and LCOE (see 2.1.5). 

The q-candidate to determine an undetermined WEC was chosen based on the lowest LCOE 

(2.1.3 to 2.1.5). We derived LCOE for each q-candidate (subscript qc) such that 

 𝐿𝐶𝑂𝐸𝑗,𝑞𝑐 =
𝐼𝐶𝑞𝑐,𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛+∑𝑂𝐶𝑗,𝑞𝑐,𝑦⋅𝑦𝑖𝑒𝑙𝑑𝑗,𝑞𝑐,𝑦  (1+𝑖)𝑦⁄

∑𝑦𝑖𝑒𝑙𝑑𝑗,𝑞𝑐,𝑦 (1+𝑖)𝑦⁄
, (9) 
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 Certifications were taken from a model’s technical specifications. 
14 

 WECs certified for higher loads (speeds) can be used at sites with lower loads (speeds), but not vice versa. 
15 

 This comparison may be omitted for systems without height limitations. 
16 

 As we know each undetermined turbine’s rated power, we can restrict the set to those with the same rated 

power. 
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with 𝐼𝐶 as a q-candidate’s investment costs—differentiated by its installation year 

(subscript y) — 𝑂𝐶 as operational costs (in €/MWh) and 𝑖 as the weighted average cost of 

capital. 

2.1.3 Cost estimation 

As shown in Eq. (9), calculating LCOE requires data on investment costs. However, detailed 

information on investment costs for each q-candidate (i.e. differentiated by model, hub height 

and installation year) is publicly unavailable. Hence, we estimated it with the mass-cost 

model of Fingersh et al. (2006) and its upgraded version (Maples et al., 2010), both developed 

at the National Renewable Energy Laboratory (NREL)17. NREL’s model projects investment 

costs of turbine configurations up to 10 MW, given rated power, rotor, hub height, 𝑐𝑝, drive 

train design, maximum rotor speed, maximum tip speed and maximum tip speed ratio. Cost 

projections are based on 24 mass-cost relations of major turbine components and their 

composition of raw materials. 

This complex model suits our needs well for three reasons. First, the model takes into account 

differences in rotor size and tower heights of candidates with identical rated power. Second, 

NREL’s model was developed with data from the mid-2000s. In our case, more than 80 % of 

undetermined turbines were built before 2012, and more than half between 2000 and 2009. 

Thus the model fits the timespan in focus. Third, the model can be transferred to international 

markets, whereas most other studies are country specific. 

To estimate costs, we first applied specified inflation indices of the US Bureau of Labor 

Statistics (2015) to single components of the mass-cost model. We then converted these 

figures from USD to EUR (online appendix, table 3). In accordance with McKenna et al. 

(2014), we incorporated a market factor into this US model to account for higher absolute 

turbine and equipment prices in Germany. However, as our database contained more 

candidates and periods, we opted for yearly market factors for different turbine classes. The 

factors were chosen to fit historical cost characteristics described in German market studies 

(Deutsches Windenergie Institut, 1999, 2002; Deutsche WindGuard, 2013, 2015) (online 

appendix, table 4). This way, absolute costs were adjusted while relative differences due to 

turbine design were conserved, as assumed by NREL.
18

 Our approach to select the best-fitting 

q-candidate focuses primarily on the relative differences between candidates. 

Concerning operational costs (increasing over lifetime), the average cost of capital (depending 

on full load hours) and the depreciation period (20 years), we followed Deutsche WindGuard 

(2013, 2015) (online appendix, table 5). 

                                                 
17  

The 2010 version partially upgraded the 2006 version; we call the upgraded version the “NREL model” 

throughout. Perkin et al. (2015) refer to NREL’s 2006 version as “the most robust, publically available cost-

scaling model”. 
18 

 Investment costs of all candidates and a comparison with published list prices of 86 candidates in 2001 and 

2004 are offered in the online appendix, tables 6-7. 
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2.1.4 Wind speed processing and yield calculation 

As shown in Eq. (9), calculating LCOE requires data on yields. A q-candidate’s yield is 

determined by its power curve and the wind speeds at its position. Yields were ascertained in 

three steps. First, we determined the wind speeds at a q-candidate’s location. Second, we 

estimated the wind conditions at a q-candidate’s specific hub height. Third, we used this 

processed wind-speed data to calculate annual yields at the q-candidate’s position. 

We used reanalysis wind speed data at 80 and 140 metres hub height above ground at a spatial 

resolution of 10 by 10 km at hourly time resolution for years 1994 to 2015, provided by 

anemos.19 Without access to anemos data, CFSR (NCAR), ERA-interim (Dee et al., 2011), 

ERA5 (ECMWF) or MERRA-2 (NASA) data could be used as alternative, though at lower 

spatial and temporal granularity. For a discussion on appropriateness and differences in 

quality, see Brower et al. (2013), Carvalho et al. (2014), Jimenez et al. (2012), Kubik et al. 

(2013a), Liléo and Petrik (2011). 

Calculation of LCOE is based on long-run wind-speed data of 10 to 25 years (Brower et al., 

2013; Jimenez et al., 2012; Liléo and Petrik, 2011). In accordance with McKenna et al. (2015) 

and Ritter et al. (2015), we use 20 years (from 1994 to 2013) as a basis for each q-candidate. 

Dividing the German landmass into a 10 by 10 km raster yields around 3,500 raster nodes. As 

q-candidates were never positioned exactly at a node, we horizontally interpolated wind 

speeds at the desired location. Here, we followed Ritter et al. (2015) by applying inverse 

distance weighting. To this end, each q-candidate’s distance to its four nearest nodes was 

measured. New hourly series at hub heights of 80 and 140 metres, 𝑣𝑦,ℎ,𝑙𝑜𝑐
80  and 𝑣𝑦,ℎ,𝑙𝑜𝑐

140 , were 

calculated as the horizontal distance-weighted means of the speeds of each q-candidate’s four 

nearest nodes. Since several q-candidates feature the same postcode, this led to 5,934 new 

hourly wind speed series at the two heights. 

The most exact next step would be to continue with these hourly wind speed series. However, 

this would require extraordinarily large computational resources to complete based on 20-year 

data in hourly resolution with several q-candidates to be considered for ~8,500 undetermined 

turbines. Furthermore, this is not mandatory for LCOE calculations (see Eq. (9)): computation 

of annual yields can also be based on distributional parameters of the wind-speed series. 

Using distributions instead of hourly data massively reduces computational time. 

Calculating annual yields based on distributions required three processing steps. First, the two 

series 𝑣𝑦,ℎ,𝑙𝑜𝑐
80  and 𝑣𝑦,ℎ,𝑙𝑜𝑐

140  had to be corrected for air density as power curves describe the 

relation of wind speeds to output in standard atmospheric conditions only (see Eq. (7)). The 

correction is shown in appendix B. Second, we had to derive the shape (𝑎) and scale (𝑏) 

parameters of the Weibull distribution at both heights of the corrected series, giving 

parameters 𝑎𝑦,𝑙𝑜𝑐
80 , 𝑎𝑦,𝑙𝑜𝑐

140 ,  𝑏𝑦,𝑙𝑜𝑐
80  and 𝑏𝑦,𝑙𝑜𝑐

140 . With these, it would have been possible to 

                                                 
19 

 anemos processed original NCEP data from NCAR to receive a spatial resolution of 5 by 5 km at 30-minute 

intervals. Aggregating it to 10 by 10 km at 60-minute intervals comprised around 28 gigabytes. The 

processing described in this section increased it to more than 100 gigabytes. 
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calculate annual yields of a q-candidate at exactly 80- and 140-metre hub heights, but not at 

other heights. Hence, the third step was to vertically adapt the air density corrected wind 

speeds to other hub heights 𝑧. If we had used hourly wind-speed series, the power law (see 

2.2.1) could have been applied. Yet, since we use distributions, new distributional parameters 

(𝑎) and (𝑏) were inter- and extrapolated for vertical correction, as shown for shape parameter 

𝑎: 

 𝑎𝑦,𝑙𝑜𝑐
𝑧 = (𝑎𝑦,𝑙𝑜𝑐

140 − 𝑎𝑦,𝑙𝑜𝑐
80 ) (140 − 80)⁄ ⋅ (𝑧 − 80) + 𝑎𝑦,𝑙𝑜𝑐

80  (10) 

Annual yields of a q-candidate 𝑞𝑐 to be considered for an undetermined turbine 𝑗 were then 

estimated by inserting a q-candidate’s Weibull probability density function, 𝑤𝑝𝑑𝑓, as in 

Eq. (11)
20

, into the subsequent Eq. (12) (Schallenberg-Rodriguez, 2013): 

 𝑤𝑝𝑑𝑓𝑗,𝑞𝑐,𝑦 (𝑣𝑧) = 𝑏𝑦,𝑙𝑜𝑐
𝑧 𝑎𝑦,𝑙𝑜𝑐

𝑧⁄ ⋅ (𝑣𝑧 𝑎𝑦,𝑙𝑜𝑐
𝑧⁄ )

𝑏𝑦,𝑙𝑜𝑐
𝑧 −1

⋅ 𝑒−(𝑣𝑧 𝑎𝑦,𝑙𝑜𝑐
𝑧⁄ )

𝑏𝑦,𝑙𝑜𝑐
𝑧

 (11) 

 𝑎𝑛𝑛𝑢𝑎𝑙_𝑦𝑖𝑒𝑙𝑑𝑗,𝑞𝑐,𝑦 = 8760 ⋅ 𝑙𝑗 ⋅ 𝑥𝑗,𝑦
𝑦𝑖𝑒𝑙𝑑

∫ 𝑤𝑝𝑑𝑓𝑗,𝑞𝑐,𝑦(𝑣𝑧) ⋅ 𝑃𝐶𝑞𝑐(𝑣𝑧) 𝑑𝑣𝑧
∞

0

 (12) 

We quantified the loss parameter  𝑙𝑗, including wind shadow as a function of farm size
21

, 

availability loss as a function of installation year, and electric and other losses (online 

appendix, table 8).
22

 Parameter 𝑥𝑗,𝑦
𝑦𝑖𝑒𝑙𝑑

 is set to 1 at this stage. It will be modified (and 

explained in detail) in section 2.1.6. We thus achieved 20 annual yields for all q-candidates to 

be considered for an undetermined turbine. 

2.1.5 LCOE calculation 

Costs (see 2.1.3) and yields (see 2.1.4) could then be inserted into Eq. (9) to calculate the 

LCOE of all q-candidates. For each undetermined turbine 𝑗, the cost-minimal q-candidate was 

chosen. This approach assumes that investors chose turbines that minimized LCOE subject to 

local wind conditions. 

2.1.6 Yield calibration 

As discussed in Staffel and Pfenninger (2016), though reanalysis data reproduces the infeed’s 

structure well, bias on the overall level of output must be corrected. Hence, hourly yields of 

all WECs were aggregated as annual yields on the country and state levels. Aggregates were 

then compared to empirical yields (online appendix, table 9) of the country (in line with 

Staffel and Pfenninger, 2016). As of 2008, data for smaller geographic entities, namely 

German states, has been available and thus used in this paper. Yields were mostly 

overestimated, which is in line with Staffel and Pfenninger (2016) and Decker et al. (2012), 

who also find overestimation by modelling infeed with reanalysis wind speed data. Leaving 

                                                 
20  

Note that a q-candidate qc for turbine j is distinctly linked to the location of j and the hub height of qc. This 

is why script and superscript are omitted in the probability density function. 
21 

 To correct for losses due to wind shadow, we integrated into our stock database the number of turbines that 

were erected together—and hence make up a farm—by installation year and postcode. 
22 

 To give an indication of the order of magnitude, a farm of four WECs has a total loss of 15 % on gross yield. 
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such a mismatch uncorrected may lead to choosing “wrong” q-candidates. Thus for any WEC, 

we incorporated an annual yield correction parameter 𝑥𝑗,𝑦
𝑦𝑖𝑒𝑙𝑑

 at the end of Eq. (12), which was 

found by building the ratio of empirical to calculated yields.
23

 Hence, we assumed that all 

WECs within the same geographic entity (country or state) experience the same bias. 𝑥𝑗,𝑦
𝑦𝑖𝑒𝑙𝑑

 

adjusts a WEC’s annual yield, thus changing the LCOE. Hence, yield calculations of all q-

candidates (step 2.1.4) – according to Eq. (12), LCOE calculations (step 2.1.5) and yield 

calibration (step 2.1.6) – were repeated until the choice of q-candidates was stable. At the end 

of this iterative process, every undetermined WEC had exactly one LCOE-minimal q-

candidate, which provided all missing data. This completed stock data is available in the 

online appendix, table 10. 

2.2 Calculation of hourly yields and market values with completed stock 

data 

At this point, we have complete stock data (especially power curves and hub heights), hourly 

wind speed data at each turbine’s location at 80 and 140 metres above ground and wind speed 

distributions at each turbine’s position. To derive hourly infeed and market values, we did not 

use the distributional parameters of section 2.1.4. Instead, we vertically corrected the hourly 

wind speed series 𝑣𝑦,ℎ,𝑙𝑜𝑐
80  and 𝑣𝑦,ℎ,𝑙𝑜𝑐

140  to each turbine’s hub height. We chose this approach for 

two reasons. First, since the stock was already determined, we had just one specific turbine at 

a position instead of several q-candidates, making it now less computationally intensive to 

work with long time series. Second, drawing from distributions to derive hourly values would 

not match historical wind speeds and thus hourly wholesale electricity prices, which are 

influenced by wind speeds. Further statistical processing would be required (Schmidt et al., 

2013). Hence, we chose to use the hourly time series already at hand. 

2.2.1 Wind speed processing and yield calculation 

An established way to vertically interpolate hourly wind speeds from one height to another is 

the application of the “power law” (Gonzalez Aparicio et al., 2016; Kubik et al., 2011; 

Schallenberger-Rodriguez, 2013). The procedure is shown in Eq. (13), in which 𝑣𝑦,ℎ,𝑙𝑜𝑐
80  is the 

locational wind speed at an 80-metre hub height, 𝑧 the hub height required, 𝑣𝑦,ℎ,𝑙𝑜𝑐
𝑧  the 

locational speed at 𝑧 and 𝑠𝑦,ℎ the shear coefficient or power exponent: 

 𝑣𝑦,ℎ,𝑙𝑜𝑐
𝑧 = 𝑣𝑦,ℎ,𝑙𝑜𝑐

80 (𝑧 80⁄ )𝑠𝑦,ℎ (13) 

The shear coefficient measures the vertical change in wind speeds. As speed data in two 

different heights was available
24

, it was derived as follows: 

                                                 
23

  For LCOE calculations, yield data suffices on annual level. 
24 

 If only one height is given, the logarithmic law can be applied. This law, however, requires information on 

the roughness length (Kubik et al., 2011, McKenna et al., 2014), a constant in the law’s equation that 

depends on the surface roughness. Roughness length guidelines for different grounds in Europe are given in 

Silva et al. (2007). 
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 𝑠𝑦,ℎ = 𝑙𝑛(𝑣𝑦,ℎ,𝑙𝑜𝑐
140 ) − 𝑙𝑛(𝑣𝑦,ℎ,𝑙𝑜𝑐

80 ) 𝑙𝑛(140) − 𝑙𝑛(80)⁄  (14) 

Based on 𝑠𝑦,ℎ,𝑙𝑜𝑐 (with subscript loc referring to the WEC’s location), hourly wind speeds 

were converted from 80 metres to the specific hub height 𝑧 by applying Eq. (13). 

Additionally, the series was corrected for air density, as explained in appendix B, giving 

𝑣𝑦,ℎ,𝑙𝑜𝑐
𝑧,𝑐𝑜𝑟𝑟

. The turbine’s hourly yield at its position was then derived according to Eq. (8), with 

the relevant wind speed 𝑣∗ being 𝑣𝑦,ℎ,𝑙𝑜𝑐
𝑧,𝑐𝑜𝑟𝑟

. 

2.2.2 Wind speed calibration 

Like in 2.1.6, we compared the yields of all turbines in the same geographic entity with 

corresponding empirical yields, incorporating a calibration parameter. As only annual data of 

historical yields were available, we aggregated our hourly estimates accordingly. However, 

we could not simply use the annual calibration parameter derived in 14 owing to the non-

linear relation between wind speed and power output (see Eq. (7)). WECs usually produce 

electricity at wind speeds between 3 and 25 metres per second only, with the slope of output 

depending on the specific WEC design (i.e. power curve). Therefore, an optimal estimation of 

hourly yields requires correcting wind speeds (see Staffel and Pfenninger, 2016) instead of 

adjusting yields (as sufficient for estimating annual yields). The correction parameter 𝑥𝑗,𝑦
𝑠𝑝𝑒𝑒𝑑

 

was found by raising the ratio of empirical to calculated yields to the power of one-third. 

Hourly yields were calculated with Eq. (8), with 𝑣𝑦,ℎ,𝑙𝑜𝑐
𝑧,𝑐𝑜𝑟𝑟 ⋅ 𝑥𝑗,𝑦

𝑠𝑝𝑒𝑒𝑑
 being the relevant wind 

speed 𝑣∗. Yield calculations and calibrations were then repeated until observed and calculated 

yields matched. 

2.2.3 Market value calculation 

As a final step, hourly yields of all turbines were combined with hourly wholesale prices
25

 to 

calculate market values, relative performance, infeed-price correlations and normalized 

standard deviations, according to Eq. (1) through (6). 

3 MODEL QUALITY 

To validate the quality of our approach, we analysed the WECs chosen (steps 2.1 to 2.1.6) as 

well as the reproduction of market values (performance) (steps 2.2 to 2.2.3) on the level of 

single turbines and the whole fleet. Additionally, as we are interested in explaining the drivers 

of performance, we will present how well infeed-price correlations and normalized standard 

deviations can be reproduced. 

                                                 
25 

 We used data from the German EPEX-spot day-ahead auction as wholesale prices for reasons of liquidity and 

transparency. Note that prediction errors in the day-ahead wind forecast may change market values or lead to 

balancing costs, which are not considered in this paper. 
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3.1 Quality of chosen WEC-model 

We evaluated the model choice of a q-candidate by repeating steps 2.1 to 2.2.3 for the 

turbines that were already determined by research. In other words, the model choices could be 

checked against known stock data. We concentrated the analysis on hub heights and rotor 

diameters. Concerning hub height (Figure 2), the model’s error interval was below 10 metres 

in 58 % of cases. In 90 % of cases (red bars), it was below 25 metres. Concerning rotor 

diameter (Figure 3), the error interval was within ±4 metres in 59 % of cases. In 90 % of 

cases (red bars), it was between −8 and +12 metres. 

  

Figure 2: Model quality: hub height deviation. Figure 3: Model quality: rotor deviation. 

3.2 Quality of performance and drivers on WEC level 

To test the reproduction of performance and drivers on the individual turbine level, data on 

existing turbines was needed. We had access to 200 historical infeed curves of 122 real, 

regionally dispersed turbines from the years 2008 and 2012–2015. Each curve covered at least 

one legal year. This information let us calculate hourly yields, market values and performance 

and benchmark these against the modelled output of identical power curves and positions. 

Figure 4 shows the correlation of modelled versus empirical relative performance according 

to Eq. (6). The modelled performance gave the correct algebraic sign 90 % of the time and 

thus correctly identified under- and over-performers. Building on the difference between 

relative performance, we found that in 90 % of cases the deviation was within ±2 percentage 

points. This matters for reading our performance atlases, presented in section 4. 

To show the quality of drivers of performance, Figure 5 first depicts the normalized standard 

deviations of modelled versus empirical yields. The error interval was in the range of ±1.5 % 

in 90 % of cases. Second, Figure 6 depicts infeed-price correlations of modelled versus 

empirical yield. Here, the error interval was in the range of ±0.035 in 90 % of cases. 
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Figure 4: Empirical vs. modelled relative performance. 

  

Figure 5: Empirical vs. modelled standard deviations. Figure 6: Empirical vs. modelled infeed-price-

correlations. 

3.3 Quality of performance and drivers on fleet level 

To test the reproduction of market values and drivers on the fleet level, the fleet’s hourly 

infeed curve from years 2006 to 2015, as published by TSO, was benchmarked against our 

model output. 

Based on the differences in market values, the absolute mean error of the ten cases was 

-0.14 percentage points. Concerning the absolute differences in infeed-price correlations and 

normalized standard deviations, the mean error was -1.8 and -0.7 percentage points, 

respectively (see appendix C). 

Comparing the fleet’s empirical infeed to our model is distorted, however, since TSO data 

lacks up to 12 % of the annual yields reported in state statistics, and thus of the yields on 
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which our model was calibrated.
26

 We assume our used statistics to be accurate as subsidies 

are based on it. Despite this gap, appendix D shows our representative results of commonly 

used quality measures (correlation, distribution, match of energy step change) to judge the 

quality of our fleet’s hourly infeed curve as compared to empirical samples for exemplary 

year 2014. 

4 RESULTS 

This section analyses market values in Germany derived with the methodology described in 

section 2. We calculated the WEC-specific infeed for eleven years (from 01/01/2005 to 

31/12/2015) for up to 25,700 WECs in hourly resolution and derived relative performance and 

drivers. Here, we answer questions two (structure) and three (drivers) from the introduction. 

4.1 Numerical variation 

Figure 7 presents the turbines’ relative performance according to Eq. (6). It shows the median, 

six levels of percentiles and the fleet’s performance, which is zero by definition. A complete 

dataset for up to 25,700 turbines in available in the online appendix, table 11. Our results 

confirm that the fleet was no monolithic block. Market values of single turbines, even 

aggregated on the annual level, could exceed the average by 5 % or more, while market 

values of other turbines were more than 7 % below average. Hence, in extreme cases, the 

difference between two turbines could exceed 12 %. Furthermore, 25 % of turbines exceeded 

the fleet’s market value by more than 1 % (2 % of turbines by more than 4 %) on average 

from 2005 to 2015. During this same period, the lowest 25 % of turbines undercut the fleet’s 

average by 1.6 % (2 % of turbines by ~4 %). Results that are less aggregated (e.g. in monthly 

resolution) show higher deviations, which is particularly relevant in systems — like in 

Germany — where turbines can switch monthly between different subsidy schemes (Grothe 

and Müsgens, 2013). Hence, our results show that assessing individual turbines based on 

calculations of the fleet’s market value can be misleading. 

Two additional results are noteworthy: First, the median is negative in nine of the eleven 

years, meaning that more than 50 % of WECs have negative relative performance. As the 

fleet’s performance is the energy-weighted sum of deviations and sums up to zero, it follows 

that WECs that perform above the median have higher yields than the median WEC. Thus, 

the market is made up of relatively few over-performers, which also have higher yields and 

market values. Second, relative performance fluctuated little in years 2010 and 2011. During 

both years, wind speeds were relatively low within most German regions (IWR). The 

resulting low full-load hours (a low ratio of annual yield to rated power) presumably reduced 

the “self-cannibalization” of WECs, which in turn may have reduced differences in relative 

performance between WECs. 
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 Gonzalez Aparicio et al. (2016) also observe “mismatches for most of the [European] countries between the 

total annual production reported and the sum of the hourly reported values”, for the year 2015. 
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Figure 7: Percentiles of relative performance, years 2005–2015 and mean of all years. 

Dividing (absolute) market values as of Eq. (1) and (2) by the base price (which varied 

between 32 and 66 €/MWh), we get a percentage value, which shows the wind’s relative 

market value in the electricity market (see Figure 8 for percentiles). In contrast to Figure 7, 

Figure 8 emphasizes the downward trend in wind’s relative market value for the fleet (red 

line) and for individual WECs. 

 

Figure 8: Percentiles of market value in percent of average wholesale prices. 

Test Eqation (6) explains a turbine’s relative performance based on two core components: 

normalized standard deviation of both turbine and fleet and the correlation of their respective 

infeed with wholesale prices. In the following, we show empirical results for both. 

Analysing infeed-price correlations (Figure 9), we see a decrease over time for both the fleet 

and the depicted percentiles, meaning that wind’s infeed came increasingly in line with low 

prices in the day-ahead market. This result can be explained by increasing wind capacity in 

Germany, which led to higher “self-cannibalization”. The fleet’s infeed-price correlation was 

more negative than that of individual WECs. The lower result for the fleet may be explained 

by its high effect on day-ahead prices compared to single turbines. Remember that a higher 

correlation (in this case less negative) increases relative performance as it means that high 

infeed comes in line with high prices. 
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Figure 9: Percentiles of infeed-price correlations. Figure 10: Percentiles of normalized standard 

deviations. 

Concerning normalized standard deviations (Figure 10), we find that both the fleet’s as well 

as the median turbine’s normalized standard deviations are fairly constant over time. 

Furthermore, the figure shows that the fleet’s normalized standard deviation is smaller than 

the standard deviation of at least 95 % of individual turbines. Remember that a low 

normalized standard deviation increases relative performance as long as infeed-price 

correlations are negative. 

Taking into account Figure 8 – Figure 10, we deduce that the drop of the fleet’s market value 

follows from a decline in correlation and not from an increase in normalized standard 

deviation. 

4.2 Regional variation 

Figure 11 illustrates the regional variation of annual relative performance in Germany. 

Performance in a 10 by 10 km
2
 area is calculated as the average of all WECs located in it. Our 

results show that performance can be clustered in at least four sub-regions within Germany, 

three of them over- and one under-performing: WECs in coastal regions, the far west and the 

south performed above average, while those in the centre of Germany performed below 

average. 
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Figure 11: Regional variation of relative performance. 

To quantify these regional differences, we defined coastal areas as within 30 kilometres of the 

coastline, western Germany as within 30 kilometres of the western border and southern 

Germany as the two southern states of Baden-Wuerttemberg and Bavaria. Central Germany 

comprised all other WECs. 

  

Figure 12: Left: illustration of regional clusters. Right: average relative performance in regional clusters. 

Quantitative analysis confirmed that relative performance was above average in the first three 

sub-regions (see Figure 12). On average in years 2005 to 2015, WECs in the coastal region 

reached a relative performance of 1.34 %, followed by the south with 0.96 % and the west 

1,34% 
0,96% 

0,44% 

-0,91% 
-1,5%

-1,0%

-0,5%

0,0%

0,5%

1,0%

1,5%

North South West Central



23 

with 0.44 %. WECs in the centre were at -0.91 %, i.e. below the fleet’s market value during 

the eleven-year timespan. 

Analysing the drivers of this development based on Eq. (5), Figure 13 shows the regional 

differences of the turbines’ infeed-price correlations and normalized standard deviations, 

again referring to the average in years 2005 to 2015. As shown by Eq. (5), high relative 

performance is reached by the combination of a comparatively high infeed-price correlation 

and a low normalized standard deviation in a single turbine. 

  

Figure 13: Left: average infeed-price correlation. Right: normalized standard deviation. 

Looking at the WECs’ regional average infeed-price correlations first, we found that both 

southern and western WECs had relatively high infeed-price correlations. This most likely 

means that they earned revenues in times when other WECs were not (yet) producing, and 

thus wholesale prices were less impacted by wind power. For the south, our findings are in 

line with Mono and Glasstetter (2012), who found a 64 percent probability that above-average 

wind speeds in the southwest coincide with below-average wind speeds in the north, whereas 

this coincidental probability is only 10 % for the centre. For the west, relatively high infeed-

price correlations may be explained by the fact that wind in Germany mostly comes from the 

west. Hence, WECs in western Germany begin producing before other WECs, and thus prices 

are still relatively high. On the other hand, northern and centrally located WECs feature the 

lowest infeed-price correlations. We can explain their rank by the fact that the bulk of German 

wind energy is produced in these regions: nearly a quarter of capacities are located in the 

north. Furthermore, this region has the highest wind speeds, leading to a strong influence on 

the total infeed. Though wind speeds are significantly lower in the centre, more than 60 % of 

capacities are located there. This region thus also strongly influences the overall German 

infeed. The centre’s rank as last may be because high wind speeds in the centre coincide with 

high speeds in the north (Mono and Glasstetter, 2012), but not vice versa. 

Analysing normalized standard deviations, we observed that WECs located in the north have 

the lowest relative normalized standard deviation, which means that they either profit from 

steadier wind conditions (enlarging the nominator) or from above average yields (enlarging 

the denominator), or both. Southern locations, on the contrary, suffer from comparatively high 

normalized standard deviations, whereas the west and the central region are in between. 
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Taking both drivers together, as suggested by Eq. (5), we conclude that northern WECs rank 

first in relative performance (Figure 12) owing to their low normalized standard deviations. 

The southern WECs rank second mainly due to their atypical infeed behaviour, giving the 

highest infeed-price correlation. The central region’s WECs rank last because they are both 

highly negatively correlated with wholesale prices and mediocre in terms of normalized 

standard deviation. 

4.3 Turbine design 

The last sections have shown that the location of a turbine influences its relative performance. 

This section analyses how turbine design influences relative performance. 

In recent decades, wind energy markets all over the world have seen significant improvements 

in turbine design (Cheng and Zhu, 2014). Technical development in manufacturing has led to 

a steady market penetration of turbines with higher hub heights and larger rotor-to-generator 

ratios. Whereas 20 years ago hub heights of 60 metres were common, today’s heights reach 

up to 120 metres on coastal sites and 140 metres inland. Since wind speeds accelerate at 

higher heights, the infeed and capacity factor increase with the hub height of the turbine. 

Further, increased rotor-to-generator ratios have led to power curves with a steeper increase of 

output at lower wind speeds. Hence, these turbines produce more electricity at lower wind 

speeds (May, 2017). This technological progress (in combination with associated reductions 

in investment costs) is referred to as a “silent revolution” (Chabot, 2013, 2015; Hirth and 

Müller, 2016). The availability of such “low wind speed turbines” has given additional 

choices for investors and enabled sites with low wind speeds to be developed economically.
27

 

While it is clear that yields increase as heights and rotor sizes increase, the question of how 

modern turbine design affects performance is a relatively new research topic. Hirth and 

Müller (2016) as well as Johannson et al. (2017), for a future green-field scenario, find that 

modern turbine design can reduce reduction of market values following increased wind 

penetration. We extend the analysis in the following and assess the empirical influence of 

modern turbine design based on our data of heterogeneous turbines in Germany. We use wind 

speed and wholesale price data from 2014 and 2015, analysing the performance of turbines 

built between 1994 and 2013. Unlike aforementioned studies, we also focus on the drivers. 

Starting with Figure 14 — which shows the median relative performance in years 2014 and 

2015, according to the turbines’ installation year—we found that new turbines perform better 

than old ones. Except for the two oldest generations
28

, there is a distinct relation: the newer 

the turbine, the higher its relative performance. Only turbines built from 2010 on have 

positive median performance. For WECs installed between 1996 and 2003, 75 % or more are 

below the fleet’s average. 

                                                 
27

  Wiser and Bolinger (2015) report that turbines in the USA originally designed for lower-quality wind sites 

are more and more in use at sites with high wind speeds, too. 
28

  This may be explained by these turbines being located at pioneering and thus excellent wind sites. 
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Again, we use Eq. (6) to gain additional insight into the reasons for the increased relative 

performance of newer turbines. Figure 15 shows the median of the WEC generations’ infeed-

price correlations (brown dots) and normalized standard deviations (blue dots). Especially 

normalized standard deviations showed an improving trend over time (again, except in the 

two oldest generations). 

  

Figure 14: Relative performance by WEC 

generations. 

Figure 15: Drivers of performance by WEC generations. 

5 CONCLUSION 

This paper presents a methodology to estimate missing data on technical parameters of wind 

turbines, in particular power curves and hub heights. This is achieved by adapting NREL’s 

mass-cost model to determine investment costs and choosing the best fit for an unknown 

turbine based on minimum LCOE. This general approach, which can be used to complete 

information for unspecified turbines in different systems, was applied to Germany to 

complete a dataset of ~25,700 turbines. About two-thirds of these could be determined by 

desktop research, while the remaining third was determined based on our modelling approach. 

With the dataset on WECs completed, we calculated hourly infeed for each individual WEC 

for the period of 2005–2015. We could then analyse the relative performance of all individual 

WECs. We found that, even aggregated on an annual level, differences in relative 

performance between individual WECs varied by 10 percentage points or more. These results 

contribute to an evaluation of the individual WECs’ value under direct marketing, but also to 

investment decisions and policy planning of optimal wind capacity additions. Furthermore, 

we found that declining infeed-price correlations for the whole fleet of WECs, most likely due 

to increased self-cannibalization from increased wind capacity, caused a decline in 
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performance for the fleet of WECs while the fleet’s normalized standard deviations remained 

relatively constant over time. 

Furthermore, we analysed regional differences and found that turbines in the centre of 

Germany show, on average, lower market values than turbines in the north, far west and 

south. Further analysis revealed that this can be explained by different factors: turbines in the 

west and south profit from favourable infeed-price correlations, and turbines in the north have 

favourable normalized standard deviations. Turbines in the centre have both below-average 

infeed-price correlations as well as unfavourable normalized standard deviations. 

Last but not least, our results show that more modern WECs have better relative performance: 

the more recently a WEC was built, the better — on average — its relative performance. We 

attribute this mostly to better normalized standard deviations for modern wind turbines, which 

supports the hypothesis that modern WECs profit from their higher hub heights and increased 

rotor-to-generator ratios—both of which improve normalized standard deviation. 

It seems likely that wind power generation in Germany and other markets will continue to 

grow. As a consequence, market values for the fleet are likely to decrease further. From a 

technical standpoint, the stock of wind turbines will be even more heterogeneous as modern 

turbines will enter the market while (at least some) older ones will still be in operation. As 

more and more advanced turbines enter the market, we expect relative performance of older 

turbine generations to drop further. At the same time, the comparative advantage of newly 

built turbines over the fleet’s market value will probably decrease since beating the fleet will 

become more ambitious. 

As a consequence, we believe the type of analysis presented in this paper will be become 

increasingly important. We suggest further research into how both regional distribution and 

the speed of technical development change the diverse picture of wind turbines’ market 

values.  

We leave the adaption of this paper’s methodology to systems outside of Germany for further 

research. It might also be interesting to study how a massive expansion of offshore wind 

capacities – in Germany as well as in other systems - will affect relative performance onshore. 
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APPENDIX A: PROOF OF PROPOSITION 

 

Covariance, 𝑐𝑜𝑣, and correlation, 𝑐𝑜𝑟, are defined as presented in Eq. (A.1) and (A.2): 

 𝑐𝑜𝑣 (𝑦𝑖𝑒𝑙𝑑, 𝑝) = 𝐸(𝑦𝑖𝑒𝑙𝑑 ⋅ 𝑝) − 𝐸(𝑦𝑖𝑒𝑙𝑑) ⋅ 𝐸(𝑝), (A.1) 

 𝑐𝑜𝑟 (𝑦𝑖𝑒𝑙𝑑, 𝑝) =
𝑐𝑜𝑣 (𝑦𝑖𝑒𝑙𝑑, 𝑝)

𝜎𝑦𝑖𝑒𝑙𝑑 ⋅ 𝜎𝑝
⇒ 𝑐𝑜𝑣 (𝑦𝑖𝑒𝑙𝑑, 𝑝) = 𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑, 𝑝) ⋅ 𝜎𝑦𝑖𝑒𝑙𝑑 ⋅ 𝜎𝑝 

(A.2) 

with σ being standard deviation. Inserting Eq. (A.1) and (A.2) into Eq. (4) leads to: 

 𝑎𝑏𝑠_𝑝𝑓𝑗,𝑦 
= (

𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ) ⋅ 𝐸(𝑝𝑦,ℎ)

𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)
+

𝑐𝑜𝑣(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ ⋅ 𝑝𝑦,ℎ)

𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)
) 

− (
𝐸(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ

𝑓𝑙𝑒𝑒𝑡
) ⋅ 𝐸(𝑝𝑦,ℎ)

𝐸 (𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

)
+

𝑐𝑜𝑣(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

⋅ 𝑝𝑦,ℎ)

𝐸 (𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

)
) 

= (𝐸(𝑝𝑦,ℎ) + 𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ, 𝑝𝑦,ℎ) ⋅
𝜎(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)

𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)
⋅ 𝜎(𝑝𝑦,ℎ)) 

− (𝐸(𝑝𝑦,ℎ) + 𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

⋅ 𝑝𝑦,ℎ) ⋅
𝜎(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ

𝑓𝑙𝑒𝑒𝑡
)

𝐸(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)
⋅ 𝜎(𝑝𝑦,ℎ)) 

= 𝜎(𝑝𝑦,ℎ) ⋅ (𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ, 𝑝𝑦,ℎ) ⋅
𝜎(𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)

𝐸 (𝑦𝑖𝑒𝑙𝑑𝑗,𝑦,ℎ)
 

− 𝑐𝑜𝑟(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

, 𝑝𝑦,ℎ) ⋅
𝜎(𝑦𝑖𝑒𝑙𝑑𝑦,ℎ

𝑓𝑙𝑒𝑒𝑡
)

𝐸 (𝑦𝑖𝑒𝑙𝑑𝑦,ℎ
𝑓𝑙𝑒𝑒𝑡

)
) 

                                                                             □ 

(A.3) 
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APPENDIX B 

 

Hourly wind speed series were corrected for differing monthly air densities  𝜌𝑚, according to: 

 𝑣𝑦,ℎ,𝑙𝑜𝑐
𝑧,𝑐𝑜𝑟𝑟 = 𝑣𝑦,ℎ,𝑙𝑜𝑐

𝑧 (𝜌𝑚 𝜌0⁄ )1 3⁄ , (B.1) 

whereas 𝑣𝑦,ℎ,𝑙𝑜𝑐
𝑧  is the wind speed series at height 𝑧, 𝜌0 air density at standard atmospheric 

conditions, and 𝑣𝑦,ℎ,𝑙𝑜𝑐
𝑧,𝑐𝑜𝑟𝑟

, the air density corrected wind speed series at height 𝑧. 

Eq. (B.1) builds on the procedure described in IEC
29

 (2013). Correction is necessary as power 

curves describe the relation of transforming speeds to output at standard atmospheric 

pressure, see Eq. (7), but pressure and thus air density vary with height and temperature. 𝜌𝑚 

was derived according to: 

 𝜌𝑚 = 𝑝0 (1 +
𝛼⋅ℎ

𝑇0
)

−
𝑔

𝑅𝑠∗𝛼
𝑅𝑠 ⋅ (𝑇𝑟𝑒𝑓 + 𝛼(ℎ − ℎ𝑟𝑒𝑓))⁄ , (B.2) 

whereas 𝑝0 is standard atmospheric pressure (1013,25 hPa), 𝛂 temperature gradient 

(−0,0065 K/m), 𝑇0 temperature at sea level (288,15 K), 𝑔 gravitational acceleration 

(9.80665 m/s
2
), 𝑅𝑠 universal gas constant for air (287 J/(kg K)), 𝑇𝑟𝑒𝑓 temperature at the 

closest weather station at height ℎ𝑟𝑒𝑓 and ℎ, the sum of the required hub height and the 

location’s specific height above sea level. For our case, monthly temperature averages of 

338 weather stations operated by the German Weather Service served as input. Locational 

heights (online appendix, table 10) were identified with ArcGIS. 

Consequently, yearly Weibull shape and scale parameters were calculated with 𝑣𝑦,ℎ,𝑙𝑜𝑐
80,𝑐𝑜𝑟𝑟

 and 

𝑣𝑦,ℎ,𝑙𝑜𝑐
140,𝑐𝑜𝑟𝑟

.  

                                                 
29  

In its original form, ten-minute data on wind speeds and air densities should be used. Eq (B.1) holds true for 

WEC with active power control (pitch-, not stall-regulated). The vast majority of turbines were active 

controlled. Stall-regulation is a concept of very old WEC and no longer used. 
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APPENDIX C 

 

 

Fig. C1: Empirical (x-axis) vs modelled (y-axis) market value of the fleet [% of base price]. 

 

 

 
 

Fig. C2: Empirical (x-axis) vs modelled (y-axis) 

normalized standard deviation of the fleet. 

Fig. C3: Empirical (x-axis) vs modelled (y-axis) 

correlation of infeed and price. 
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APPENDIX D 
 

 
Fig. D1: Aggregated hourly infeed of the fleet: TSO data vs model [% of capacity installed], first half of year 2014. 

   

Fig. D2: Correlation of the fleet's infeed: TSO data (x-

axis) vs model (y-axis), whole year 2014. 

Fig. D3: Distribution of hourly infeed of the fleet in 

bins of capacity factors 

Fig. D4: Histogram of the rate of change of capacity 

factors by the fleet's infeed: TSO data vs model, whole 
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