

Brandenburgische Technische Universität Cottbus-Senftenberg

ARBEITSPAPIER ZUM ARBEITSPAKET 3.3:

EMPFEHLUNGEN FÜR DIE GESTALTUNG DER RAHMENBEDINGUNGEN

Querschnittsprojekt 1

im Rahmen des Verbundforschungsvorhaben LaTerra

Verbundleitung: Prof. Dr. mult. Konstantin Terytze, FU Berlin

Teilprojektleitung: Prof. Dr. Stefan Zundel, BTU Cottbus-Senftenberg

Erstellt von Viktoria Witte und Stefan Zundel

Senftenberg, Freitag, 28. August 2015

GEFÖRDERT VOM

INHALTSVERZEICHNIS

Tabellenverzeichnis	III
Abbildungsverzeichnis	III
Abkürzungsverzeichnis	IV
1. Fragestellung	1
2. Definitionen und Biokohleherstellungsverfahren	n2
2.1. Begriffsbestimmung: Biokohle und Biokohlesubstrat	2
2.2. Verfahren zur Biokohleherstellung	3
3. Ausgewählte Schlüsselfaktoren für die BKS-Et	ablierung4
3.1. Kostensenkung bei Biokohleherstellungsverfahren	4
3.2. Verlässlichkeit des Produktes	5
3.3. Rechtliche Rahmenbedingungen	7
4. Marktsituation von BKS und konventioneller Di	ingung8
5. Politikempfehlungen	11
5.1. Staatliche Unterstützungsmaßnahmen	11
5.2. EXIT-Strategien: Ausstieg aus der staatlichen Förderung	13
6. Zusammenfassung und Ausblick	16
Literaturverzeichnis	V
Anhang	V

TABELLENVERZEICHNIS

Tabelle 1: Kostenvergleich BKS und NPK	4
ABBILDUNGSVERZEICHNIS	
Abbildung 1: BKS-Entwicklungsstand auf der Erfahrungskurve im Vergleich zum Benchmark	9
Abbildung 2: BKS-Entwicklungsstand inkl. externe Effekte im Vergleich zum Benchmark 1	0
Abbildung 3: Staatliche Fördermaßnahmen in der BKS-Erfahrungskurve	2
Abbildung 4: Staatliche Fördermaßnahmen und Exit-Strategien in der BKS-Erfahrungskurve	5

ABKÜRZUNGSVERZEICHNIS

BBodSchG Bundes-Bodenschutzgesetz

BioAbfV Bioabfallverordnung

BK Biokohle

BKS Biokohlesubstrat

DüMV Düngemittelverordnung

EEG Erneuerbare-Energien-Gesetz

HTC Hydrothermal carbonization (hydrothermale Karbonisierung)

KrWG Kreislaufwirtschaftsgesetz

Nawaro-Bonus Bonus für Strom aus nachwachsenden Rohstoffen

NPK mineralische Düngung mit Stickstoff (N), Phosphor (P) und Kalium (K)

PV Photovoltaik

1. FRAGESTELLUNG

Biokohle (BK) und Biokohlesubstraten (BKS), z.T. auch unter der Produktbezeichnung "Terra preta" geführt bzw. angeboten, werden viele Vorteile zugesprochen. Der wichtigste Nutzen der modernen Biokohlesubstrate ist die Verbesserung der Bodenqualität: durch den Aufbau einer Humusschicht, die Dekontaminierung von mit Mineralölkohlenwasserstoffen (MKW) verunreinigten Böden, die Ertragssteigerung landwirtschaftlicher Produkte und die CO₂-Speicherung im Boden (u.a. Verheijen et al. 2010; Jeffery et al. 2011; Lehmann et al. 2011; Barrow 2012; Gla-ser/Birk 2012). Ein weiterer Vorteil, der insbesondere für die Schließung regionaler Stoffkreisläufe interessant erscheint, liegt in der Verarbeitung von Biomassen, die sich sonst nur schwer verwerten ließen (Abfallverwertung). Die Art und das Ausmaß der positiven Effekte auf den Boden ist dennoch teilweise umstritten. Die Ertragssteigerung findet beispielsweise in gemäßigten Klimazonen vermutlich nur unter spezifischen Bedingungen statt und bewegt sich je nach Bodenbeschaffenheit, Nutzpflanze und Rezeptur zwischen positiven und negativen Ergebnissen. Auch die Dauer der CO₂-Immobilisierung durch die Anwendung von Biokohle im Boden wird noch erforscht. (Qian et al. 2015) Die historische Terra Preta wurde vermutlich ursprünglich vor hunderten von Jahren durch Einheimische der Amazonasregion entdeckt. Ihre positiven Eigenschaften und Effekte wurden bereits ausführlich untersucht (u.a. Sombroek 1966; Lima et al. 2002; Lehmann et al. 2003; Glaser/Woods 2004; Kim et al. 2007; Glaser/Birk 2012). Darauf aufbauend ist es heute möglich, mit modernen Technologien ähnliche Substrate herzustellen.

Ziel der Untersuchung und Entwicklung von modernen Biokohlesubstraten ist u.a. die großflächige Nutzung des Bodenverbesserungsmittels in der Landwirtschaft. Der Benchmark durch die konventionelle landwirtschaftliche Mineraldüngung liegt jedoch preislich um ein Vielfaches unter den aktuellen Kosten für Biokohlesubstrate und ist fest in der Agrarwirtschaft und der Gesellschaft verankert. Auch aufgrund der positiven externen Effekte und des ökologischen und sozialen Zusatznutzen regionaler Wertschöpfungsketten stellt sich die Frage, ob und in welchem Umfang staatliche Hilfestellungen für Biokohlesubstrate gerechtfertigt sind.

Im vorliegenden Arbeitspapier werden nach einer Begriffsbestimmung und einer Darstellung des Entwicklungsstandes der Biokohleherstellungsverfahren ausgewählte Schlüsselfaktoren beschrieben, die für eine Durchsetzung von BKS von zentraler Bedeutung sind. In einem weiteren Schritt wird die aktuelle Marktsituation von Biokohlesubstraten und konventioneller mineralischer Düngung analysiert und die Frage nach möglichen staatlichen Unterstützungsmaßnahmen beantwortet. Abschließend werden Politikempfehlungen zur möglichen Gestaltung der staatlichen Unterstützungsmaßnahmen und zu entsprechenden EXIT-Strategien gegeben.

2. DEFINITIONEN UND BIOKOHLEHERSTELLUNGSVERFAHREN

2.1. BEGRIFFSBESTIMMUNG: BIOKOHLE UND BIOKOHLESUBSTRAT

Unter der Bezeichnung "Biokohle" (engl. "biochar") werden im Folgenden solche Kohlen verstanden, die durch thermochemische oder durch hydrothermale Prozesse aus organischen Stoffen hergestellt werden, um sie zur Bodenverbesserung und C-Sequestrierung zu verwenden. Als organische Ausgangsstoffe kommen sowohl Biomassen wie Waldrestholz und Grünschnitte als auch organische Abfallstoffe und Nebenprodukte wie z.B. Gärreste oder Klärschlämme mit hohen organischen Anteilen in Frage.

In der Literatur finden sich im Gegensatz zu dieser breiten Definition verschiedene Begriffsbestimmungen, die sich im Hinblick auf das Herstellungsverfahren, die verwendeten Ausgangsstoffe, die Anwendung der Kohlen sowie spezifischer Kohleneigenschaften unterscheiden. (Haubold-Rosar et al. 2015) Insbesondere bei Arbeiten, die sich auf die Schwarzerden des Amazonasgebietes (Terra preta) beziehen, liegt der Fokus auf Pyrolysekohlen. (z.B. Lehmann/Joseph 2009) Eine entsprechend unterschiedliche Bezeichnung deutet sich in der Fachliteratur an: Der Begriff "Bio"kohle wird mit der Zweckbindung kombiniert, eine durch Pyrolyse verkohlte organische Substanz zur Bodenverbesserung und C-Sequestrierung zu verwenden. Durch das Verfahren der hydrothermalen Carbonisierung hergestellte Kohle wird, aufgrund der andersartigen Herstellung sowie der Eigenschaften und Wirkungen der Kohlen, hingegen als "HTC-Kohle" ("hydrochar") bezeichnet. (Haubold-Rosar et al. 2015)

Im deutschsprachigen Raum wird neben dem Begriff Biokohle häufig auch der Terminus "Pflanzenkohle" verwendet. Damit soll vermieden werden, dass die Biokohle als ein bio-zertifiziertes Produkt der ökologischen Landwirtschaft angesehen wird. (Schmidt 2011) In den Richtlinien zur Produktion von Pflanzenkohlen (European Biochar Certificate) werden Pflanzenkohlen als "pyrolytisch bei einem Sauerstoffgehalt unter 2 % und Temperaturen zwischen 350 und 1000 °C aus organischen Stoffen hergestellte Kohlen, die ökologisch nachhaltig in der Landwirtschaft eingesetzt werden können" (Schmidt et al. 2012) definiert. Als Ausgangsstoffe dürfen zur Erlangung des Zertifikats ausschließlich auf einer Positivliste geführte organische Reststoffe verwendet werden.

Zur Anwendung von Biokohlen in Böden werden die Biokohlen auch mit weiteren organischen und mineralischen Stoffen vermischt, fermentiert und/oder kompostiert. Endprodukt sind "Biokohlesubstrate", die als Bodenverbesserungsmittel die Nährstoffspeicherung der Böden und die Nährstoffversorgung der Pflanzen positiv beeinflussen können. Die Vielfalt der verschiedenen Inputstoffe und ihre Kombinationsmöglichkeiten sowie die Vielzahl der Prozessparameter führen zu einer großen Bandbreite an möglichen Endprodukten und Produkteigenschaften. (Haubold-Rosar et al. 2015)

2.2. VERFAHREN ZUR BIOKOHLEHERSTELLUNG

Weltweit wurden in den letzten Jahren zunehmend Forschungs- und Entwicklungsarbeiten zur Herstellung und Anwendung von Biokohlen aus biogenen Ausgangsstoffen durchgeführt. Dabei wurden Herstellungsverfahren zur Pyrolyse, zur Biomassevergasung und zur hydrothermalen Carbonisierung (HTC) entwickelt und bereits erste industrielle Anlagen in Betrieb genommen. (Haubold-Rosar et al. 2015)

Die *Pyrolyse* wird vom Menschen seit Jahrtausenden genutzt, u.a. zur Herstellung von Holzkohle und von teerartigen Substanzen durch das Verschwelen von Holz. Die Schwelung zur Herstellung von Teer wurde zum Ende des 19. Jahrhunderts bereits halbindustriell durchgeführt (Bugge 1927). Grundsätzlich gibt es aktuell eine Vielzahl von entwickelten Pyrolyseprozessen, die eine ebenso große Produktpalette herstellen sollen (Für eine aktuelle Marktübersicht siehe Anhang 1). (Haubold-Rosar et al. 2015) Anlagen mit Pyrolyseprozess ohne Stromauskoppelung erzeugen eine eher grobkörnige Biokohle aus einer breiten Auswahl von Biomassen mittels thermischer Umsetzung unter Luftabschluss in Rohrreaktoren. (Rüdiger 2013)

Im Gegensatz zur Pyrolyse wird bei der *Vergasung* das Ziel verfolgt, möglichst die gesamte organische Substanz in die Gasphase zu überführen. Hierdurch entsteht weniger Biokohle bei wesentlich mehr Biogas, sodass eine Stromauskopplung möglich ist. Bei der Wirbelschichtvergasung fließt ein größerer Anteil des Kohlenstoffs in die Gaserzeugung, sodass die Biokohle nur als Nebenprodukt mit hohem Feinanteil entsteht. Gleichzeitig werden spezifische Anforderungen an die Beschaffenheit der Ausgangsbiomassen gestellt. Insgesamt existiert eine Vielzahl an möglichen Verfahren (u.a. Festbettvergaser, Wirbelschichtvergaser, Flugstromvergaser). Es gibt jedoch bislang keinen Vergaser, der hinsichtlich der Biokohlen optimiert wurde. Ziel sollte eine gemeinsame Nutzung von energetischer Wandlung und der Generierung von Biokohle sein. (Rüdiger, 2013, Haubold-Rosar et al. 2015)

Hydrothermale Verfahren (HTC) sind aus technischer Sicht bereits für die großtechnische Anwendung entwickelt. Anfang des 20. Jahrhunderts wurden Anlagen mit ähnlichen technischen Anforderungen und mit einer Produktionskapazität von jährlich mehreren Millionen Tonnen zur hydrothermalen Trocknung von Braunkohle (Fohl et al. 1987) und für die Behandlung von Torf genutzt (Mensinger 1980). Zur Karbonisierung verschiedener organischer Biomassen existieren bereits diverse Anlagen: für Klärschlämme und Gärreste im kleinen industriellen Maßstab, für andere Biomassereststoffe in Form von Pilotanlagen. Die aus HTC-Anlagen hergestellte Biokohle dient bisher jedoch ausschließlich als erneuerbarer Energieträger. Untersuchungen zu bodenrelevanten Eigenschaften der HTC-Kohle existieren nur vereinzelt. Das darin bestehende Potenzial ist aufgrund der relativ neuen Forschung noch nicht abzuschätzen. Grundsätzlich können jedoch auch bei hydrothermalen Verfahren die Eigenschaften der Biokohlen durch Veränderung der Prozessführung variiert werden. (Haubold-Rosar et al. 2015)

3. Ausgewählte Schlüsselfaktoren für die BKS-Etablierung

3.1. Kostensenkung bei Biokohleherstellungsverfahren

Der Herstellungspreis für eine Tonne BKS ist aufgrund der hohen Investitionen und Betriebskosten noch sehr hoch. In der Geschäftsfeldanalyse (AP 2.2) wurden die Herstellungskosten von BKS unter verschiedenen Rahmenbedingungen und unter Auswahl verschiedener Technologien untersucht. Der minimale Herstellungspreis für eine Tonne BKS liegt bei diesen Modellberechnungen bei 135 €. (Schatz/Zundel 2014) 10t BKS dürfen auf einem Hektar rechtlich pro Jahr ausgebracht werden. Gleichzeitig muss zumindest zu Beginn etwas Stickstoffdüngung hinzugefügt werden, sodass ca. 1.400 € pro Hektar anfallen. Die gleiche Menge NPK in Form von konventionellen Düngemitteln liegt für einen Hektar bei einen Preis von ca. 200 €.

Biokohlesubstrate haben gegenüber der konventionellen Düngung jedoch mehrere Vorteile. Zunächst kann bei der Anwendung von Biokohlesubstraten im Boden von einer Ertragssteigerung von im Mittel 10 % ausgegangen werden. (Jeffery et al. 2011) Gleichzeitig resultieren aus der BKS-Anwendung im Boden positive externe Effekte, die eine staatliche Unterstützung rechtfertigen. Um die Höhe einer solchen Subventionierung zu ermitteln, müssen die externen Effekte mit einem Geldwert hinterlegt werden. Für drei der im Arbeitspaket 2.3 identifizierten positiven externen Effekte wurde im Rahmen des FuE-Projektes eine Monetarisierung vorgenommen: Die CO₂-Sequestrierung (15 €/t BKS), die Verringerung der Mineraldüngeremissionen (2,30 €/t BKS) und der Aufbau einer Humusschicht (8 €/t BKS). Der ermittelte Gesamtwert der positiven externen Effekte in Höhe von ca. 25 €/t BKS muss jedoch theoretisch noch um den aktuell nicht zu ermittelnden Wert der Erhaltung der Biodiversität und der Reduktion von Pflanzenschutzmitteln im Grundwasser erhöht werden. (Witte/Zundel 2015)

Selbst bei Berücksichtigung möglicher Ertragssteigerungen durch die Anwendung von Biokohlesubstraten im Boden sowie einer teilweisen Kompensation positiver externer Effekte durch Subventionen, sind die Kosten für die Düngung von einem Hektar landwirtschaftliche Fläche fünf Mal höher als bei der konventionellen mineralischen Düngung (siehe Tabelle 1).

				Nebenrechnungen							
Dünger	Kosten je t	Ausbringungs- menge je Hektar	Kosten je Hektar	Erträge (Mittelwert)	Erträge + Ertrags- steigerung	Erlöse (Mittelwert Verkaufspreis)	+ Ertrags- steigerung	Externe Effekte/t BKS	Kosten je Hektar (inkl. Ertrags- steigerung und externe Effekte)	Kosten- anteil BK	
				5,91 t/ha	10%	316,55 €/t	10%	25,22€	externe Ellekte)	68%	
Szenario 1: NPK							_				
N (Stickstoff)	1100,00 €/t	0,12 t/ha									
P (Phosphat)	1250,00 €/t	0,03 t/ha	196,70€	5,91 t/ha	-	1.870,81 €	-	-	196,70 €		
K (Kalium)	680,00 €/t	0,04 t/ha									
Szenario 2: BKS + N								•	_		
BKS	135,00 €/t	10,00 t/ha	1.408,30 €		6.50 t/ha	2.057.89 €	187.08 €	252.20€	969,02€	655.70 €	
N (Stickstoff)	1100,00 €/t	0,05 t/ha	1.408,30 €		0,30 t/na	2.037,69 €	107,08€	202,20€	909,02€	000,70€	

TABELLE 1: KOSTENVERGLEICH BKS UND NPK

Quelle: Eigene Darstellung.

Verbundprojekt LaTerra – QP I Gestaltung Rahmenbedingungen

Die Produktion bzw. der Zukauf von Biokohle ist dabei nach wie vor der teuerste Teil an der Biokohlesubstratherstellung. Nach aktuellem Stand machen die Kosten je Tonne Biokohle unter der Annahme eines Biokohleanteils von 15 %vol. am fertigen Biokohlesubstrat ca. 70% aus. Ziel sollte es deshalb sein, die Entwicklung einer Produktionsanlage voranzutreiben, die in Nischen- oder Kleinanwendungen in vielen Bereichen nutzbar ist, möglichst mit einem kleinen Investitionsvolumen (< 20.000€). Anhang 1 gibt einen Überblick über den aktuellen Entwicklungsstand von Pyrolyse-Anlagen für die Herstellung von Biokohle. Die große Mehrheit der Produktionsanlagen ist im Stadium der Kleinstserie oder ist ein Unikat. Diese aktuell noch stark vorherrschende Herstellung von vornehmlich Unikaten für den einzelnen Kunden resultiert in den nach wie vor hohen Preisen für eine BK-Produktionsanlage. Der Schritt in Richtung Kostensenkungspotenzial ist nur möglich, wenn eine Entwicklung hin zu ersten Serien realisiert wird, um den Prozess der Erfahrungskurve mit Lern-, Spezialisierungs- und Losgrößendegressionseffekten in Gang zu setzen. Anhand des in Anhang 1 aufgezeigten aktuellen Entwicklungsstadiums der verschiedenen Biokohleproduktionsverfahren kann angenommen werden, dass durch eine Weiterentwicklung und Verbreitung der Technik sowie durch Kuppelproduktion und Kaskadennutzung noch Kostensenkungspotenziale erschlossen werden können.

3.2. VERLÄSSLICHKEIT DES PRODUKTES

Vor einer systematischen Implementierung eines Biokohlemarktes müssen insbesondere Qualitätsstandards und Anwendungshinweise klar formuliert werden. Außerdem ist eine Erfassung aller mit der Anwendung von Biokohle und Biokohlsubstraten verbundenen Risiken bei Langzeitanwendung, insbesondere auf Gesundheit und Boden-Biodiversität zu gewährleisten. (Vogel 2014)

Aufgrund der Vielzahl möglicher Herstellungsanlagen, -temperaturen und Durchlaufzeiten, sowie potenzieller organischer Inputstoffe und entsprechender Kombinationsmöglichkeiten ist eine Gütesicherung durch definierte Qualitätsstandards entscheidend. Sie gewährleistet einen vereinbarten qualitativen Standard und eine zuverlässige Kennzeichnung der Produkteigenschaften gegenüber dem Kunden. Dieser Nachweis ist insbesondere für Biokohlen, die aus organischen Abfällen hergestellt werden, von Bedeutung und gewährleistet Rechtssicherheit. Neben der Möglichkeit einen hochwertigen Produktstandard zu sichern kann so Vertrauen am Markt geschaffen werden. Gleichzeitig kann eine entsprechende Gütesicherung zu einer Befreiung von behördlichen Nachweispflichten und Verwertungsnachweisen sowie zu einer Begrenzung der Untersuchungshäufigkeit führen. (Vogel, 2014)

Ein freiwilliger Zusammenschluss von Herstellern spezifischer Produkte zu einer Gütegemeinschaft hat sich für eine erfolgreiche, selbstregulierte Qualitätssicherung bewährt. Innerhalb

Verbundprojekt LaTerra – QP I Gestaltung Rahmenbedingungen

dieser können sowohl die Qualitätsentwicklung als auch die Güteüberwachung von Prozessen und Produkten garantiert und dokumentiert werden. Mindestvoraussetzung einer solchen Gütesicherung ist die Einhaltung des geltenden Rechts. Neben der Möglichkeit der Gründung einer eigenen Biokohle-Gütegemeinschaft wäre auch ein Anschluss an die Bundesgütegemeinschaft Kompost denkbar. (Haubold-Rosar et al. 2015)

Das bereits in der 4. Version (2012) existierende Europäische Pflanzenkohle-Zertifikat vom Biochar Science Network bietet ebenfalls eine gute Basis, um Qualitätskriterien für eine sichere Verwendung von Biokohlen in Landwirtschaft, Gartenbau und Forstwirtschaft zu ermöglichen. Das Ziel der Richtlinien für die Erlangung des Pflanzenkohle-Zertifikates "besteht in der Gewährleistung einer wissenschaftlich stichhaltigen, gesetzlich abgesicherten, wirtschaftlich verantwortbaren und praktisch umsetzbaren Kontrolle der Produktion und Qualität von Pflanzenkohle" (Schmidt et al. 2012). Es soll sowohl für Produzenten als auch für Anwender von Pflanzenkohle und von Produkten auf Basis von Pflanzenkohlen eine transparente und nachvollziehbare Kontrolle und Qualitätsgarantie ermöglicht werden. Das Pflanzenkohle-Zertifikat ist mit der wissenschaftlichen und technischen Entwicklung eng verknüpft und wird jedes Jahr entsprechend den neuesten Erkenntnissen zu Grenzwerten und Analysemethoden überarbeitet und angepasst. (Schmidt et al. 2012)

Neben einer Gütesicherung des Produktes selbst, ist die Minimierung von Anwendungsrisiken zu gewährleisten. Dies umfasst zum einen die Durchführung von Langzeituntersuchungen zu den Eigenschaften und Wirkungen von Biokohlen unter verschiedenen Herstellungsbedingungen und unter Nutzung verschiedener Biomassen. Zum anderen ist durch die Formulierung von Anwendungsrichtlinien das Risiko unerwünschter bzw. negativer Wirkungen von Biokohlen auf Pflanzenwachstum und Boden zu minimieren. Für unterschiedliche Biokohlen wurden auf unterschiedlichen Böden bei Anbau unterschiedlicher Fruchtfolgen sowohl in Feld- als auch in Laborversuchen unterschiedliche Ergebnisse und Erfolge bzw. Misserfolge beobachtet. Aus diesen Erkenntnissen müssen Handlungsempfehlungen formuliert sowie die noch bestehenden Forschungslücken geschlossen werden. Hierfür sind weitere Erprobungen und Langzeituntersuchungen und eine zielorientierte Forschungsagenda zu politisch relevanten Fragestellungen zur Biokohleanwendung nötig. (Vogel 2014; Haubold-Rosar et al. 2015)

3.3. RECHTLICHE RAHMENBEDINGUNGEN

Die Nutzung von Biokohle und Biokohlesubstraten im Boden muss, ebenso wie die Nutzung anderer Stoffe, die in den Boden eingebracht werden, rechtlich geregelt sein. Aktuell existiert kein regulatorischer Rahmen für die Nutzung von Biokohle und Biokohlesubstraten. Zusätzlich bestehen vor allem bei der Nutzung von Bioabfällen und Klärschlämmen als Ausgangsstoff für die Biokohleherstellung besondere schadstoffrelevante Anforderungen. In Deutschland beinhalten sowohl die Düngemittelverordnung (DüMV), die Bioabfallverordnung als auch das Bundes-Bodenschutzgesetz (BBodSchG) Vorgaben zu Schadstoffgehalten, insbesondere von Schwermetallen, die entsprechend auch für Biokohlesubstrate bei einer Anwendung im Boden gelten. Hier existieren auch Kennzeichnungspflichten der Inhaltsstoffe für das Inverkehrbringen der Substrate. In der DüMV wird zudem ausschließlich chemisch unbehandeltes Holz als ein Hauptbestandteil in Verbindung mit der Zugabe von Nährstoffen über zugelassene Düngemittel (zulässiger Ausgangsstoff) sowie als ein Hauptbestandteil für Kultursubstrate (zulässiger Ausgangsstoff) zugelassen.

Eine entsprechende Anpassung der DüMV wäre für eine diskriminierungsfreie Nutzung von Biokohle und BKS im Boden in den folgenden Punkten nötig (Vogel, 2014):

- Zulassung von Biokohle nicht nur als Düngemittel (Stoffe, die dazu bestimmt sind, Nutzpflanzen zu ernähren) und Kultursubstrat (Pflanzenerden, die dazu bestimmt sind, Pflanzen als Wurzelraum zu dienen), sondern auch als Bodenhilfsstoff (Stoffe ohne wesentlichen Nährstoffgehalt, die dazu bestimmt sind, auf den Boden einzuwirken).
- Zulassung weiterer Ausgangsstoffe für die Herstellung von Biokohle über naturbelassenes Holz hinaus, insbesondere Baum-und Strauchschnitt einschließlich Blattabfälle und Landschaftspflegematerial, Stroh, Klärschlämme und Gärsubstrate.

An Hand der in den Richtlinien des Europäischen Pflanzenkohle Zertifikates beschriebenen Ausgangsstoffe kann die Liste der möglichen zugelassenen Ausgangsstoffe der DüMV und Bioabfallverordnung (BioAbfV) nach Prüfung ergänzt werden.

Es ist außerdem zu prüfen, ob und inwiefern die bislang nicht berücksichtigte C-Sequestrierung als Zweckbestimmung in das Düngerecht und andere gesetzliche Regelungen, wie z.B. das Kreislaufwirtschaftsgesetz (KrWG) aufgenommen werden sollte. (Haubold-Rosar et al. 2015)

4. MARKTSITUATION VON BKS UND KONVENTIONELLER DÜNGUNG

Biokohlen und Biokohlesubstrate treten als Innovation in einen bestehenden Markt für Bodenverbesserungsmittel insbesondere in der Landwirtschaft, aber auch im Garten- und Landschaftsbau und im privaten Gärtnerbereich ein. Trotz steigender Energiebedarfe für die Herstellung der Dünge- und Pflanzenschutzmittel und einer steigenden Umweltbelastung durch Emissionen und Auswirkungen auf Boden und Grundwasser ist das System der konventionellen Düngung sehr stabil. Ursache für diese Pfadabhängigkeit ist die historische Entwicklung der konventionellen Düngung in der Landwirtschaft über einen langen Zeitraum, die zu einer tiefen Verankerung in der Gesellschaft mit technologischen, sozialen, ökonomischen, institutionellen und politischen Interessen und somit zu einem Lock-In geführt hat. (Lachman 2013) Ein fundamentaler Wandel dieses Systems mit seinen Strukturen, seiner Kultur und seinen Praktiken und Gewohnheiten ist ein langer Prozess, der viele Jahre dauern kann. Aufgrund seiner Komplexität, kann ein Wandel nicht von außen designed oder in kontrollierter Weise eingeführt werden. Vielmehr ist unter Beachtung seiner Dimensionen, d.h. Schnelligkeit, Größe und Zeit nur eine Stimulierung und Beeinflussung des Übergangs möglich. (Kemp/Loorbach 2003; Lachman 2013)

Neue Technologien sind zunächst mit hohen Entwicklungs- und Investitionskosten verbunden, was in der Folge zu hohen Produktionskosten und Produktpreisen führt. Häufig sind diese Produkte aus diesem Grund anfänglich nur für einen kleinen Nischenmarkt interessant und erschwinglich. Lerneffekte und Kostendegressionen durch höhere Produktionszahlen und Anwendungen können im Zeitverlauf zu sinkenden Herstellungskosten und damit auch zu geringeren Produktpreisen führen und den Nischenmarkt so für den breiten Markt öffnen.

Das Konzept der Erfahrungskurve beschreibt den Zusammenhang zwischen den Kosten der Wertschöpfung und der kumulierten Produktionsmenge. Demnach verringern sich die Stückkosten bei Verdopplung der kumulierten Ausbringungsmenge um einen konstanten Faktor x, der je nach Technologie variiert. Ursache hierfür sind zum einen Lerneffekte und zum anderen Spezialisierungs-, Betriebsgrößen- und Losgrößendegressionseffekte. Gleichzeitig ist auch die Phase der Technologieentwicklung entscheidend: Der Übergang von Prototypenbau und Einzelanfertigung zu halbindustrieller Kleinserienfertigung ist mit stärkeren Kostendegressionen verbunden als die sich anschließende Phase der Kommerzialisierung. (Werhahn 2009) Biokohlesubstrate liegen auf der Erfahrungskurve bezogen auf die Anzahl der Anwendungen und bezogen auf die Durchschnittskosten noch recht weit oben auf der Kurve. Die landwirtschaftliche Nutzung als großflächige, industrielle Anwendung von Bodenverbesserungsmitteln liegt als Benchmark mit ca. 200€/ha insgesamt ca. 1.200 €/ha unter dem aktuellen Entwicklungsstand von BKS mit ca. 1400€/ha (siehe Kapitel 3.1).

Abbildung 1 stellt die Erfahrungskurve von BKS graphisch dar:

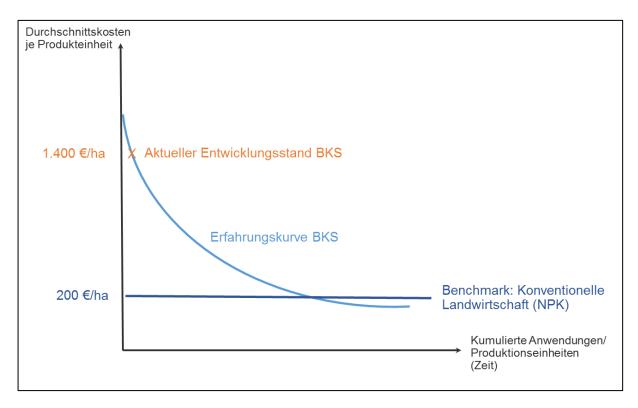


ABBILDUNG 1: BKS-ENTWICKLUNGSSTAND AUF DER ERFAHRUNGSKURVE IM VERGLEICH ZUM BENCHMARK Quelle: Eigene Darstellung.

Staatliche Unterstützungsmaßnahmen können den Verlauf der Erfahrungskurve beeinflussen und die Kosten bei gleicher Anzahl kumulierter Anwendungen senken, sodass schneller eine Konkurrenzfähigkeit zu herkömmlichen Produkten erreicht werden kann. Prominentes Beispiel für eine solche Entwicklung ist die Photovoltaiktechnologie (PV), die bereits 1839 entdeckt und zunächst nur in der Raumfahrt eingesetzt und entwickelt wurde. Auf der Erde galt die Technologie lange Zeit als unrentabel und bildet erst seit 1999 einen Wirtschaftszweig mit sehr dynamischer Wachstumsrate. Insbesondere das Erneuerbare-Energien-Gesetz (EEG) mit seiner festen Einspeisevergütung und der bevorzugten Einspeiseregelung für PV-Strom ermöglichte diese Entwicklung. (Steden 2015)

Auch die Herstellung und Anwendung von Biokohlesubstraten kann durch staatliche Hilfsstellungen vorangetrieben werden. Als Argumentationsgrundlage für eine staatliche Unterstützung können die positiven externen Effekte von BKS dienen. Positive externe Effekte schaffen einen zusätzlichen Nutzen, für den es keinen oder keinen den Nutzen vollständig abbildenden Marktpreis gibt. Derjenige, der den gesellschaftlichen Zusatznutzen schafft, wird dafür nicht in dem nötigen Umfang entlohnt, weil nur die betriebswirtschaftlichen Kosten der Produktion nicht aber die volkswirtschaftlichen Kosten Berücksichtigung finden. Entsprechend wird die angebotene und nachgefragte Menge des Gutes unterhalb der gesellschaftlich optimalen Menge

liegen. Eine Möglichkeit ein derartiges Marktversagen zu korrigieren liegt in einer Marktregulierung durch die Einpreisung der externen Effekte, die das Verhalten von Produzenten und Konsumenten beeinflusst. Im Fall von positiven externen Effekten kann die am Markt gehandelte Menge beispielsweise durch Subventionen auf das gesellschaftlich wünschenswerte Niveau gehoben werden. (Mankiw/Taylor 2012) Um die Höhe einer solchen Subventionierung zu ermitteln, müssen die externen Effekte mit einem Geldwert hinterlegt werden. Wie bereits in Kapitel 3.1 beschrieben, konnten einige positive externen Effekte monetarisiert werden, sodass sich ein Geldwert für die monetarisierbaren externen Effekte in Höhe von 25,22€/t BKS ergibt.

Eine staatliche Subvention in Höhe der ca. 25 €/t BKS würde zu einer Verschiebung der BKS-Erfahrungskurve führen, sodass schneller eine Konkurrenzfähigkeit mit der NPK-Düngung erreicht werden kann. Die Erfahrungskurve verschiebt sich in Höhe der Subvention (250€/ha) in Richtung Ursprung und schneidet so früher die Benchmark-Kurve der konventionellen Landwirtschaft (siehe Abbildung 2).

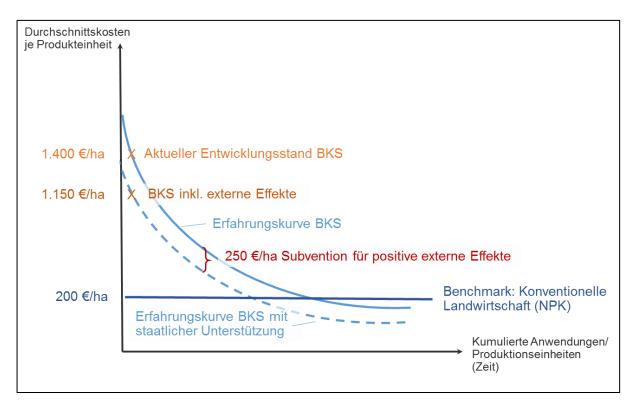


ABBILDUNG 2: BKS-ENTWICKLUNGSSTAND INKL. EXTERNE EFFEKTE IM VERGLEICH ZUM BENCHMARK Quelle: Eigene Darstellung.

Eine staatliche Unterstützung ausschließlich in Höhe der monetarisierbaren externen Effekte führt zwar zu einer schnelleren Konkurrenzfähigkeit der Biokohlesubstrate, kann aber nicht die einzige Maßnahme zur staatlichen Unterstützung bleiben, um den Einsatz von BKS nachhaltig zu fördern.

5. Politikempfehlungen

5.1. STAATLICHE UNTERSTÜTZUNGSMAßNAHMEN

Der Staat kann neue Technologien und Produkte und den Verlauf der Erfahrungskurve auf verschiedenen Wegen unterstützen. Eine erste Möglichkeit liegt in der Subventionierung eines Unternehmens. Eine Subvention im engeren Sinne ist eine Geldzahlung, die von der öffentlichen Hand ohne marktliche Gegenleistung an solche Unternehmen gewährt wird, die zuvor definierte Kriterien erfüllen. (Andel 1977) Im weiteren Sinne zählen ebenso Steuervergünstigungen und Preis-Absatz-Garantien als Subventionierung: Der Staat garantiert nationalen Erzeugern eine minimale Absatzmenge oder einen minimalen Absatzpreis, der in der Regel über dem Marktpreis liegt, und verlangt auch hierfür keine marktliche Gegenleistung. Durch die Maßnahme einer staatlichen Subvention können die Durchschnittskosten je Produkteinheit gesenkt und somit der Verlauf der Erfahrungskurve insbesondere entlang der y-Achse beeinflusst werden.

Der Staat kann Unternehmen in bestimmten Branchen weiterhin durch entsprechende *Förder-programme* unterstützen und fördern, um bedarfsgerechte Hilfestellungen für Investitionen und Innovationen zu bieten, die Entwicklung und Erprobung neuer Technologien durch Forschungsförderung anzustoßen und Impulse für mehr Wachstum und Beschäftigung zu setzen. Auf diese Art und Weise kann die Anzahl der kumulierten Anwendungen bzw. Produktionseinheiten erhöht und somit der Verlauf der Erfahrungskurve insbesondere entlang der x-Achse beeinflusst werden.

Zur Unterstützung von Biokohlesubstraten lassen sich die staatlichen Maßnahmen entlang der Erfahrungskurve idealtypisch in zwei Phasen einteilen (siehe Abbildung 3).

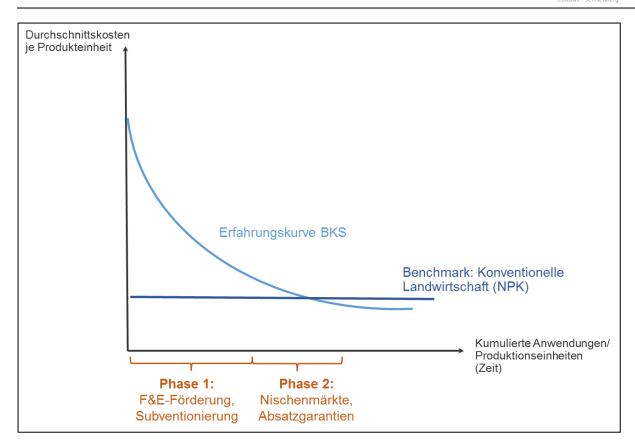


ABBILDUNG 3: STAATLICHE FÖRDERMAßNAHMEN IN DER BKS-ERFAHRUNGSKURVE

Quelle: Eigene Darstellung.

Die erste Phase umfasst den Bereich der Erfahrungskurve, der über dem Benchmark liegt. Biokohlen und Biokohlesubstrate liegen mit ihren Kosten deutlich über der konventionellen Landwirtschaft und sind noch nicht konkurrenzfähig, die Technologie ist noch nicht ausgereift. In dieser Phase sollte durch Subventionen die Technologieentwicklung und durch F&E-Förderung die angewandte Forschung und die Entwicklung von Anlagenkonfigurationen unterstützt werden. Sowohl die Weiterentwicklung der Produktionstechnologie als auch die Anwendung von Biokohlen und BKS im Boden müssen in dieser Phase erforscht und verbessert werden. Sobald Demonstrationsanlagen gut und fehlerfrei funktionieren und sich die Erfahrungskurve dem Benchmark annähert, kann der Übergang in Phase zwei erfolgen. Sind die Produktionsanlagen weitestgehend ausgereift und nähern sich preislich an das Niveau der konventionellen Düngemittel an, liegt die Aufgabe des Staates in der gezielten Steuerung des Anlagenverkaufs und der Schaffung von Nischenmärkten. So können Technologie und Produkt verbreitet und Multiplikatoren gefunden und überzeugt werden. Eine Steuerung des Anlagenverkaufs kann beispielsweise durch Absatzgarantien oder Begünstigungen der Käufer beim Anlagenkauf erreicht werden. So können sich Nischenmärkte, abseits vom großflächigen Einsatz in der Landwirtschaft, beispielsweise im privaten Gartenbau, bei Kompostierern oder in der Kultivierung spezieller Pflanzen entwickeln. Diese Nischenmärkte bieten die Chance, dass sich Technologie und Produkt am Markt etablieren und die Entwicklung entlang der Erfahrungskurve weiter

Verbundprojekt LaTerra – QP I Gestaltung Rahmenbedingungen

voranschreitet. Nischenmärkte können durch den Staat aber auch gezielt geschaffen werden: Eine Regelung, beispielsweise in der Bioabfallverordnung, dass bestimmte Biomassen oder Abfälle zur Hygienisierung pyrolysiert werden <u>müssen</u>, würde automatisch einen Markt für die Pyrolysetechnologie und die dabei hergestellten Biokohlen entstehen lassen.

5.2. EXIT-STRATEGIEN: AUSSTIEG AUS DER STAATLICHEN FÖRDERUNG

Für staatliche Unterstützungsmaßnahmen stellt sich die Frage, ab wann eine Forschungsförderung und Subventionen minimiert oder sogar vollständig beendet werden sollten. Die Formulierung einer EXIT-Strategie ist hierfür eine geeignete Maßnahme, um anhand definierter Kriterien den Ausstieg aus der Unterstützung einer neuen Technologie zu bestimmen und insbesondere das Entstehen von windfall profits bei Begünstigten der staatlichen Hilfeleistungen zu verhindern. Für einen Ausstieg aus einer staatlichen Förderung kann es grundsätzlich zwei Gründe geben:

- Misserfolg: Die geförderte Technologie schafft es nicht den Benchmark der etablierten Konkurrenz zu erreichen. Eine weitere staatliche Unterstützung ist nicht mehr zu rechtfertigen.
- 2) *Erfolg:* Die geförderte Technologie ist konkurrenzfähig und erfolgreich. Eine staatliche Unterstützung ist nicht mehr notwendig.

EXIT-STRATEGIE FÜR DEN MISSERFOLG

Innovationen können aus verschiedenen Gründen scheitern. Bauer (2006) nennt hierfür sechs Gründe: technische Probleme, Konkurrenzsituation, Fehleinschätzung der Nutzerbedürfnisse, zu große Anpassungserfordernisse, fehlendes Entwicklungsumfeld und das Timing. In Bezug auf Biokohle und Biokohlesubstrate sollten die Kriterien für einen Ausstieg im Fall eines Misserfolgs zum einen ein Ausbleiben von Wirkungsnachweisen zur Vorteilhaftigkeit des Produktes und zum anderen fehlende Kostensenkungspotenziale und damit verbunden eine fehlende Wettbewerbsfähigkeit umfassen.

Die bisher teilweise beobachteten negativen Wirkungen von Biokohle auf Boden und Pflanzenwachstum müssen durch eine klare Definition der benötigten Rahmenbedingungen zur Erzielung einer positiven Wirkung ausgeschlossen werden können. Die Zufuhr stabiler Kohlenstoffverbindungen in Form von Biokohlen wird die Bodeneigenschaften und -funktionen langfristig beeinflussen, wie z.B. den Wasser- und Nährstoffhaushalt oder die Bodenmikrobiologie. Das Einstellen neuer Gleichgewichte wird vermutlich einige Jahre bis Jahrzehnte in Anspruch nehmen. Gleichzeitig müssen verschiedene Versuchsanordnungen untersucht werden, sowohl in Bezug auf die Qualität und den Mengen- bzw. Volumenanteil der Biokohle als auch in

Verbundprojekt LaTerra – QP I Gestaltung Rahmenbedingungen

Bezug auf die angebauten Fruchtfolgen und die vorliegende Bodenart. Vor diesem Hintergrund sind Dauerfeldversuche unumgänglich, denn das Potenzial von Biokohle und Biokohlesubstraten wurde in den bisherigen Feld- und Laborversuchen bereits teilweise aufgezeigt. Weltweit existieren ca. 600 Dauerversuche zu der langfristigen Wirkung von Stoffkreisläufen auf die Böden, die naturnahen Ökosysteme und die landwirtschaftliche Produktion, davon 70 in Deutschland mit einer Laufzeit von 20-50 Jahren. (Rogasik et al. 2005) In dieser Hinsicht ist eine Forschungsförderung zur Untersuchung der Langzeitwirkung von Biokohle über bis zu 30 Jahre durchaus angebracht. Zeigen sich danach keine bzw. keine konstanten Erfolge und sind die Bedingungen, unter denen die Vorteile von BKS (wie z.B. eine Ertragssteigerung) verlässlich eintreten, nicht klar definierbar, ist eine Einstellung der Förderung in Erwägung zu ziehen.

Auch die Kostensenkungspotenziale von der aktuell um ein fünffaches teureren Biokohleproduktion sind ein entscheidendes Kriterium. Wenn die Herstellung, trotz Simplifizierung, Kuppelproduktion und Kaskadennutzung um ein Vielfaches teurer ist und bleibt als die Produktion herkömmlicher Bodenverbesserungsmittel, werden sich Biokohlen am Markt nicht durchsetzen. Parallel zur Untersuchung der Langzeitwirkungen muss sich entsprechend die Herstellungstechnologie weiterentwickeln und durch Lerneffekte und Kostendegressionen zu starken Kostensenkungen führen. Die Entwicklung von Biogas- und Photovoltaikanlagen zeigt, dass diese Technologie- und Kostenentwicklung dynamisch einhergeht mit einer steigenden Anzahl der Nachfrage und entsprechend steigender Anzahl an Anwendungen, vorausgesetzt es werden gezielt staatliche Anreize gesetzt, die im Zeitverlauf an die sich ändernden Bedingungen angepasst werden. Der Wechsel weg von kleinen privat in Eigenleistung betriebenen Biogasanlagen hin zu einem kontinuierlichen Anstieg der Biogaserzeugung mit steigender Leistung wurde beispielsweise im Wesentlichen durch das Inkrafttreten des Erneuerbare-Energien-Gesetzes (EEG) im Jahr 2000 ausgelöst. Die erste EEG-Novellierung im Jahr 2004 hatte einen besonderen Installationsanstieg von Biogasanlagen zur Folge, hauptsächlich aufgrund der Einführung des Nawaro-Bonus. (de Graaf/Fendler, 2010) Einen ähnlichen Entwicklungsverlauf weisen auch die Photovoltaikanlagen auf (siehe Kapitel 3) (Steden 2015). Für die Erzeugung von Biokohle und Biokohlesubstraten sollten staatliche Anreize entsprechend ebenfalls über einen längeren Zeitraum gewährt werden, um eine dynamische Technologie- und Kostenentwicklung zu ermöglichen. Je nach Verlauf sollte die staatliche Unterstützung nach vier bis fünf Jahren unter Umständen angepasst werden, um die weitere Entwicklung in die gewünschte Richtung zu lenken. Nach zehn bis 15 Jahren sollte der Technologie- und Kostenstand kritisch geprüft und bei einer ausbleibenden positiven Entwicklung eine Beendung in Betracht gezogen werden.

EXIT-STRATEGIE FÜR DEN ERFOLG

Ebenso, wie im Falle eines Misserfolgs einer Technologie die staatliche Unterstützung beendet werden sollte, ist auch im Erfolgsfall zu prüfen, ab wann eine Unterstützung nicht mehr nötig ist. Können die beiden definierten Kriterien positiv bewertet werden, sind also Wirkungsnachweise zur Vorteilhaftigkeit des Produktes erbracht und Kostensenkungspotenziale und damit verbunden eine Wettbewerbsfähigkeit erreicht, können die staatlichen Unterstützungsmaßnahmen eingestellt werden. Technologie und Produkt befinden sich an diesem Punkt auf der Erfahrungskurve bereits leicht unter dem Benchmark. Abbildung 4 fasst die Politikempfehlungen zusammen:

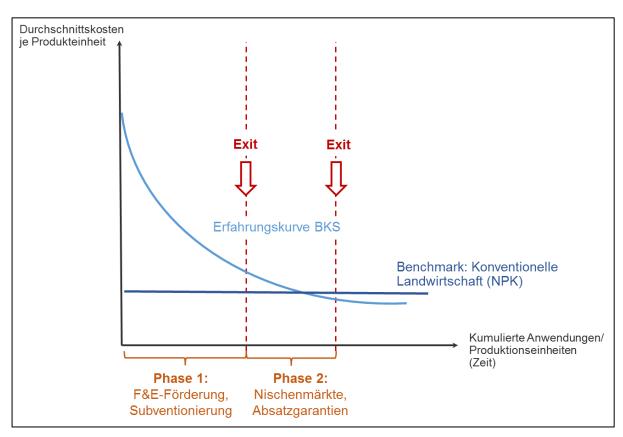


ABBILDUNG 4: STAATLICHE FÖRDERMAßNAHMEN UND EXIT-STRATEGIEN IN DER BKS-ERFAHRUNGSKURVE Quelle: Eigene Darstellung.

Die staatlichen Unterstützungsmaßnahmen sollten in zwei Phasen erfolgen: F&E-Förderung und Subventionierung während Technologie und Produkt auf der Erfahrungskurve noch über dem Benchmark liegen und Absatzgarantien sowie Schaffung von Nischenmärkten in dem Zeitraum, in dem sich die Erfahrungskurve rund um den Schnittpunkt mit dem Benchmark bewegt. Für den Ausstieg ist im Falle eines Misserfolges der Übergangspunkt zwischen Phase eins und Phase zwei zu wählen, da ein Übergang in Phase zwei nicht realisierbar ist. Ist das Ende von Phase zwei und damit der Erfolg der Technologie erreicht, kann ein Ausstieg aus der staatlichen Förderung eingeleitet werden.

6. ZUSAMMENFASSUNG UND AUSBLICK

Biokohlen und Biokohlesubstrate sind ein vielversprechendes Produkt mit vielen positiven Eigenschaften und Vorteilen gegenüber konventionellen Düngemitteln. Während die Landwirtschaft mit der stark etablierten, konventionellen NPK-Düngung pfadabhängig ist, stehen die Herstellungstechnologien für Biokohlen in der Entwicklungsphase noch am Anfang und lassen das Endprodukt Biokohlesubstrat um ein Vielfaches teurer sein, als den Benchmark. Zur Herstellung von Biokohlen wurden und werden verschiedene Herstellungsverfahren entwickelt, die sich bisher allerdings nur im Rahmen von Einzelanfertigungen und Kleinstserien bewegen, sodass entsprechend kaum Lern- und Kostendegressionseffekte erzielt werden können. Eine staatliche Unterstützung, über eine Subventionierung der positiven externen Effekte hinaus, sollte entsprechend angestrebt werden.

Für die Etablierung von Biokohlesubstraten wurden drei ausgewählte Erfolgsfaktoren identifiziert und beschrieben. Neben einer Kostensenkung der Biokohleherstellungskosten, ist die Gewährleistung einer Verlässlichkeit der Produkte Biokohle bzw. Biokohlesubstrat für den Anwender ebenso essenziell wie die Schaffung rechtlich klarer Rahmenbedingungen für die Herstellung und Anwendung.

Die konkreten staatlichen Unterstützungsmaßnahmen sollten, orientiert an der Erfahrungskurve von BKS, in zwei Phasen erfolgen: F&E-Förderung und Subventionierung während Technologie und Produkt auf der Erfahrungskurve noch über dem Benchmark liegen und Absatzgarantien sowie Schaffung von Nischenmärkten in dem Zeitraum, in dem sich die Erfahrungskurve rund um den Schnittpunkt mit dem Benchmark bewegt. Auch für den Ausstieg aus der staatlichen Förderung wurden EXIT-Strategien benannt: Im Falle eines Misserfolges durch ein Ausbleiben von Wirkungsnachweisen zur Vorteilhaftigkeit des Produktes und von definierten Bedingungen, unter denen die Vorteile von BKS verlässlich eintreten und/oder durch fehlende Kostensenkungspotenziale während der ersten Phase, sollte an dieser Stelle ein Ausstieg erfolgen, da ein Übergang in Phase zwei nicht realisierbar ist. Ist das Ende von Phase zwei und damit der Erfolg der Technologie erreicht, kann ebenfalls ein Ausstieg aus der staatlichen Förderung eingeleitet werden. Biokohlesubstrate sind dann am Markt etabliert und bedürfen keiner weiteren Förderung.

Verbundprojekt LaTerra – QP I 6-tu Gestaltung Rahmenbedingungen Brandenburgische Technische Universität

LITERATURVERZEICHNIS

Andel, N. (1977): Subventionen. In: Willi Albers u.a. (Hrsg.): Handwörterbuch der Wirtschaftswissenschaft, Band 7, Stuttgart, New York, Tübingen, Göttingen, Zürich 1977, S. 491-510.

Bauer, R. (2006): Gescheiterte Innovationen: Fehlschläge und technologischer Wandel. Frankfurt/Main: Campus Verlag.

Barrow, C.J. (2012): Biochar: Potential for countering land degradation and for improving agriculture. In: Applied Geography, Volume 34, Mai 2012, S. 21–28.

Bugge, G. (1927): Industrie der Holzdestillations-Produkte. Technische Fortschrittsberichte, Band 15, Th. Steinkopff, Dresden.

De Graaf, D., Fendler, R. (2010): Biogaserzeugung in Deutschland. SPIN Hintergrundpapier, Umweltbundesamt für Mensch und Umwelt, Dessau-Roßlau, Januar 2010.

Fohl, J., Lugscheider, W., Wallner, F. (1987): Entfernen von Wasser aus der Braunkohle – Teil 2 – Thermische Entwässerungsverfahren. In: Braunkohle, Volume 39, Issue 4, S. 78-87.

Glaser, B., Woods, W. L. (2004). Amazonian dark earths: Explorations in space and time. Berlin: Springer Verlag.

Glaser, B., Birk, J.J. (2012): State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). In: Geochimica et Cosmochimica Acta, Volume 82, April 2012, S. 39–51.

Haubold-Rosar, M., Kern, J., Reinhold, J.(eds.) (2015): Chancen und Risiken des Einsatzes von Biokohle und anderer "veränderter" Biomasse als Bodenhilfsstoffe oder für die C-Sequestrierung in Böden. Eigenverlag, Dessau-Roßlau.

Jeffery, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C. (2011): A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. In: Agriculture, Ecosystems & Environment, Volume 144, Issue 1, November 2011, S. 175-187.

Kemp, R., Loorbach, D. (2003): Governance for Sustainability Through Transition Management. Paper for Open Meeting of the Human Dimensions of Global Environmental Change Research Community, 16.-19. Oktober 2003 in Montreal, Canada.

Kim, J.S., Sparovek, G., Longo, R.M., de Melo, W.J., Crowley, D. (2007): Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. In: Soil Biol-ogy and Biochemistry, Volume 39, Issue 2, Februar 2007, S. 684–690.

Lachman, D.A. (2013): A survey and review of approaches to study transitions. In: Energy Policy, Volume 58, S. 269–276.

Verbundprojekt LaTerra – QP I Gestaltung Rahmenbedingungen

Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (2003): Amazonian dark earths: origins, properties, management. Dordrecht: Kluwer Academic.

Lehmann, J., Joseph, S. (2009): Biochar for Environmental Management - Science and Technology. London; Sterling, VA: Earthscan.

Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. (2011): Biochar effects on soil biota – A literature review. In: Soil Biology and Biochemistry, Volume 43, Issue 9, September 2011, S. 1812–1836.

Lima, H.N., Schaefer, C.E., Mello, J.W., Gilkes, R.J., Ker, J.C. (2002): Pedogenesis and pre-Colombian land use of "Terra Preta Anthrosols" ("Indian black earth") of Western Amazonia. In: Geoderma, Volume 110, Issues 1–2, November 2002, S. 1–17.

Mankiw, N.G., Taylor, M.P. (2012): Grundzüge der Volkswirtschaftslehre. 5. Auflage, Schäffer-Poeschel Verlag, Stuttgart.

Mensinger, M. C. (1980): Wet carbonization of peat: state-of-the-art review. Peat as an Energy Alternative: Symposium Proceedings Chicago, III. IGT, S. 249-280.

Quian, K., Kumar A., Zhang, H., Bellmer, D., Huhnke, R. (2015): Recent advances in utilization of biochar. In: Renewable and Sustainable Energy Reviews, Volume 42, S. 1055–1064.

Rogasik, J., Lilienthal, H., Schnug, E. (2005): Versuch macht klug – Dauerversuch macht klüger! In: Senat der Bundesforschungsanstalten (Hrsg.): Forschungsreport Verbraucherschutz, Ernährung, Landwirtschaft. Die Zeitschrift des Senats der Bundesforschungsanstalten, 2/2005.

Rüdiger, J. (2013): Kurzstudie - Bewertungen und Empfehlungen für Anlagen zur gekoppelten Biokohleproduktion mit Wärme- und Stromauskopplung. Verbundprojekt LaTerra – Querschnittsprojekt 1, Brandenburgische Technische Universität Cottbus-Senftenberg, PDF.

Schatz, K., Zundel, S. (2014): Arbeitspapier zum Arbeitspaket 2.2: Geschäftsfeldanalysen, Querschnittsprojekt 1 im Rahmen des Verbundvorhabens LaTerra, Brandenburgische Technische Universität Cottbus-Senftenberg, PDF.

Schmidt, H. P. (2011): Pflanzenkohle. Ithaka-Journal, 1, S. 75-82.

Schmidt, H. P., Abiven, S., Glaser, B., Kammann, C., Bucheli, T., Leifeld, J. (2012): Richtlinien für die Produktion von Pflanzenkohle Europäisches Pflanzenkohle Zertifikat / European Biochar Certificate. Biochar Science Network.

Sombroek, W. C. (1966): Amazonian soils. Centre for agricultural publication and documentation, Wageningen: Wageningen University.

Steden, S. (2015): Das System der Finanzierung von Technologieentwicklung am Beispiel der Photovoltaik-Industrie. Dissertation an der Technischen Universität Dortmund 2014. Springer Fachmedien, Wiesbaden.

Verbundprojekt LaTerra – QP I Gestaltung Rahmenbedingungen

Verheijen, F., Jeffery, S., Bastos, A.C., van der Velde, M., Diafas, L. (2010): Biochar applications to soils: A critical scientific review of effects on soil properties, pro-cesses and functions. JRC Scientific and Technical Reports EUR240.99EN, JRC European Commission & Institute for Environmental Sustainability, Luxembourg: Office for the Official publications of the European Communities.

Vogel, I. (2014): Rechtliche Rahmenbedingungen des Einsatzes von Biokohle – Qualitätskriterien für Biokohlen und Biokohlesubstrate sowie deren Ausgangsstoffe. Vortrag im Rahmen des Workshops "Biochar goes practice". 9./10.12.2014, Berlin.

Werhahn, J. (2009): Kosten von Brennstoffzellensystemen auf Massenbasis in Abhängigkeit von der Absatzmenge. Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt, Band 35, Zentralbibliothek Verlag, Jülich.

Witte, V., Zundel, S. (2015): Arbeitspapier zum Arbeitspaket 2.3: Kosten-Nutzen-Analyse, Querschnittsprojekt 1 im Rahmen des Verbundvorhabens LaTerra, Brandenburgische Technische Universität Cottbus-Senftenberg, PDF.

ANHANG

ANHANG 1: MARKTÜBERSICHT BIOKOHLE-HERSTELLUNGSANLAGEN

#	Name /Typ	Hersteller / Kontaktdaten	Kosten in	Ausgangsmaterial	Automatisierung	Biokohle / Asche	Mobilität	Zertifizierung	Marktsituation	Spezifikationen / weitere
	Dig 1 1200	Program com on the court of	Euro			Produktion	19/75	77 1 10 1		Informationen
1	BiGchar 1200 BiGchar 1800+	BIG CHAR CCT (Black is Green CHAR Continous	88.000	Aufnahmekapazität bei	Ja kann für Wochen	20-35 % Biokohle	mobil/ Kunden	Kunden spezifisch	Inbetriebnahmen in	50% Wärmeenergie
	BiGchar 1800+	Carbonisation Technology) Australia	220.000	Wassergehalt < 10% ist 200 kg/h; Beforzugter Wassergehalt: < 25%		50% thermale Energie, die recycelt wird für	spezifisch	um verschiedene Emissions-	Indien, Australien;	können zum Erhitzen des Vergasers genutzt werden.
	BiGenar 2200	Austrana http://www.soilfertilityproject.com/Soil_Fertility/Pyro_	325.000	Max. Wassergehalt : 50%	laufen und produziert 8 t Biokohle /	den Vergaser		standards zu	Standardproduktion;	Aufwind-
		Unit.html	323.000	Max. Wassergenatt : 50% Max. Eingangspartikelgröße:	Woche	den vergaser		erreichen		Rotationsvergaser;
		http://www.bigchar.com.au/technology.html		40x40x25 mm	woche			erreichen		Betriebstemperatur: 400-
		https://pacificbiochar.com/bigchar-biochar-production-		40340323 11111						700 °C; langsame
		technology/								und schnelle Pyrolyse
	BIOMACON	BioMaCon GmbH	119.000-	Holzhäcksel	Ja	15% Biokohle	fest	European Biochar	Inbetriebnahmen in	Leistung: 4.5 kW el
2	Simplex M	Schmiedestr. 2	181.000	Max.Wassergehalt: 50%	Fernkontrolle via	6 kg/ h	Test	Certificate (ECB)	Sri Lanka, Berlin,	Temperatur: kann bis
	Converter	D-31547 Rehburg,	181.000	40 kg/ h	Computer oder	Wärmekapazität: 60		Certificate (ECB)	StandardproduktionInb	>1000 °C
	Converter	Germany		40 kg/ II	Smart Phone	kW			etriebnahmen in	schnelle Pyrolyse
		Tel: +49 5023 9000254			möglich	Biokohlegröße: 25 mm			Indien, Australien;	schnene r yroryse
		Fax: +49 5023 9000256			mognen	Thermische Energie			Standardproduktion;	
		E-mail: info@biomacon.com				Thermisene Energie			Referenzanlage Bot.	
		Skype: BioMaCon							Garten Berlin	
3		Switzerland (international office)		Holz Biomasse:	nein	1-1.5 t Biokohle /Tag	mobil	European Biochar	Nepal, Schweiz;	Temperatur: 650-700 °C;
J	** ***	Ancienne Eglise 9, CH-1974 Arbaz	2 000	Max. Wassergehalt: 50%	manuelle Bedienung			Certificate (ECB)	Produktion in kleinen	Prototypen
	Kon-Tiki	phone +41 27 398 12 92	3.000	Max. Länge: 120 cm				,	Mengen	schnelle Pyrolyse
		info@ithaka-institut.org								
4	Power Cube 20	All Power Labs	15.600-	Jede Art von Biomasse, Max.	Ja	Asche und Biokohle	mobil	Europa CE	verfügbar,	1,15 kg Biomasse = 1 kwh
	(PC20)	1010 Murray Street	45.800	Brennstoff Eingang: 22 kg/h;	Temperatur/ Druck/	im Gartenbau nutzbar		zertifiziert	Standardproduktion; 2	elektrisch
		Berkeley, CA 94710		Wassergehalt: bis 30%;	Asche/ Brennst off-				bis 3 Monate	Pyrolysetemperatur:
		USA			Kontroll-System				Lieferzeit	650°C;
		Web: www.allpowerlabs.com								schnelle Pyrolyse
	SuparChar 100	Carbon Gold	7.100	H 11 1 1/0 1 H 1 1	N	20-30% Biokohle	c .	D	T11 1	10 1 1 15
5		Hanover House, First Floor, Queen Charlotte Street,	7.100- 71.000	Holzhäcksel/Stäube, Holzscheite,	Nein		fest	Patent beantragt.	Inbetriebnahmen in Belize	1,2 m hoch x1.5 m Durchmesser
	Mk 1, 2; Mk 500	Bristol, BS1 4EX.	/1.000	Reisspelzen, Kaffeschalen, Binsen and Reet (145 cm lang, 8 cm	Die Meiler werden manuell be- und	100-750 kg Biokohle	Kann via Pick	Bestätigt durch Soil Association.	Turkmenistan.	Temperatur: 450-500 °C
		England		Durchmesser)	entladen	pro Verbrennungsvorgang			Frankreich, Schottland	Energieeinspeisung:
		Tel: 0117 2440032		1.5 -6 x2 m³ pro Brennvorgang	entiaden	verbreinnungsvorgang	werden	Kohle angestrebt.	Trankfelcii, Schottianu	elektrisch
		Email: info@carbongold.com		Wassergehalt: 40-60%			werden	Kome angestreot.		Brenndauer: 8 h
		Email: mro e caroongola.com		Wassergenare. 40 00%						langsame Pyrolyse
										mingsame 1 yronyse
6	PYREG® 500	Pyreg GmbH	350.000	bis 180 kg/h	Ja	6 kg/ h Biokohle	fest	European Biochar	Deutschland, Schweiz,	bauseitige
				Große Auswahl von Biomassen und		Bis zu 150 kW		Certificate (EBC)	Östereich;	Energieversorgung: 10 kW
		Trinkbornstrasse 15-17		Globe Auswalli voli biolilasseli uliu						
1 1		Trinkbornstrasse 15-17 56281 Dörth,		abfällen		thermische Energie		& UK Biochar	Standardproduktion	$8.8~\text{m} \times 3.5~\text{m} \times 2.7~\text{m}$
						thermische Energie wird verwertet		& UK Biochar Mandate (BQM)	Standardproduktion	8.8 m \times 3.5 m \times 2.7 m (L/B/H)
		56281 Dörth,				U			Standardproduktion	
		56281 Dörth, Germany		abfällen		U			Standardproduktion	(L/B/H)
		56281 Dörth, Germany Tel.: +49 (0) 67 47 95 388-0		abfällen Max. Wassergehalt: 50%		U			Standardproduktion	(L/B/H) Gewicht: etwa 12 t schnelle

Verbundprojekt LaTerra – QP I | **b-tu**Gestaltung Rahmenbedingungen | Brandenburgische Technische Universität Cottbus - Senftenberg

7	PyroCook	Kaskad-E GmbH	631	2 kg Holzhäcksel	nein	0,4 kg Pflanzenkohle;	mobil		Deutschland, Schweiz,	4 kWh Wärme; schnelle
/	1 ylocook	Dornacherstrasse 192	031	2 kg Holzinekser	manuelle Bedienung	Wärmenutzung zum	moon		Östereich; Lieferzeit: 2	Pyrolyse
		4053 Basel				Kochen			Monate	, , ,
		Switzerland								
		Telefon: +41 61 534 68 86								
		Email: info@kaskad-e.ch								
8	Gasifier (small)	Spanner Re ² GmbH (Teil der Spanner-Gruppe)	100.000	30-45 kg/h Holzhäcksel u.	Ja	3% Biokohle/ Asche	fest	ISO Qualitäts	benutzt in Europa,	Betriebsstunden: 7000/a
Ü		84088 Neufahrn, Niederfeldstraße 38,		Baumteile ausser Wurzeln		Leistung elektr.: 19-45		Standards	Nord Amerika, Asien	Hauptsächlich für
		Germany; Tel: +49 (0) 8773 707 98 288		Max. Wassergehalt: 50%		kW			in Landwirtschaft,	Energiegewinnung,
		www.holzkraft.de		Min. Größe: 3,5 mm		Leistung therm.: 45-			Gastronomie,	Biokohle als Beiprodukt
						109 kW			Standardproduktion	schnelle Pyrolyse
	Fast Ablative	PYTEC	2.500.000-	Holzhäcksel: Wassergehalt 8-10%;	Ja	Verschiedene	fest	nicht für Biokohle	Entwicklungsphase	Temp: bis 650 °C
9	Pyrolysis System	Thermochemische Anlagen GmbH, Durchdeich 10	8.000.000	250 kg/ h	Siemens SPS	Biomassen/	iest	ment fur blokome	Entwicklungsphase	schnelle Pyrolyse
	1 yrorysis system	D-21037 Hamburg Germany	8.000.000	230 kg 11	Sichiens Si S	Holzhäcksel				semene i yroiyse
		Tel.: +49(0)40-734 30-808				Biokohle: 10-15%				
		Fax: +49(0)40-734 30-809				Bio-oil: 65-75%				
		E-mail: mailpytec.de				Gas: 15-20%				
		http://www.pytecsite.de								
10		Abokobki Society Switzerland (ASS)		Alle Agrar und	nein	120 kg Biokohle/ Tag	mobil	-	Ghana (Megogo),	Temperatur: 400 °C
_	ASS	8125 Zollikerberg		Siedlungsabfallstoffe	manuelle Bedienung				Schweiz	langsame Pyrolyse
	ALGO	http://abokobi.ch/52/projekte Tel:(044)391-6892							Entwicklungsphase	
11	Pyro-6F	Pro-Natura		500 kg Biomasse / h	Ja		fest	Zertifiziert für die	USA, UK,	Temperatur: < 550 °C
		Guy F. Reinaud - Président Pro-Natura International		Alle Arten pflanzlicher Biomasse	1 Woche	200 kg/ h Biokohle		Verwendung im	Deut schland,	schnelle Pyrolyse
		15, avenue de Ségur, 75007 Paris,						Boden	Swasiland, Japan,	
		France							Australien and	
		Tel. +33 (0)1 53 59 97 98 / Mob. +33 (0)6 80 61 09							Neuseeland	
		36								
		Email: guy.reinaud@pronatura.org								
		http://www.pronatura.org/?page_id=521⟨=en								
12	DSS-S1-5L TLUD-	Dohr-Store e.U.	549	3,5 kg Holzstücke, Pellets,	nein	1 kg/ 3 h	Ja		Im Internetshop	Brenndauer 3 Stunden,
	Stove	Grahofferstraße 1		Hackschnitzel, Gartenabfälle					verfügbar	Temperatur 600- 700 °C,
		A-9400 Wolfsberg							Standardproduktion	Brennkammervolumen: 5 1
		Österreich								schnelle Pyrolyse
		http://www.dohr-store.at, Tel:+43(0)664 1062359								
13	BIOGREEN	Biogreen		Getrockneter Klärschlamm, Alle	Ja	5-20% Biokohle: 4.8	Mobil	patentierte	USA & Frankreich	Eingangsleistung: 100 kW
	CM600	Carrefour Jean Monnet		Kohlenstoff basierten Materialien,		t/Tag		Technologie	(Forschung &	(Elektrisch oder Diesel)
		BP 20101		Plastik, Reifen, Altpapier,		Bioöl: 8 t/Tag			Entwicklung)	Kühlwaser: 4 m³/h
		60201 Compiègne cedex		Gärreste,		Synthesegas: 9 mWh				schnelle Pyrolyse
		France		bis zu 16 t/ Tag		/T ag				
		Tel: +33 (0)3 44 86 44 20		Wassergehalt: 10-20%						
		An E.T.I.A. Company. www.etia.fr		Partikelgröße: 20 mm						
		http://www.biogreen-energy.com/about-us/								
14	MDG100 A :	Agri-Therm Inc.		Alle Biomassen	Ja	1.5 t Biokohle	Mobil	patentierte	Mexico	Wirbelschicht Pyrolyse
	MPS100: Agri-	100 Collip Circle, Suite 105, London,		5 t/d		3 t Bioöl		Technologie		Flüssigbett Pyrolyse
	Therm Mobile	Canada N6G 4X8		2.5 cm Durchmesser X 5 cm lang						schnelle Pyrolyse
	Pyrolysis System	http://agri-therm.com/								
	ı	nttp.//agri-therm.com/						ı	l .	

I	b-tu
1	Brandenburgische Technische Universität Cottbus - Senftenberg

	Super Stone Clean	Super Stone Clean International	125 kg/ h	Ja	50 % Biokohle vom	Mobil		Pyrolyse 500 - 900°C
15	530	Osaka City, Minato Ward, Chikko 4-3-20, 552-0021	jede Art von Biomasse u. BioAbfal		Trockensubstanz	WIODII		schnelle Pyrolyse
	330	Japan	eingeschlossen	1	Eintrag			schilene Fylolyse
		Japan	enigeschiossen		Emtrag			
		Tel: (81) 6-6556-6326						
		Skype user name: SuperStoneClean.						
		http://superstoneclean.com/biochar-technology/						
	PLC SCADA	1 1	landwirtschaftliche Reste	т.				
16		Nanopure Inc	landwirtschaftliche Reste	Ja				
	Biochar	Engineering Works: Nanopure Inc MIDC Plot-G 26/1						
	Production Unit	Jejuri Purandar Pune 412303						
		India						
		Head Office: +91-858-693-3008						
		Email: pm@nanopureindia.in						
		Website:www.nanopureindia.in						
17	Automated Rice	Kansai Corporation	Reis- Weizen Spelzen, Sägemehl,	Ja				
	Husk	1666, Minamikawasecho Hikone City,	etc					
	Carbonizer(ARHC	Shiga 522-0222						
)	JAPAN						
		TEL +81-749-25-1111						
		FAX +81-749-25-1115						
18	ZeroPoint	ZeroPoint Clean Tech	Biomasse					Temperatur: 150-900°C
	Biomass	Business Development						langsame und schnelle
	Gasification	Contact: Kurt West						Pyrolyse
	Systems	Tel: +1 (315) 212-9000						
		Email: west@zeropointcleantech.com						
19	AGT Gasifier	A.G.T	Biomasse aus Landwirtschaft und	Ja	fein granulierte,	fest	Partner von	
		Advance Gasification Technology	Abfall		poröse Biokohle		Eurochar	
		Head office						
		Via Trieste 2 – 22060 AROSIO (CO)						
		Italy						
		E-mail: info@agtgasification.com						
		http://www.agtgasification.com/						
20	OPS pyrolysis	Organic Power Solutions (OPS)	viele verschiedene Biomassen	Ja		fest		
20	systems	1428 W. Henry St.	verwendbar					
	.,	Indianapolis, IN 46221,						
		U.S.A						
		sales@organicps.com						

Quelle: areal GmbH 2015