
Partial Refinement for Similarity Search
with Multiple Features

Marcel Zierenberg

Brandenburg University of Technology Cottbus - Senftenberg
Institute of Computer Science, Information and Media Technology

Chair of Database and Information Systems
P.O. Box 10 13 44, 03013 Cottbus, Germany

zieremar@tu-cottbus.de

Abstract. Filter refinement is an efficient and flexible indexing approach to simi-
larity search with multiple features. However, the conventional refinement phase
has one major drawback: when an object is refined, the partial distances to the
query object are computed for all features. This frequently leads to more distance
computations being executed than necessary to exclude an object. To address this
problem, we introduce partial refinement, a simple, yet efficient improvement of
the filter refinement approach. It incrementally replaces partial distance bounds
with exact partial distances and updates the aggregated bounds accordingly each
time. This enables us to exclude many objects before all of their partial distances
have been computed exactly. Our experimental evaluation illustrates that partial
refinement significantly reduces the number of required distance computations
and the overall search time in comparison to conventional refinement and other
state-of-the-art techniques.

The final publication is available at http://link.springer.com. However, note that
the current document is more up-to-date than the published version, as it contains
a number of small fixes in content and layout (last updated on: October 10, 2014).

1 Introduction

Similarity search with multiple features is an effective way of finding objects similar to a
query object. Instead of using only a single feature for the comparison of objects (e.g.,
a single color histogram for the comparison of images), multiple features (e.g., color,
edge and texture features) are utilized. A distance function assigned to each feature is
employed to compute the respective partial distances (dissimilarities) between each of
the compared objects’ features. These partial distances are combined into an aggregated
distance by means of an aggregation function. Finally, the most similar objects are
determined according to the lowest aggregated distances to the query object.

Indexing approaches to similarity search [1, 2] aim to exclude as many objects as
possible from the search to decrease CPU and I/O costs for the computation of distances.

Filter refinement is a well-known technique and utilized by several indexing ap-
proaches to multi-feature similarity search (e.g., [3, 4, 5, 6]). In general, the filtering
phase aims to discard objects based on inexpensively computed approximations of the

mailto:zieremar@tu-cottbus.de
http://dx.doi.org/10.1007/978-3-319-11988-5_2

distance between the query and each database object (bounds). The refinement phase then
computes the exact distances for the remaining candidates to determine the most similar
objects. For search with multiple features, partial bounds for each feature are combined
into an aggregated bound. The exclusion of objects in the filtering and refinement phase
is based on those aggregated bounds.

Unfortunately, the performance of filter refinement deteriorates with an increasing
number of features. As the (intrinsic) dimensionality [7] of the aggregation function
rises, the approximation error of the aggregated bounds increases as well. A higher
approximation error results in less efficient search because fewer objects can be excluded.

1.1 Contribution

The main contribution of this paper is the improvement of the refinement step for filter
refinement with multiple features. Conventional refinement (see Section 3) manages
objects with the help of a candidate list sorted in ascending order according to the
aggregated lower bounds. When an object on top of the candidate list is refined, all of
the object’s partial distances are computed exactly and combined into an aggregated
distance. Unfortunately, this frequently leads to more partial distances being computed
than necessary to exclude objects.

In contrast, our partial refinement approach (see Section 5) incrementally replaces
partial distance bounds of objects with their exact partial distances, updates the aggre-
gated bounds and reinserts the objects into the candidate list. This allows us to gradually
tighten the aggregated bounds and to exclude many objects before all of their partial
distances have been computed exactly.

Example 1. Consider for example a similarity search with two features as depicted
in Figure 1a. The filtering phase produces a candidate list ordered according to the
aggregated lower bounds. Conventional refinement requires three iterations and each
iteration executes two distance computations (fully refined).

In contrast, partial refinement computes only one partial distance per iteration (par-
tially refined), updates the aggregated bounds of the object and reinserts it into the
candidate list. In this case, it permits a direct (case C1) and a delayed exclusion (case
C2) of two objects, without computing all of their exact partial distances. While the
conventional refinement approach requires six distance computations in this example,
four distance computations are sufficient to determine the most similar object with partial
refinement.

Example 2. Another example for the benefits of partial refinement is the partial exclusion
of objects (case C3) for specific aggregation functions like the minimum or maximum
function. If it becomes obvious that a specific partial distance does not influence the
aggregated distance, it can be safely excluded from computation. For the example of the
maximum function with three features in Figure 1b, two partial distance computations
can be excluded because their upper bound (4 and 3) is lower than the exact partial
distance of the first feature (5).

To demonstrate the efficiency of our approach, we experimentally compare partial
refinement to the linear scan, conventional filter refinement [6], the Onion-tree [8] and the

(a) Conventional vs. partial refinement
(two features)

(b) Partial refinement for the maximum
function (three features)

Fig. 1. Examples for direct (C1), delayed (C2) and partial exclusion (C3).

Threshold Combiner Algorithm [9] (see Section 6). The evaluation illustrates that partial
refinement is able to significantly reduce the number of required distance computations
and the overall search time.

2 Preliminaries

This section defines the notations and terms used throughout this paper.

2.1 Nearest Neighbor Search

Similarity search can be performed by means of a k-Nearest Neighbor query. A kNN(q)-
query in the universe of objects U returns k objects out of a database DB = {o1, . . . , on} ⊆
U that are closest (most similar) to the query object q ∈ U. The distance between objects
is computed by a distance function δ : U×U 7→ R≥0 that operates on the features q̂ and
ôi extracted from the objects. The result is a (non-deterministic) set K with |K| = k and
∀oi ∈ K, oj ∈ DB \K : δ(q, oi) ≤ δ(q, oj).

A multi-feature kNN-query substitutes the single features q̂ and ôi with m features
q̂ = (q̂1, . . . , q̂m) and ôi = (ôi1, . . . , ô

i
m). A distance function δj is assigned to each

single feature to compute the partial distances dij = δj(q, o
i). An aggregation function

agg : Rm≥0 7→ R≥0 combines all partial distances to an aggregated distance diagg and the
k nearest neighbors are then determined according to the aggregated distance.

An optional weighting scheme with weights W = (w1, . . . , wm) and ∀wj ∈ W :
wj ≥ 0 can be applied to the features of the aggregation function. These weights are

typically unknown at the time of index construction. Instead, they are dynamically
determined at query time in order to optimally adapt the aggregation function to the
query object and the demands of the user [10].

2.2 Metric Indexing

A metric is a distance function with the properties positivity (∀x 6= y ∈ U : δ(x, y) > 0),
symmetry (∀x, y ∈ U : δ(x, y) = δ(y, x)), reflexivity (∀x ∈ U : δ(x, x) = 0) and
triangle inequality (∀x, y, z ∈ U : δ(x, z) ≤ δ(x, y) + δ(y, z)).

Metric indexing approaches [1, 2] exclude objects from search by computing bounds
of the distance from the query object to database objects. The lower bound lbij and
upper bound ubij of the exact partial distance dij = δj(q, o) between query object q
and database object oi can be determined by exploiting the triangle inequality and the
precomputed distance to a reference object (pivot) p as follows:

lbij = |δj(q, p)− δj(p, oi)| ≤ δj(q, oi) ≤ δj(q, p) + δj(p, o
i) = ubij . (1)

The approximation error εi1, . . . , εim of the partial distance bounds is calculated by the
weighted difference between the respective upper and lower bounds εij = wj∗(ubij−lb

i
j).

The intrinsic dimensionality ρ is defined as ρ = µ2

2σ2 where µ is the mean and
σ2 the variance of a distance distribution. It is frequently used as an estimator for the
indexability of metric spaces [7].

2.3 Monotonicity and Aggregated Bounds

An aggregation function agg is monotone increasing in the j-th argument with 1 ≤ j ≤
m, d = (d1, . . . , dj , . . . , dm) and d′ = (d1, . . . , d

′
j , . . . , dm) iff:

∀d, d′ ∈ Rm≥0 : dj < d′j =⇒ agg(d) ≤ agg(d′) . (2)

This means, if all arguments except dj are constant and dj is increased to d′j , the result
of the aggregation function will either be constant or also increase.

An aggregation function agg is globally monotone increasing iff it contains only
monotone increasing arguments. An example for a globally monotone increasing function
is agg(d1, d2) = d1 + d2.

For the sake of simplicity, we consider only globally monotone increasing aggrega-
tion functions for distances (dissimilarity values) in the following. However, note that
the stated results are easily adaptable to other types, like locally or flexible monotone
aggregation functions and aggregation functions for similarity values [6].

Even though the aggregation function can be a metric if all partial distance func-
tions are also metrics (e.g., arithmetic mean or maximum of L1 distances), this is not
necessarily the case. The minimum and the median function (m > 2) are examples for
non-metric aggregation functions that are globally monotone increasing.

The aggregated lower (upper) bound lbiagg (ubiagg) on the exact aggregated distance
diagg = agg

(
di1, . . . , d

i
m

)
of a globally monotone increasing aggregation function can be

computed by inserting partial lower (upper) bounds for all features into the aggregation
function:

lbiagg = agg
(
lbi1, . . . , lb

i
m

)
≤ agg

(
di1, . . . , d

i
m

)
≤ agg

(
ubi1, . . . , ub

i
m

)
= ubiagg .

(3)
The approximation error of the aggregated bounds is defined as εiagg = ubiagg − lbiagg .

3 Filter Refinement

The following section briefly summarizes the conventional filter refinement approach to
similarity search with multiple features.

To build the index, metric filter refinement approaches [4, 6] compute one matrix
of distances between pivots and database objects per feature. Algorithm 1 depicts the
filtering phase for a kNN-query with multiple features. At first, bounds for each partial
distance are computed based on the precomputed distance matrices and Equation (1)
(line 3). Subsequently, these partial bounds are combined into aggregated bounds by
Equation (3) (line 4). Objects having a higher aggregated lower bound lbiagg than the
k-th lowest aggregated upper bound ubiagg seen so far (tmax) are excluded from the
search (lines 5 and 9). The remaining objects are managed by a candidate list sorted in
ascending order according to lbiagg (priority queue).

In the conventional refinement phase (Algorithm 2) the previously determined candi-
date objects have to be refined. Starting with the candidate with the lowest aggregated
lower bound lbiagg , we check if the object appeared at the top of the candidate list
before (line 3). If not, the object was not refined yet and the exact aggregated distance
diagg has to be computed (line 5). Afterwards, the object is either excluded because its
exact aggregated distance is larger than the current threshold value tmax (line 6) or it is
reinserted into the candidate list.

If the object at the top of the candidate list was already refined before (line 3), the
object is one of the k nearest neighbors because the object’s exact aggregated distance
diagg is lower than the remaining objects’ aggregated lower bounds lbiagg . Refinement is
stopped as soon as k nearest neighbors were found.

4 Related Work

This section gives an insight into the state-of-the-art of indexing for similarity search
with multiple features and filter refinement for multiple features in particular.

If the aggregation function is a metric, an arbitrary (single-feature) metric index
(e.g., Onion-tree [8]) can be build directly on top of the aggregated distances (naïve
approach). Unfortunately, this solution prevents partial refinement and is inflexible
because it requires the index to be rebuilt when the used aggregation function, features
or weights are changed [6]. Multi-metric indexing [11] solves this problem partially.
It defines a framework to transform arbitrary metric indexing approaches for single
features into metric indices for multiple features with dynamic weighting. However, the
restriction to metric aggregation functions remains.

Algorithm 1: Multi-feature kNN-query – filtering
Input: k, q, DB , agg, W

1 tmax = ∞;
2 foreach oi ∈ DB do
3 Compute partial bounds lbij and ubij for each feature; // Equation (1)

4 Compute aggregated bounds lbiagg and ubiagg ; // Equation (3)

5 if lbiagg > tmax then continue; // exclude object?
6 else
7 candidates.insert(oi);
8 tmax = k-th lowest ubiagg ; // update threshold

9 candidates.cut(tmax); // exclude objects with lbiagg > tmax

10 return candidates;

Algorithm 2: Multi-feature kNN-query – conventional refinement
Input: k, q, candidates , tmax , agg, W

1 repeat
2 oi = candidates.pop(); // get candidate with lowest lbiagg
3 if oi is refined then results.insert(oi); // already refined?
4 else
5 Compute exact aggregated distance diagg ; // refinement

6 if diagg > tmax then continue; // exclude object?
7 else . . . ; // (lines 7 - 9 of Algorithm 1) ;

8 until results.size() = k;
9 return results;

The M2-tree [12] is a multi-dimensional extension of the well-known M-tree. It
supports dynamic weighting as well as metric and non-metric aggregation functions.
However, it is not suitable for partial refinement and has the disadvantage that its
clustering may be inefficient if only a subset of all indexed features is used for a query.

An index comprised of one matrix of distances to pivot objects per feature is described
in [4]. This allows efficient queries with subsets of the indexed features and dynamic
weighting since each matrix can be accessed individually. Filter refinement is used to
exclude objects. However, the approach does not utilize a candidate list to determine the
order of objects and objects that were not excluded are always fully refined.

Our previous research introduced FlexiDex [6], a flexible metric index for (logic-
based) multi-feature similarity search. The index has to be created only once but can
be efficiently used for different types of aggregation functions, numbers of features
and weighting schemes. Originally, FlexiDex fully refines each object. However, in the
course of our research we adapted it to incorporate all concepts of partial refinement.

Combiner algorithms (e.g., Threshold Algorithm (TA) [9]) merge the result lists of
subqueries for each single feature into an aggregated result list. Once an object is seen in
one of the lists, missing partial distances are computed by random access. This behavior
resembles conventional refinement. However, filter refinement uses a single candidate

list and sorts it based on the aggregated bounds. This allows it to adapt better to the
aggregation function than combiner algorithms.

Our research focuses on metric indexing since it is more flexible and suffers less
from the curse of dimensionality [2] than spatial indexing [1]. Nonetheless, partial
refinement can be easily adapted to improve spatial indices that rely on filter refinement
for multi-feature search (e.g., GeVAS [3] or ASAP [5]).

5 Partial Refinement

This section presents our main contribution, the partial refinement approach, which deals
with the major drawback of conventional refinement to compute all partial distances of an
object at once. We describe our concept in detail and give a pseudo-code implementation
of the approach.

5.1 Exclusion of Objects

The main idea behind the concept of partial refinement is to exclude objects before all of
their partial distances have been computed by gradually improving the quality of their
aggregated bounds. This is accomplished by updating the aggregated bounds each time a
partial distance of an object is computed exactly.

The order of partial distance computations for each individual object is determined
in the filtering phase. The partial distances with the highest approximation error εij are
computed first in order to quickly reduce the aggregated approximation error εiagg . The
following cases C1 – C3 are considered after every update of the aggregated bounds.

Direct exclusion (C1). If the updated aggregated lower bound lbiagg has increased
above the current search threshold tmax , the object can be directly excluded from
search without exactly computing the remaining partial distances.

Delayed exclusion (C2). If the updated aggregated lower bound lbiagg has not increased
above the search threshold tmax , the object can currently not be excluded. The object
is then reinserted into the candidate list and its position in the list is redetermined
according to the updated aggregated lower bound. Now, if the search threshold tmax

decreases below the updated aggregated lower bound lbiagg before the object reap-
pears at the top of the candidate list, it can be excluded without exactly computing
its remaining partial distances.

Partial exclusion (C3). For specific aggregation functions (e.g., minimum or maximum
function) partial distance computations of an object can be excluded as soon as it
becomes obvious that they do not influence the exact aggregated distance (dominated
distances). This is achieved by comparing all partial distance bounds lbij and ubij of
an object among each other.

5.2 Updating Aggregated Bounds

Partial refinement relies on the assumption that the computation of aggregated bounds
and reinsertion into the candidate list is inexpensive in comparison to the computation of
a partial distance.

In contrast to conventional refinement, which only needs to store the aggregated
bounds for each object at query time, partial refinement additionally requires 2m partial
bound values (m lower and m upper bounds) per object. Furthermore, a bit array bi

consisting of m bits per object is needed. Initially set to false, a bit bij is set to true

after the partial distance dij for object oi has been computed exactly.
It can easily be shown that replacing partial bounds with exact partial distances in

Equation (3) can only result in tighter aggregated bounds. With each newly computed
partial distance, the approximation error of the aggregated distance bounds εiagg can be

reduced. The updated aggregated lower bounds l̂b
i

agg replace the old bounds after their
computation and are defined as follows:

l̂b
i

j =

{
dij , if bij = true

lbij , otherwise
, (4)

l̂b
i

agg =agg
(
l̂b
i

1, . . . , l̂b
i

m

)
≥ lbiagg . (5)

The updated aggregated upper bounds ûb
i

agg are defined analogously.
Obviously, after all partial distances of object oi have been computed, the updated

aggregated distance bounds are equal to the exact aggregated distance diagg :

(bi1 ∧ ... ∧ bim) = true =⇒ l̂b
i

agg = diagg = ûb
i

agg . (6)

5.3 Dominated Distances

Depending on the aggregation function (e.g., minimum or maximum function), it is
not always necessary to compute all partial distances to determine the exact aggregated
distance (case C3). In the following we will refer to those partial distances that are not
needed as dominated distances.

For the example of the maximum function aggmax, a partial distance dij is dominated
if a partial lower bound lbix exists that is greater or equal to the partial upper bound ubij :

∃x ∈ {1, . . . ,m} : x 6= j ∧ lbix ≥ ubij =⇒
aggmax

(
d i1, . . . , d

i
j , . . . , d

i
m

)
= aggmax

(
d i1, . . . , d

i
j−1, d

i
j+1, . . . , d

i
m

)
. (7)

This means the partial distance dij does not influence the aggregation result (maximum)
as it cannot be the largest distance. We can therefore safely exclude the partial distance
from computation. In this case, bit bij is set to true and dij is set to the partial upper
bound ubij .

5.4 Partial Refinement Algorithm

Finally, we present the pseudo-code of partial refinement (see Algorithm 3). The con-
ventional refinement of Algorithm 2 is adapted to incorporate the concepts presented in
sections 5.1 – 5.3: the computation of a single partial distance (line 5), the detection of

Algorithm 3: Multi-feature kNN-query – partial refinement
Input: k, q, candidates , tmax , agg, W

1 repeat
2 oi = candidates.pop(); // get candidate with lowest lbiagg
3 if (bi1 ∧ . . . ∧ bim) = true then results.insert(oi); // Equation (6)
4 else
5 Compute next exact partial distance dij and set bij = true; // partial ref.

6 Check for dominated distances and update bi accordingly; // Equation (7)

7 Compute updated aggregated bounds l̂b
i

agg and ûb
i

agg ; // Equation (5)

8 if l̂b
i

agg > tmax then continue; // exclude object?
9 else . . . ; // (lines 7 - 9 of Algorithm 1) ;

10 until results.size() = k;
11 return results;

dominated distances (line 6), the update of the aggregated bounds (line 7) and the check
for the object’s exclusion or reinsertion into the candidate list, based on the updated
aggregated bounds (lines 8 and 9).

Depending on the memory constraints of the system, disk-based or in-memory
indexing can be utilized. A disk-based implementation of the filter refinement approach
to multi-feature similarity search is described in [6] and also applicable to partial
refinement. There, each distance matrix is compressed and stored in the form of a
compact signature file that can be sequentially read from disk. For in-memory indexing
all needed distance matrices are simply preloaded into main memory.

6 Evaluation

This section presents the experimental evaluation. We demonstrate that partial refinement
can vastly reduce the number of required distance computations and the overall search
time in comparison to conventional refinement and other state-of-the-art approaches.

6.1 Experimental Setup

Partial refinement was compared to the linear scan, conventional refinement [6], an Onion-
tree [8] build on top of aggregated distances and the Threshold Combiner Algorithm [9]
based on m (single-feature) Onion-trees in connection with the HS-Algorithm [13]. As
recommended by the authors, all Onion-trees were built with the keep-small strategy [8].

All experiments were run on a 2× 2.26GHz Quad-Core Intel Xeon with 8 GB RAM
and an HDD with 7,200 rpm. However, we restricted our experiments to a single CPU
core since the provided implementation of the Onion-tree does not support parallelization.

We utilized the image collections Caltech-256 Object Category Dataset [14] (30,607
images) and ImageCLEF WEBUPV Image Annotation Dataset [15] (250,000 images) for
our experiments. Efficiency was assessed by measuring the average number of distance

Table 1. Used features, distance functions δ and intrinsic dimensionality ρ.
ρ per collectionFeature δ Caltech256 WEBUPV

CEDD L2 12.05 11.70
FCTH L1 5.77 6.35

EdgeHistogram weighted L1 8.55 9.97
DominantColor EMD + L2 2.16 1.91
ColorHistogram dynamic QFD 11.48 10.47

computations and the average search time (wall-clock time) of kNN-queries for 100
randomly chosen query objects.

Features of varying intrinsic dimensionality and distance computation cost were
chosen to examine the performance in distinct scenarios. Table 1 summarizes the used
features and distance functions δ (Minkowski (Lp), Earth Mover’s (EMD) and Quadratic
Form (QFD)) and depicts the according intrinsic dimensionality ρ.

We used 64 pivot objects (randomly selected) per feature for filter refinement and kept
all index data in main memory. Per feature, each object occupied 512 bytes of memory
for the distances to the pivot objects (64× 8 bytes; double precision), 16 bytes for the
lower and upper partial distance bounds and 1 bit for the boolean flag bij . Additional
16 bytes per object were required for the aggregated lower and upper bounds.

6.2 Aggregation Functions and Number of Features

The performance of partial refinement was investigated for various aggregation functions
and numbers of featuresm. The features were added in the same order as given in Table 1
(from top to bottom).

Figures 2a and 2b show the number of required distance computations and search time
for 10−NN-queries with the arithmetic mean. Obviously, the results of conventional and
partial refinement were the same for a single feature. However, with an increasing number
of features, partial refinement considerably outperformed all other approaches. It required
up to 70 % less distance computations and up to 63 % less search time than conventional
refinement. This means that the overhead of partial refinement (recomputing aggregated
bounds and reinserting objects into the candidate list) is rather low in comparison to the
time saved trough the reduced number of distance computations.

The number of required distance computations for 10-NN-queries with the median
function is depicted in Figure 3a. Again, partial refinement was the optimal approach
and computed up to 55 % less distances than conventional refinement. In case of 10-NN-
queries with the minimum function (Figure 3b), partial refinement slightly improved
the already very good results of conventional refinement. The increase in the number
of required distance computations per added feature was surprisingly low for partial
refinement (≈ 200). Note that the median (m > 2) and the minimum function do not
fulfill the triangle inequality. Therefore, the Onion-tree frequently excluded objects that
belonged to the correct query result.

0

50

100

150

1 2 3 4 5

no
.o

fd
is

t.
co

m
p.

(×
1
0
3

)

no. of featuresm

Linear scan Combiner Onion-tree Convent. ref. Partial ref.

(a) Arithmetic mean (dist. comp.)

10

100

1 2 3 4 5

se
ar

ch
tim

e
(i

n
s)

(l
og

.s
ca

le
)

no. of featuresm

(b) Arithmetic mean (search time)

Fig. 2. Search performance for 10-NN-queries with arithmetic mean (Caltech256).

0

25

50

75

2 3 4 5

no
.o

fd
is

t.
co

m
p.

(×
1
0
3

)

no. of featuresm

(a) Median function

0

25

50

75

2 3 4 5

no
.o

fd
is

t.
co

m
p.

(×
1
0
3

)

no. of featuresm

(b) Minimum function

Fig. 3. Number of distance computations for 10-NN-queries (Caltech256).

0

40

80

120

1 2 5 10 100 1000

no
.o

fd
is

t.
co

m
p.

(×
1
0
3

)

no. of result objects k

(a) Arithmetic mean (Caltech256)

0
25
50
75

100

50 100 150 200 250

no
.o

fd
is

t.
co

m
p.

(×
1
0
4

)

collection size n (×103)

(b) Arithmetic mean (k = 10, WEBUPV)

Fig. 4. No. of distance computations for kNN-queries with arithmetic mean (m = 4).

We conducted further experiments for other aggregation functions, like the maximum
function, the geometric or the harmonic mean. However, these results are not shown as
their behavior was mostly similar to the previous experiments.

6.3 Number of Result Objects and Collection Size

Figure 4a depicts the number of required distance computations of kNN-queries with the
arithmetic mean for different numbers of result objects k. The Onion-tree and both filter
refinement approaches were especially efficient for k = 1 because the query objects
were elements of the collection. This allowed a very early termination of the search, as
soon as the respective query object was seen the first time. However, partial refinement
was the optimal approach for greater numbers of result objects k and constantly required
approximately 65 % less distance computations than conventional refinement.

The impact of the collection size n on the number of needed distance computations
is presented in Figure 4b. Subsets of the WEBUPV image collection were obtained by

dividing it into chunks of 50,000 images each. While the number of needed distance
computations increased linearly with the collection size for all approaches, partial
refinement exhibited the overall lowest increase.

7 Conclusions and Outlook

This paper introduced partial refinement, a simple, yet efficient improvement of the
filter refinement approach to similarity search with multiple features. Partial refinement
progressively replaces partial distance bounds with exact partial distances, updates the
aggregated bounds accordingly and checks if objects can be excluded.

Our experimental evaluation has shown that partial refinement is able to significantly
reduce the number of required distance computations and search time in comparison to
conventional refinement and other state-of-the-art techniques.

Future research will focus on the introduction of new strategies to determine the
optimal order of partial distance computations. Adapting the computation order to the
used distance and aggregation functions can further improve the search performance.

References

[1] Samet, H. Foundations of Multidimensional and Metric Data Structures. The Morgan
Kaufmann Series in Computer Graphics and Geometric Modeling. San Francisco: Morgan
Kaufmann Publishers Inc., 2005.

[2] Zezula, P., Amato, G., Dohnal, V., and Batko, M. Similarity Search: The Metric Space
Approach. Vol. 32. Advances in Database Systems. Secaucus, NJ, USA: Springer-Verlag
New York Inc., 2006, pp. 1–191.

[3] Böhm, K., Mlivoncic, M., Schek, H.-J., and Weber, R. “Fast Evaluation Techniques for
Complex Similarity Queries”. In: Proc. of the 27th International Conference on Very
Large Data Bases. VLDB 2001. San Francisco: Morgan Kaufmann Publishers Inc., 2001,
pp. 211–220.

[4] Bustos, B., Keim, D., and Schreck, T. “A Pivot-Based Index Structure for Combination of
Feature Vectors”. In: Proc. of the 2005 ACM Symposium on Applied Computing. SAC 2005.
New York: ACM, 2005, pp. 1180–1184.

[5] Jagadish, H. V., Ooi, B. C., Shen, H. T., and Tan, K.-L. “Toward Efficient Multifeature
Query Processing”. In: IEEE Trans. on Knowl. and Data Eng. 18 (2006), pp. 350–362.

[6] Zierenberg, M. and Bertram, M. “FlexiDex: Flexible Indexing for Similarity Search with
Logic-Based Query Models”. In: ADBIS 2013. Ed. by Catania, B., Guerrini, G., and
Pokorný, J. Vol. 8133. LNCS. Springer, Heidelberg, 2013, pp. 274–287.

[7] Chávez, E., Navarro, G., Baeza-Yates, R., and Marroquín, J. L. “Searching in Metric
Spaces”. In: ACM Comput. Surv. 33 (2001), pp. 273–321.

[8] Carélo, C. C. M., Pola, I. R. V., Ciferri, R. R., Traina, A. J. M., Jr., C. T., and Aguiar Ciferri,
C. D. de. “Slicing the Metric Space to Provide Quick Indexing of Complex Data in the
Main Memory”. In: Inf. Syst. 36.1 (2011), pp. 79–98.

[9] Fagin, R., Lotem, A., and Naor, M. “Optimal Aggregation Algorithms for Middleware”. In:
Proc. of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. PODS 2001. New York: ACM, 2001, pp. 102–113.

[10] Zellhöfer, D. and Schmitt, I. “A Preference-Based Approach for Interactive Weight Learn-
ing: Learning Weights Within a Logic-Based Query Language”. In: Distributed and Parallel
Databases 27 (2010), pp. 31–51.

[11] Bustos, B., Kreft, S., and Skopal, T. “Adapting Metric Indexes for Searching in Multi-Metric
Spaces”. In: Multimedia Tools Appl. 58.3 (2012), pp. 467–496.

[12] Ciaccia, P. and Patella, M. “The M2-tree: Processing Complex Multi-Feature Queries with
Just One Index”. In: DELOS Workshop: Information Seeking, Searching and Querying in
Digital Libraries. 2000.

[13] Hjaltason, G. R. and Samet, H. “Ranking in Spatial Databases”. In: SSD 1995. Ed. by
Egenhofer, M. J. and Herring, J. R. Vol. 951. LNCS. Springer, Heidelberg, 1995, pp. 83–95.

[14] Griffin, G., Holub, A., and Perona, P. Caltech-256 Object Category Dataset. Tech. rep.
7694. California Institute of Technology, 2007.

[15] Villegas, M., Paredes, R., and Thomee, B. “Overview of the ImageCLEF 2013 Scalable
Concept Image Annotation Subtask”. In: CLEF 2013 Evaluation Labs and Workshop,
Online Working Notes. Valencia, Spain, 2013.

	Partial Refinement for Similarity Search with Multiple Features

