
FlexiDex: Flexible Indexing for Similarity Search with
Logic-Based Query Models

Marcel Zierenberg and Maria Bertram

Brandenburg University of Technology Cottbus
Institute of Computer Science, Information and Media Technology

Chair of Database and Information Systems
P.O. Box 10 13 44, 03013 Cottbus, Germany

zieremar@tu-cottbus.de, maria.bertram@berner-mattner.com

Abstract. The flexibility of an indexing approach plays an important role for
its applicability, especially for logic-based similarity search. A flexible approach
allows the use of the same precomputed index structure even if query elements
like weights, operators, monotonicity or used features of the aggregation function
change in the search process (e.g., when using relevance feedback). While state-
of-the-art approaches typically fulfill some of the needed flexibility requirements,
none provides all of them. Consequently, this paper present FlexiDex, an efficient
indexing approach for logic-based similarity search that is more flexible and also
more efficient than known techniques.

The final publication is available at http://link.springer.com. However, note that
the current document is more up-to-date than the published version, as it contains
a number of small fixes in content and layout (last updated on: 7th October 2013).

1 Introduction

Similarity search is used in domains like image and text retrieval, DNA sequencing,
biometric devices, and so forth. It generally seeks to find the most similar objects in a set
of database objects, according to a given query object. The (dis-)similarity of two objects
is determined by a distance function operating on features extracted from the database
objects. Since the number of database objects is usually high and the computation of
distances can be expensive in terms of CPU and I/O costs, efficient similarity search is
an important research topic.

Early research efforts in similarity search were mainly concerned with search ac-
cording to a single feature. In recent years, similarity search with multiple features has
received more attention. Increasing the number of used features improves the expressive-
ness of queries and can lead to more effective similarity search. However, in regard of
efficiency, adding features significantly increases CPU and I/O costs.

The combination of features is typically achieved through aggregation functions,
which combine the partial distances of multiple features into an aggregated distance.
While in general arbitrary aggregation functions can be used, the focus of this paper is
similarity search with logic-based query models. Logic-based similarity search depends
on the formulation of queries with the help of Boolean operators. Queries are then

mailto:zieremar@tu-cottbus.de
mailto:maria.bertram@berner-mattner.com
http://link.springer.com/chapter/10.1007/978-3-642-40683-6_21

converted into arithmetic aggregation functions by means of specific transformation
rules. Examples for logic-based query models in similarity search are the Fuzzy Logic
[1] or the Commuting Quantum Query Language (CQQL) [2].

Indexing approaches for similarity search try to exclude as many objects as early as
possible from the search, consequently decreasing CPU- and I/O costs. In addition to the
efficiency of the indexing approach, its flexibility plays an important role in logic-based
similarity search. A flexible indexing approach allows the use of the same precomputed
index structure even if query elements like weights, operators or monotonicity of the
aggregation function change in the search process.

The flexibility requirements will be denoted by (R1)–(R6) in the following. Flexibility
in terms of features (R1) means that the indexing should be independent from the
structure of the underlying features. As changes of weights (R2) and operators (R3)
in the aggregation function are typical, for example when using relevance feedback,
the index should be built independently from the used aggregation function(s). Even
though the number of features can be high, in most cases only a subset (R4) of all
indexed features is used in a query. A flexible index should process such a query without
loss of efficiency. Most indexing approaches for multiple features focus on globally
monotone aggregation functions (e.g., weighted sum) [3, 4]. However, in logic-based
similarity search not all aggregation functions are globally monotone and other types of
monotonicity (R5) need to be supported as well. Finally, the index should be dynamic
(R6) in the sense that new objects and new features can be added efficiently without
rebuilding the whole index.

While a number of specialized indexing approaches for similarity search with mul-
tiple features exist [3–6], none of them fulfills all of the flexibility requirements (see
Section 2). Consequently, we present FlexiDex, an index that is more flexible than
state-of-the-art approaches. As a metric indexing approach [7], FlexiDex relies solely
on distances for indexing and is independent from the structure of features (R1). The
index is built without knowledge of the aggregation function and therefore naturally
supports changing weights (R2) and operators (R3). Index data is stored on an HDD in
the form of one separate signature file per feature, which allows efficient querying for
subsets (R4) of the indexed features. All types of logic-based queries are supported by
FlexiDex, even queries with aggregation functions that are not globally monotone (R5).
Furthermore, FlexiDex is dynamic (R6) as new objects and new features can be simply
appended to an existing index.

The paper is structured as follows. A deeper insight into related work is given in
Section 2. Section 3 defines the notations and terms used throughout the paper. As the
monotonicity of an aggregation function plays an important role in the indexing process,
Section 4 presents different types of monotonicity classes. Section 5 details the index
creation and search process. The experimental evaluation shown in Section 6 demon-
strates that FlexiDex significantly reduces I/O and CPU costs and even outperforms
a less flexible state-of-the-art approach. Section 7 summarizes the work and gives an
outlook on future research.

Table 1: Indexing approaches for multiple features and their general flexibility
Indexing
based on

combined to
single feature

multiple
features

aggregated distances partial distances

Index
type

R-Tree [8]
VA-File [5]
(naïve spatial)

GeVAS [9]
M-Tree [10]
LAESA [11]
(naïve metric)

Multi-
Metric [4]

M2-Tree [6]
Combiner [3]

FlexiDex
Flexibility low medium low medium high

2 Related Work

This section gives a deeper insight into related work. Indexing approaches are divided
into different categories, examples for each category are given and their flexibility is
examined in detail.

Table 1 shows an overview of indexing approaches for multiple features and their
general flexibility. The flexibility mainly depends on where the indexing is used in the
similarity search process. Indexing based directly on the feature data (single feature,
multiple features) is independent of the aggregation function (R2, R3). However, it is
typically restricted to vector spaces (multi-dimensional or spatial indexing [7]), making
the index dependent on the structure of the features (R1). On the other side, indexing
based on aggregated distances depends on the used aggregation function, disallowing the
change of weights (R2) and operators (R3). Only approaches that utilize partial distances,
like [3, 6] or FlexiDex, can theoretically support all flexibility requirements. With the
exception of the M2-Tree [6], all presented approaches consider only globally monotone
increasing aggregation functions (R5).

Naïve approaches for indexing multiple features rely on combining multiple features
into a single feature (spatial) or using aggregated distances (metric). This allows the
utilization of a plethora of well-known indexing approaches for similarity search with a
single feature (e.g., R-Tree [8], VA-File [5], M-Tree [10] or LAESA [11]). Unfortunately,
it also leads to inflexibility since queries using only subsets of all indexed features
(R4) cannot be processed efficiently and adding new features is not possible without
rebuilding the whole index (R6). Additionally, in case of naïve metric indexing, weights
(R2) or operators (R3) of the aggregation function can not be changed, as the index was
created according to a specific (metric) aggregation function.

The spatial indexing approach GeVAS [9] is an extension of the VA-File to multiple
features. By using a separate signature file for each feature, it allows efficient queries
with subsets (R4) and dynamically adding new objects and new features (R6). It is
therefore more flexible than the naïve approach. However, the main problem of spatial
indexing, the limitation to vector spaces, remains.

Multi-metric indexing [4] defines a framework to transform metric indexing ap-
proaches for single features into metric indexing approaches for multiple features using
partial and aggregated distances at the same time. Even though this technique allows
changing weights in the aggregation function (R2), it is restricted to aggregation func-
tions that are metrics (e.g., weighted sum) and the index is still created based on a
specific aggregation function, preventing the change of operators (R3). Since aggregated

Table 2: Fulfillment of flexibility requirements (R1)–(R6) for indexing approaches

Index type Features
(R1)

Weights
(R2)

Operators
(R3)

Subsets
(R4)

Monotonic-
ity (R5)

Dynamic
(R6)

naïve (spatial) - X X - - -
GeVAS - X X X - X

naïve (metric) X - - - - -
Multi-Metric X X - - - -

M2-Tree X X X - (X) -
Combiner X X X X - X
FlexiDex X X X X X X

distances are used, querying with subsets (R4) is less efficient and new features can not
be added dynamically (R6).

The M2-Tree [6] is in general flexible enough to support changing weights (R2) and
operators (R3). However, all features are used in the construction of the tree. This means,
that with increasing numbers of features, the tree suffers from the curse of dimensionality
[7]. Also, the clustering may prove inefficient if only a subset of all indexed features
is present in a query (R4). Even though the M2-Tree considers globally and locally
monotone functions, it still lacks support for some logic-based aggregation functions
(R5) (e.g., x1 ⊕ x2 (XOR), see Section 4). New objects can be added dynamically to the
M2-Tree, but adding new features requires rebuilding the whole tree (R6).

Combiner algorithms [3] are inherently independent of the underlying indexing
approach and provide almost all flexibility requirements. Their drawback is that they
only consider aggregation functions that are globally monotone increasing (R5), which,
as stated before, is not always the case for logic-based queries.

Table 2 summarizes the flexibility of the presented indexing approaches and shows
that FlexiDex constitutes the most flexible approach.

While approximate similarity search [7] can significantly decrease search time, it
comes at the cost of effectiveness, since the results only have a certain probability to
be the most similar objects. The focus of our research is exact similarity search and
therefore approximate indexing approaches like [12] are not applicable.

3 Preliminaries

This section defines the notations and terms used throughout this paper.
Similarity search can be performed by means of a k-Nearest Neighbor search. A

kNN(q) in the universe of objects U returns k objects out of a database of objects
D = {o1 , o2 , . . . , on } ⊆ U that are closest (most similar) to the query object q ∈ U.
The distance between objects is computed by a distance function δ : U × U 7→ R≥0
that operates on the features q′ and o′ extracted from the objects. The result is a (non-
deterministic) set K with |K | = k and ∀oi ∈ K , o j ∈ D \ K : δ(q, oi) ≤ δ(q, o j).

A multi-feature kNN query consists of m features for each object q′ = (q1 , q2 , . . . ,
qm) and o′ = (o1 , o2 , . . . , om). A distance function δ j is assigned to each single feature
to compute partial distances δ j (q j , o j). An aggregation function agg : Rm

≥0 7→ R≥0

Table 3: Transformation rules for logic-
based queries

Boolean Zadeh Algebraic
¬a 1 − a 1 − a

a ∧ b min(a, b) a ∗ b

a ∨ b max(a, b) a + b − a ∗ b

Table 4: Embedding of operand weights
with CQQL

Boolean Embedding
a ∧θ1;θ2 b (a ∨ ¬θ1) ∧ (b ∨ ¬θ2)
a ∨θ1;θ2 b (a ∧ θ1) ∨ (b ∧ θ2)

combines all partial distances to an aggregated distance dagg and the k nearest neighbors
are then determined according to the aggregated distance.

Logic-based queries combine multiple features by Boolean operators. Query models
like the Fuzzy Logic [1] or CQQL [2] transform the resulting Boolean expressions
into arithmetic formulas. Table 3 shows examples of transformation rules. CQQL uses
algebraic transformation rules and, contrary to Fuzzy Logic, normalizes the expressions
before their transformation. This preserves important properties like the distributivity and
idempotency. For example, query (a∧b)∨(a∧c) results in formula a∗b+a∗c−a∗b∗a∗c

using algebraic Fuzzy Logic. In contrast, the normalized formula used by CQQL is
a ∧ (b ∨ c), which results in a ∗ (b + c − b ∗ c).

Additionally, CQQL also supports the direct embedding of operand weights θi ∈ R≥0
into the logic (see Table 4). Therefore, only aggregation functions created by CQQL are
examined hereinafter. However, note that the stated results are by no means restricted to
CQQL and can be adapted to other logic-based query models as well.

Logic-based query models assume similarity values in the interval [0, 1], where 1
means most similar (identity) and 0 means least similar. Hence, the aforementioned
partial distances have to be transformed into partial similarities by transformation func-
tions tj : R≥0 7→ [0, 1] before the aggregation function can be applied. The aggregated
similarity sagg is computed by combining all m partial similarities with the (logic-based)
aggregation function agg : [0, 1]m 7→ [0, 1].

A metric [7] is a distance function with the properties positivity (∀x , y ∈ U :
δ(x , y) > 0), symmetry (∀x , y ∈ U : δ(x , y) = δ(y , x)), reflexivity (∀x ∈ U : δ(x , x) = 0)
and triangle inequality (∀x , y , z ∈ U : δ(x , z) ≤ δ(x , y) + δ(y, z)).

Metric indexing approaches exclude objects from search by computing bounds on
the distance from the query object to database objects. The lower bound dlb and upper
bound dub on the distance δ(q, o) between query object q and database object o can
be computed with the help of the triangle inequality and precomputed distances to a
reference object (pivot) p as follows:

dlb = |δ(q, p) − δ(p, o)| ≤ δ(q, o) ≤ δ(q, p) + δ(p, o) = dub . (1)

For logic-based queries, distance bounds have to be transformed into similarity
bounds slb and sub. Notice that the meaning of lower and upper bound exchanges with
this transformation. The upper bound for distances is the maximum dissimilarity, while
the upper bound for similarities is the maximum similarity.

Bounds slb
agg and sub

agg on the aggregated similarity sagg can be computed by inserting
partial similarity bounds into the aggregation function.

4 Monotonicity and Computation of Aggregated Bounds

Most indexing approaches for similarity search with multiple features consider only
aggregation functions that are monotone increasing in each of their arguments (globally
monotone increasing functions). However, to allow all different kinds of logic-based
queries, other classes of monotonicity have to be supported as well (R5). Consequently,
this section describes the computation of bounds on aggregated similarities based on
the bounds on partial similarities for three different classes of monotonicity: globally,
locally and flexible monotone aggregation functions.

Although another naming convention was used, globally and locally monotone
functions have already been considered by [13] and [6]. However, queries like x1 ⊕ x2
(XOR) result in aggregation functions that are neither globally nor locally monotone.
Therefore, the new class of flexible monotone functions is introduced and we show
that the three presented classes of monotonicity are sufficient to support all kinds of
(logic-based) aggregation functions created by CQQL.

4.1 Globally and Locally Monotone Functions

Definition 1. An aggregation function agg is monotone increasing in the i-th argument
with i ∈ {1, 2, . . . ,m}, x = (x1 , x2 , . . . , xi , . . . , xm) and x′ = (x1 , x2 , . . . , x

′
i
, . . . , xm)

iff:
∀x , x′ ∈ [0, 1]m : xi < x′i =⇒ agg(x) ≤ agg(x′) . (2)

This means, if all arguments except xi are constant and xi is increased, the result of the
aggregation function will also increase (or be constant).

Definition 2. An aggregation function agg is monotone decreasing in the i-th argument
iff agg′ = − agg is monotone increasing in the i-th argument.

Definition 3. An aggregation function agg is globally monotone increasing (decreasing)
iff it contains only monotone increasing (decreasing) arguments.

An example for a globally monotone increasing function is agg(x1 , x2) = x1 ∗ x2, which
is the result of the query x1 ∧ x2.

It can easily be shown that the lower (upper) bound slb
agg (sub

agg) on the aggregated
similarity of a globally monotone increasing function is computed by inserting all lower
(upper) bounds on the partial similarities into the aggregation function:

slb
agg = agg

(
slb

1 , s
lb
2 , . . . , s

lb
m

)
. (3)

Definition 4. An aggregation function agg is locally monotone iff it contains only mono-
tone increasing and monotone decreasing arguments.

The aggregation function agg(x1 , x2) = x1 ∗ (1 − x2) based on the query x1 ∧ ¬x2 is an
example for a locally monotone function.

By definition, every globally monotone function also is a locally monotone function
with only monotone increasing/decreasing arguments.

The following equations compute lower bounds for locally monotone aggregation
functions. The computation of upper bounds follows the same equations. Only the values
lb and ub in function fagg

i
have to be exchanged.

slb
agg = agg

(
fagg

1

(
slb

1 , s
ub
1

)
, fagg

2

(
slb

2 , s
ub
2

)
, . . . , fagg

m

(
slb
m , s

ub
m

))
(4)

fagg
i

(lb, ub) =

{
lb, if agg is monotone increasing in the i-th argument
ub, if agg is monotone decreasing in the i-th argument (5)

4.2 Flexible Monotone Functions

Definition 5. An aggregation function agg is flexible monotone in the i-th argument with
i ∈ {1, 2, . . . ,m}, x = (x1 , x2 , . . . , xi , . . . , xm) and x′ = (x1 , x2 , . . . , x

′
i
, . . . , xm) iff:

∀x ∈ [0, 1]m : (
∀x′ ∈ [0, 1]m : xi < x′i =⇒ agg(x) ≤ agg(x′)

)
(6)

∨
(
∀x′ ∈ [0, 1]m : xi < x′i =⇒ agg(x) ≥ agg(x′)

)
.

In other words, if all arguments except xi are constant and xi is increased, the result of
the aggregation function will either always increase (monotone increasing) or always
decrease (monotone decreasing) or be constant for the current combination of fixed m−1
argument values. The difference between a monotone increasing/decreasing argument
and a flexible monotone argument is that the monotonicity of a flexible monotone
argument depends on the values of the other arguments and can therefore change.
For monotone increasing/decreasing arguments the monotonicity is always the same,
independent of the values of the other arguments.

Definition 6. An aggregation function agg is flexible monotone iff it contains only
flexible monotone arguments.

Figure 1 shows a flexible monotone aggregation function based on the query x1 ⊕ x2. As
can be seen, the monotonicity of argument x2 changes between monotone increasing
and monotone decreasing, depending on the value of x1.

By definition, every monotone increasing/decreasing argument also is a flexible
monotone argument. A locally monotone function also is a flexible monotone function
where the monotonicity in the flexible monotone arguments never changes.

0 1x1
0 1 x20

1

agg(x1 , x2)

Fig. 1: Flexible monotone aggregation function x1 ∗ (1 − x2) + (1 − x1) ∗ x2

Theorem 1. The upper and lower bound on the aggregated similarity of a flexible
monotone function are always located in the corners of the hyper-rectangle given by the
m lower and upper bounds on the partial similarities

{
(slb

1 , s
ub
1), (slb

2 , s
lb
2), . . . , (slb

m , s
ub
m)

}
.

Proof. Let aggregation function agg be a flexible monotone function and the partial
similarity bounds for 1 ≤ i ≤ m be (slb

i
, sub

i
) = (0, 1). Without loss of generality now

consider a tuple x ∈ [0, 1]m with agg(x) to be a global maximum. For an arbitrarily cho-
sen i assume 0 < xi < 1, which means x is not located in a corner of the hyper-rectangle
[0, 1]m . Now consider two tuples x′ , x′′ ∈ [0, 1]m with x′ = (x1 , x2 , . . . , x

′
i
, . . . , xm)

and x′′ = (x1 , x2 , . . . , x
′′
i
, . . . , xm) for which x′

i
< xi < x′′

i
is true. Because agg(x) is a

maximum, agg(x′) ≤ agg(x) and agg(x′′) ≤ agg(x) is true. However, this contradicts
the assumption of a flexible monotone function for which agg(x′) ≤ agg(x) ≤ agg(x′′)
or agg(x′′) ≤ agg(x) ≤ agg(x′) should be true. ut

From Theorem 1 immediately follows that lower (upper) bounds slb
agg (sub

agg) on the
aggregated similarities of a flexible monotone function can be computed by inserting all
different combinations of lower and upper bounds for flexible monotone arguments into
the aggregation function and subsequently selecting the minimum (maximum) result.

Combined with Equation (4), the computation of bounds for all three classes of
monotonicity is therefore defined as follows. Again, the computation of upper bounds
sub

agg follows the same principle. Only the values lb and ub in the first two conditions of
function gagg

i
have to be exchanged.

(combinations) C = gagg
1

(
slb

1 , s
ub
1

)
× gagg

2

(
slb

2 , s
ub
2

)
× . . . × gagg

m

(
slb
m , s

ub
m

)
(7)

gagg
i

(lb, ub) =


{lb} , if agg is monotone increasing in the i-th argument
{ub} , if agg is monotone decreasing in the i-th argument
{lb, ub} , if agg is flexible monotone in the i-th argument

(8)

(selection) slb
agg = min

c∈C
agg (c) (9)

4.3 Logic-Based Queries and Monotonicity Classes

As stated in [13], every logic-based aggregation function which contains each argument
only once is either globally or locally monotone. For functions that contain an argument
twice, [13] proposes to handle those occurrences as independent arguments. Unfortu-
nately, no proof for correctness was given and it can easily be shown that the approach
tends to create bounds less tight than Equation (9).

The disadvantage of Equation (9) is that the number of combinations that have to
be aggregated increases exponentially with the number of flexible monotone arguments
(maximum 2m). It is therefore only applicable for aggregation functions with a low
number of flexible monotone arguments.

Every aggregation function created by CQQL (CQQL formula) is flexible monotone.
For space reasons only a sketch of the proof is given1: It can be proven that every
multivariate linear polynomial is a flexible monotone function by bringing it into the

1 detailed version: http://tiny.cc/8t4wuw
(http://dbis.informatik.tu-cottbus.de/down/pdf/CQQL-Monotonicity.pdf)

http://tiny.cc/8t4wuw
http://dbis.informatik.tu-cottbus.de/down/pdf/CQQL-Monotonicity.pdf

Fig. 2: Overview of the creation and search process of FlexiDex

form f(x) = xi ∗ c1 + c2, where c1 and c2 are multivariate linear polynomials that do
not contain xi . It can also be shown that every CQQL formula is a multivariate linear
polynomial. Thus, every CQQL formula is flexible monotone.

5 FlexiDex

This section explains the index creation and kNN search process of FlexiDex. Figure 2
gives an overview of the process, which is divided into the stages creation & preparation,
filtering and refinement. The figure also shows, where the flexibility requirements (R1)–
(R6) are involved.

5.1 Index Creation

FlexiDex follows the GeVAS [9] approach, creating one signature file for each feature.
However, to ensure independence from the structure of the features (R1), metric indexing
is used instead of spatial indexing. This means, signatures are not based on feature
vectors but instead are comprised of precomputed distances to a set of pivots. Since
one separate signature file is used for each feature, each signature file can be read from
disk independently. Therefore, FlexiDex can efficiently process queries using subsets
of all indexed features (R4) and also is dynamic (R6), since new objects can simply be
appended to an existing signature file and new signature files can be created at any time.

In the following the index creation process for a single feature is described. The
creation process for multiple features works similar. The only constraint is that the order
of objects has to be the same in all signature files. The process of signature creation

resembles [14], where metric indexing and signature files were used for similarity search
with a single feature. Also note that the parameters explained in the following can be set
individually for each feature.

Index creation starts with the selection of P pivot objects. Pivots can be selected
randomly or by a specific selection strategy like incremental selection [15]. Addition-
ally, 2B quantization intervals i0 , i1 , . . . , i2

B−1 are defined which will be used for the
compression of the distances. The number of used bits B determines the precision of
the intervals. A higher number of bits results in better distance approximations but also
increases the time needed for reading the signature file. Selected pivots and indexing
parameters are stored on disk as metadata.

When adding a new database object o to the index, the distances δ(pk , o) between
object o and all pivot objects pk are computed. Each distance is then replaced with the
interval number of the corresponding quantization interval. The object signature S is the
result of the concatenation of each binary coded interval number and simply appended
to the existing signature file.

Example 1. Consider a new database object o with two features o1 and o2 (m = 2).
Indexing parameters are set individually for each feature and distinguished by their
subscript. The number of pivots is P1 = 4, P2 = 2 and the interval boundaries are
i01 = [0, 4), i11 = [4, 8), i21 = [8, 12), i31 = [12, 16] (B1 = 2) and i02 = [0, 2), i12 = [2, 4]
(B2 = 1). Now, let exemplary distances to the pivots for the first feature be given by
δ1(p1

1 , o1) = 5, δ1(p2
1 , o1) = 16, δ1(p3

1 , o1) = 7 and δ1(p4
1 , o1) = 1 and for the second

feature by δ2(p1
2 , o2) = 0 and δ2(p2

2 , o2) = 3. By replacing the distances with their
binary coded interval numbers the following object signatures are obtained for object o:
S1 = (01 11 01 00) and S2 = (0 1) .

5.2 Nearest Neighbor Search

Since the creation process is completely independent from the aggregation functions used
in kNN search, changing weights (R2) and operators (R3) of the aggregation function at
query time is supported naturally. With the help of the monotonicity classes defined in
Section 4, all types of logic-based queries can be processed (R5).

For kNN search the well-known concept of filter refinement [5, 14] is utilized. The
filtering phase reads each signature file sequentially from disk and afterward computes
partial distance bounds for each object with the help of the triangle inequality. Equa-
tion (1) has to be adapted slightly to incorporate the fact that exact distance δ(p, o) is
replaced by the corresponding interval boundaries ilb and iub:

dlb = max
{
0, ilb − δ(q, p), δ(q, p) − iub

}
≤ δ(q, o) ≤ δ(q, p) + iub = dub . (10)

Note that only signature files that are actually present in the current aggregation function
are loaded. Distance bounds are then transformed into similarity bounds and combined to
aggregated similarity bounds, using Equation (9). Objects having a smaller upper bound
sub

agg than the k-th greatest lower bound slb
agg (smin) can be excluded from the search.

In the refinement phase exact aggregated similarities are computed for the objects that
could not be excluded in the filtering phase. A priority queue PQ, sorted in descending

Table 5: Used features and their optimal index parameters
Feature δ ρ P B D T in s

ScalableColor (scal) [20] L1 2.91 8 8 873 (2.9 %) 1.57 (8.1 %)
Tamura (tam) [21] L1 2.89 8 8 1,205 (3.9 %) 1.93 (10.6 %)
FCTH (fcth) [22] L1 5.77 32 8 1,658 (5.4 %) 2.57 (13.0 %)

DominantColor (dom) [20] EMD + L2 2.16 24 10 1,755 (5.7 %) 2.70 (11.7 %)
ColorStructure (cs) [20] L2 5.87 56 8 3,143 (10.3 %) 3.66 (21.7 %)

ColorHistCenter (chc) [20] L1 3.89 56 8 2,999 (9.8 %) 3.70 (20.3 %)
ColorLayout (cl) [20] weighted L2 5.05 48 8 6,814 (22.3 %) 6.42 (30.5 %)

ColorHistBorder (chb) [20] L1 5.82 64 8 7,507 (24.5 %) 6.77 (36.2 %)
AutoColorCorrel. (auto) [20] L2 8.07 64 8 7,789 (25.4 %) 7.17 (36.3 %)

ColorHistogram (ch) [20] L2 11.48 64 8 10,697 (34.9 %) 9.14 (46.6 %)
BIC (bic) [23] L1 10.23 56 8 12,908 (42.2 %) 9.18 (49.8 %)

EdgeHistogram (edge) [20] weighted L1 8.55 48 10 12,056 (39.4 %) 10.48 (50.7 %)
CEDD (cedd) [24] L2 12.05 64 8 10,863 (35.5 %) 11.03 (45.2 %)

order according to sub
agg, acts as a candidate list for refinement. Since objects are reinserted

into PQ after the computation of the exact aggregated similarity sagg, the search can be
terminated as soon as k exactly computed objects have reappeared at the top of PQ.

6 Evaluation

This section compares FlexiDex against linear scan and a combiner algorithm. FlexiDex
was implemented as part of the multimedia retrieval system PythiaSearch2 [16].

All experiments were conducted on a 2 x 2.26 GHz Quad-Core Intel Xeon with 8 GB
RAM and an HDD with 7,200 rpm. The image collection Caltech-256 Object Category
Dataset [17] was used, which consists of 30,607 pictures. Efficiency was assessed by
measuring the average number of distance computations and the average kNN search
time (wall-clock time) of 100 randomly chosen query objects.

To provide a comparison to the state-of-the-art, a combiner algorithm (threshold
algorithm [3]) was implemented. Sorted lists for the combiner algorithm are provided
based on the same signature files as FlexiDex and the implementation of getNext is
similar to [18].

Table 5 shows the 13 different color, texture and form features extracted for the
collection. While most features utilize some type of Minkowski (Lp) distance function,
the feature dom employs the Earth Mover’s distance function (EMD) [19].

Optimization of indexing parameters was performed separately for each feature.
Pivots were chosen randomly. The tested precision values B ranged from 4 to 12 and
the number of pivots P from 8 to 64. For both parameters higher values decreased the
number of needed distance computations but simultaneously increased the time needed
for reading the signature files. Optimal parameters were selected based on the average
search time for queries with k = 10.

2 http://tiny.cc/mc5wuw (https://saffron.informatik.tu-cottbus.de/livingfeatures)

http://tiny.cc/mc5wuw
https://saffron.informatik.tu-cottbus.de/livingfeatures

0
15
30
45

10 100 1000

0
20
40
60

T
[s

]

D
[1

03]

k

T flex T ta T lin D flex D ta D lin

(a) dom ∧ edge

0
90

180
270

10 100 1000

0
125
250
375

T
[s

]

D
[1

03]

k
(b)

∧
over all features

0
40
80

120

10 100 1000

0
50
100
150

T
[s

]

D
[1

03]

k
(c) (cedd ∨ fcth) ∧ (cl ∨ (tam ∧ edge))

0
25
50
75

10 100 1000

0
30
60
90

T
[s

]

D
[1

03]

k
(d) (cedd ∧ fcth) ∨1;0.5 (bic ∧ ¬cedd)

Fig. 3: Measured efficiency for selected logic-based kNN queries

The results of the optimization process are presented in Table 5. Search times (T)
and number of distance computations (D) were significantly reduced in comparison to
the linear scan (see percentage values). Since FlexiDex and the combiner algorithm
work similar when using only a single feature, the determined optimal parameters apply
to both approaches.

The optimal precision value B was 8 in almost all cases. For lower precision values
the number of distance computations increased rapidly, resulting in significantly longer
search times. Higher values than 8 gave only slight decreases in distance computations
that could not make up for the increased time needed for reading the signature files. The
number of used pivots P showed some correlation to the intrinsic dimensionality3. For
low intrinsic dimensionality (features scal or dom) a small number of pivots excluded
more than 90 % of the objects. A greater number of pivots was needed when the intrinsic
dimensionality increased.

Figure 3 depicts the average number of distance computations and search time of se-
lected logic-based kNN queries for FlexiDex (flex), linear scan (lin) and the implemented
combiner algorithm (ta). The selected queries are similar to those used in [26] and
represent different types of logic-based queries: only conjunction (3a, 3b), disjunction
and conjunction (3c) and weighted disjunction, conjunction and negation (3d).

FlexiDex performed clearly superior to linear scan and combiner algorithm in almost
all cases. In the best case FlexiDex was about 33 % faster (query 3c with k = 10) than the
combiner algorithm and needed about 25 % less distance computations. Only in case of

3 Intrinsic dimensionality ρ is defined as ρ =
µ2

2∗σ2 where µ is the mean and σ2 is the variance
of a distance distribution. It is frequently used as an estimator for indexability [25].

query 3c with k = 1000 the combiner algorithm outperformed FlexiDex slightly (∼ 6 %
faster). Query 3d resulted in a flexible monotone aggregation function, which was not
supported by the combiner algorithm.

7 Conclusion and Outlook

The flexibility of an indexing approach plays an important role in logic-based similarity
search. It allows the use of the same precomputed index even if query elements like the
used features or the monotonicity of the aggregation function change in the search pro-
cess. Since none of the known approaches presented in Section 2 supports all flexibility
requirements (R1)–(R6), we introduce the new index FlexiDex.

The adaption of the GeVAS [9] approach to metric indexing (Section 5) results in a
flexible index that is independent from the structure of features (R1), supports changing
weights (R2) and operators (R3), allows efficient querying for subsets (R4) of the indexed
features and can dynamically add new objects and features (R6). As indexing for logic-
based queries depends on the monotonicity of the resulting aggregation functions, three
classes of monotonicity are examined in Section 4 and it is shown that these are sufficient
to support all types of logic-based queries (R5). The efficiency of FlexiDex is evaluated
in Section 6, which proves that FlexiDex significantly outperforms the linear scan and a
combiner algorithm in terms of distance computations and search time.

Future work will focus on an extended evaluation with large synthetic and real-
world datasets. The definition of cost formulas will allow an analytical approach for
parametrization of the index and support for other types of queries (e.g., range search)
will be added.

Acknowledgements. Special thanks go to Robert Kuban for proving the monotonicity
of CQQL formulas.

References

[1] Zadeh, L. A. “Fuzzy Logic”. In: Computer 21 (1988), pp. 83–93.
[2] Schmitt, I. “QQL: A DB&IR Query Language”. In: The VLDB Journal 17 (2008), pp. 39–

56.
[3] Fagin, R., Lotem, A., and Naor, M. “Optimal Aggregation Algorithms for Middleware”.

In: Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. PODS’01. Santa Barbara: ACM, 2001, pp. 102–113.

[4] Bustos, B., Kreft, S., and Skopal, T. “Adapting Metric Indexes for Searching in Multi-Metric
Spaces”. In: Multimedia Tools Appl. 58.3 (2012), pp. 467–496.

[5] Weber, R., Schek, H.-J., and Blott, S. “A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional Spaces”. In: Proceedings of the 24th
International Conference on Very Large Data Bases. VLDB’98. San Francisco: Morgan
Kaufmann Publishers Inc., 1998, pp. 194–205.

[6] Ciaccia, P. and Patella, M. “The M2-Tree: Processing Complex Multi-Feature Queries with
Just One Index”. In: DELOS Workshop: Information Seeking, Searching and Querying in
Digital Libraries. 2000.

[7] Samet, H. Foundations of Multidimensional and Metric Data Structures (The Morgan
Kaufmann Series in Computer Graphics and Geometric Modeling). San Francisco: Morgan
Kaufmann Publishers Inc., 2005.

[8] Guttman, A. “R-Trees: A Dynamic Index Structure for Spatial Searching”. In: Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data. SIGMOD’84.
Boston: ACM, 1984, pp. 47–57.

[9] Böhm, K., Mlivoncic, M., Schek, H.-J., and Weber, R. “Fast Evaluation Techniques for
Complex Similarity Queries”. In: Proceedings of the 27th International Conference on Very
Large Data Bases. VLDB’01. San Francisco: Morgan Kaufmann Publishers Inc., 2001,
pp. 211–220.

[10] Ciaccia, P., Patella, M., and Zezula, P. “M-Tree: An Efficient Access Method for Similarity
Search in Metric Spaces”. In: Proceedings of 23rd International Conference on Very Large
Data Bases. VLDB’97. Athens: Morgan Kaufmann, 1997, pp. 426–435.

[11] Micó, M. L., Oncina, J., and Vidal, E. “A New Version of the Nearest-Neighbour Approxi-
mating and Eliminating Search Algorithm (AESA) with Linear Preprocessing Time and
Memory Requirements”. In: Pattern Recogn. Lett. 15 (1994), pp. 9–17.

[12] Lange, D. and Naumann, F. “Efficient Similarity Search: Arbitrary Similarity Measures,
Arbitrary Composition”. In: Proceedings of the 20th ACM International Conference on
Information and Knowledge Management. CIKM’11. Glasgow: ACM, 2011, pp. 1679–
1688.

[13] Ciaccia, P., Patella, M., and Zezula, P. “Processing Complex Similarity Queries with
Distance-Based Access Methods”. In: Advances in Database Technology. EDBT’98. Ed. by
Schek, H.-J., Alonso, G., Saltor, F., and Ramos, I. Vol. 1377. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1998, pp. 9–23.

[14] Balko, S. and Schmitt, I. Signature Indexing and Self-Refinement in Metric Spaces. Tech.
rep. 06/12. Brandenburg University of Technology Cottbus, Institute of Computer Science,
2012.

[15] Bustos, B., Navarro, G., and Chávez, E. “Pivot Selection Techniques for Proximity Search-
ing in Metric Spaces”. In: Pattern Recogn. Lett. 24 (2003), pp. 2357–2366.

[16] Zellhöfer, D. et al. “PythiaSearch: A Multiple Search Strategy-Supportive Multimedia
Retrieval System”. In: Proceedings of the 2nd ACM International Conference on Multimedia
Retrieval. ICMR’12. Hong Kong: ACM, 2012, 59:1–59:2.

[17] Griffin, G., Holub, A., and Perona, P. Caltech-256 Object Category Dataset. Tech. rep.
7694. California Institute of Technology, 2007.

[18] Schmitt, I. and Balko, S. “Filter Ranking in High-Dimensional Space”. In: Data Knowl.
Eng. 56 (2006), pp. 245–286.

[19] Rubner, Y., Tomasi, C., and Guibas, L. J. “The Earth Mover’s Distance as a Metric for
Image Retrieval”. In: Int. J. Comput. Vision 40 (2000), pp. 99–121.

[20] Sikora, T. “The MPEG-7 Visual Standard for Content Description-An Overview”. In: IEEE
Transactions on Circuits and Systems for Video Technology 11.6 (2001), pp. 696–702.

[21] Tamura, H., Mori, S., and Yamawaki, T. “Texture Features Corresponding to Visual Percep-
tion”. In: IEEE Transactions on Systems, Man and Cybernetics 8.6 (1978).

[22] Chatzichristofis, S. A. and Boutalis, Y. S. “FCTH: Fuzzy Color and Texture Histogram - A
Low Level Feature for Accurate Image Retrieval”. In: Proceedings of the 2008 9th Inter-
national Workshop on Image Analysis for Multimedia Interactive Services. WIAMIS’08.
Washington: IEEE Computer Society, 2008, pp. 191–196.

[23] Stehling, R. O., Nascimento, M. A., and Falcão, A. X. “A Compact and Efficient Image
Retrieval Approach Based on Border/Interior Pixel Classification”. In: Proceedings of the
11th International Conference on Information and Knowledge Management. CIKM’02.
McLean: ACM, 2002, pp. 102–109.

[24] Chatzichristofis, S. A. and Boutalis, Y. S. “CEDD: Color and Edge Directivity Descriptor:
A Compact Descriptor for Image Indexing and Retrieval”. In: Computer Vision Systems.
Ed. by Gasteratos, A., Vincze, M., and Tsotsos, J. K. Vol. 5008. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008, pp. 312–322.

[25] Chávez, E., Navarro, G., Baeza-Yates, R., and Marroquín, J. L. “Searching in Metric
Spaces”. In: ACM Comput. Surv. 33 (2001), pp. 273–321.

[26] Zellhöfer, D. and Schmitt, I. “A User Interaction Model Based on the Principle of Polyrep-
resentation”. In: Proceedings of the 4th Workshop for Ph.D. Students in Information and
Knowledge Management. PIKM’11. Glasgow: ACM, 2011, pp. 3–10.

	FlexiDex: Flexible Indexing for Similarity Search with Logic-Based Query Models

