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Abstract—On many-core processors, both operating system
kernels and bare metal applications need efficient cross-core
coordination and communication. Although explicit shared-
memory programming and message passing might provide the
best performance, they also limit the system’s control over
scheduling. In contrast, interrupt-driven cross-core invocations
provide universal coordination mechanisms that also enable
preemptive operations across cores. This paper surveys cross-
core invocation mechanisms and their usability with respect to
prevalent coordination scenarios. We integrated some of these
mechanisms into a bare-metal environment for the Intel SCC pro-
cessor and will discuss implementation aspects of the interrupt-
driven invocations. In conclusion, such invocation mechanisms
provide an expressive platform for future operating systems
kernels and bare-metal applications.

Index Terms—many-core, remote invocations, bare-metal

I. INTRODUCTION

On many-core processors, both operating system kernels
and bare metal applications need efficient cross-core coordi-
nation and communication. On past single-core architectures,
communication was focused on inter-process communica-
tion (IPC) in combination with fast process switching (e.g.
LRPC [1]). However, the availability of many cores causes a
shift from time multiplexing to space multiplexing [2]. Thus,
process switching becomes rare and inter-core communication
becomes the common case. In addition, future architectures
face severe energy constraints and, thus, for example cores
have to sleep instead of busily waiting for events [3].

Irrespectively, the core services of operating systems and
runtime environments for bare-metal parallel applications do
not change much. The local (core configuration, dynamic
power scaling, virtual memory mappings) and global hardware
(system memory, devices) has to be managed and basic com-
munication mechanisms are needed to inform about events,
to request operations, and to transfer data [4], [5]. On top
of these, process coordination schemes such as mutual ex-
clusion, resource allocation, collection of statistics, resource
monitoring, load-balancing job queues, and data consistency
management are commonly needed [6].

These mechanisms can be based on very different im-
plementation approaches. Conventional shared memory pro-
gramming can exploit hardware details directly, but scaleable
implementations are complex [7] and assume hardware cache
coherence, which is not available on all processors. Fur-
thermore, it spreads synchronization mechanisms inside long
running threads through the whole system, which, in effect,
elides any fine grained scheduling capabilities.

Shared memory programming can be replaced by message-
based approaches and vice versa [8]. This enables distributed
operating environments based on message passing such as
Galaxy OS [4], the Factored OS [2], and Barrelfish [9], which
also demonstrate better scalability and performance on shared
memory architectures compared to direct shared memory pro-
gramming. However, message passing is based on explicit send
and receive primitives and to avoid communication deadlocks,
non-blocking primitives and progress mechanisms are needed.
In order to initiate activities, the destination cores have to
anticipate them with matching receive operations. At the same
time, such messaging primitives impose a strict distinction
between local and remote actions. Thus, message passing
alone does not answer all coordination needs.

One key purpose of communication is to initiate activities on
other cores, for example to offload functionality to dedicated
cores [10] or trigger management activities like TLB shoot
downs [9]. Cross-core invocation (CCI) mechanisms focus
on this aspect in order to address the shortfalls of raw
message passing. High-level CCI mechanisms address logical
system components (e.g. objects) instead of physical cores.
This enables invocations on components regardless of their
actual location, which highly simplifies the implementation of
component-based architectures. CCIs are received implicitly
by the runtime environment and are scheduled for later execu-
tion. This is essentially equivalent to event-based systems such
as JEDI [11], REFLEX [12], and publish/subscribe frame-
works [13]. Acting on invocation only also enhances energy
saving: Only the per-core idle loop waits for incoming CCIs
and, thus, sleep management can easily be integrated [14].

This paper surveys cross-core invocation mechanisms, their
usability, and implementation aspects. For this purpose Sec-
tion II summarizes prevalent coordination scenarios and Sec-
tion III compares various CCI mechanisms with respect to
their usability. Implementation aspects of CCI runtime en-
vironments, in particular the scheduling of invocations are
discussed in Section IV. Finally, our experiences with imple-
menting such a bare-metal environment on the experimental
Intel SCC processor [15] are presented in Section V.

This paper focuses on basic CCI primitives and cannot
discuss how efficient scalable shared data structures can be
implemented on top of CCI. For multiple-readers/exclusive-
writer data, mechanisms like in MESH [16] can be applied.
But more research and algorithm design is necessary with re-
spect to sharing with concurrent write accesses like concurrent
operations on shared queues and stacks [7].



II. COORDINATION SCENARIOS

The fundamental cross-core invocation initiates asyn-
chronously a selected action on a selected core, that is, the
caller will continue its own execution without waiting for the
action to be processed. Such CCIs are asynchronous one-side
operations, but can be combined to build more convenient
coordination mechanisms as surveyed in the next subsections.

A. CCIs with Continuations

Synchronous CCIs continue the caller’s activities after the
invoked action finished and, often, it is also necessary to
retrieve results. Examples are allocation requests to resource
management services and function offloading to helper cores.
This can be achieved with continuation CCIs: The callee
finishes with a CCI that forwards or returns the results. The
continuation can be a fixed part of the callee but passing a de-
scription of the continuation along with the callee invocation is
more flexible, which is known as a continuation passing [17].

The fault tolerance can be enhanced with timeout CCIs:
The caller creates a timeout invocation that will be carried
out by the runtime environment after a specified time. Such
timeouts can, for example, trigger runtime exceptions. Either
the real continuation or the timeout will be processed first
and the continuation will deactivate the timeout invocation.
Runtime exceptions can be handled similarly with an alternate
continuation. For instance, the X10 language has an exception
flow model to forward exceptions to callers [18]. Future
variables [19] are a convenient way to express continuation
passing and TACO [20] implements these with CCIs: The
caller passes a pointer to a future variable along with his
invocation, the callee returns his results by using a CCI that
writes the results to that future variable, and the future variable
will wake up the caller.

B. Collective Invocations

Collective invocations apply the same CCI on a group of
cores or components in parallel, for example, to perform
a TLB shoot down [9], propagate consistency events [16],
or initiate parallel computations. A description of the group
and the invocation is needed in order to send the actual
CCI to each member of the group. Instead of sending the
CCIs to each member sequentially, multicast trees reduce the
completion time because the tree nodes help to parallelize
the CCI propagation. MPI communicators use multicast trees
internally to implement collective operations, however, these
are not one-sided operations. X10 provides distributed arrays
with collective invocations [18]. The TACO object groups [21]
allow to configure the tree topology and provide methods to
add objects to the group. The tree can also be used as a
distributed description of the group because knowing only the
root is sufficient to start a collective invocation.

C. Collective Invocations with Results

Often, it is necessary to continue with an activity after
all group members in a collective invocation finished their
task. One-sided collective gather and reduction operations
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Figure 1. Distributed reduction with temporary helpers. After all results
arrived, the result continuation is applied with the combined value and the
helper removes itself.

are equally useful, for example, to query a group of system
components in parallel. This can be achieved by combining
collective invocations an continuation passing: The collective
invocation propagation also distributes internal continuation
CCIs. For a collective gather, this continuation forwards the
member’s result and its group rank and, for a reduction,
the continuation sends the result to the caller and merges
them there. In order to continue after completion, the caller’s
continuation is applied when each result arrived.

In order to avoid contention, the multicast tree can also
be used for distributed result collection as shown in Figure 1.
Once all children of a node returned their results, the combined
result is sent to the node’s parent, which continues until
reaching the root. In addition, on shared-memory architectures,
the gather operation can write the result into a shared array
instead of sending many CCIs to a single destination.

The completion time of collective reductions depends on
the communication latency and delays at the multicast nodes
Using preemptive CCIs can reduce the propagation delays
considerably. For instance, in [22] interrupts were used to
speed up the propagation of one-sided data broadcasts. Also,
reducing processing overheads during the result collection can
reduce the completion time [23].

D. Application Examples

When an application performs a system call, conventional
systems perform a context switch to kernel mode in order
to process the request locally. This is not very useful in a
distributed operating system, because the call has to be for-
warded to the according service component anyway. Instead,
system calls can be implemented by direct CCIs to the service
component. The fos operating system [2] uses this approach
and demonstrated as good performance as traditional local
mechanisms [5]. System calls based on CCIs are also useful
in architectures with separate control and compute cores like
presented in [24]. There, control engines are specialized cores
that manage scheduling and system calls, while all regular CCI
actions are carried out on compute cores.

While some implementations provide a single messaging
subsystem for small CCIs and large data transfers (e.g. MPI,
Barrelfish [25]) it can be beneficial to use separate proto-
cols [4], [26], [23]. Such data transfers can be coordinated by
CCIs: On shared-memory architectures, the virtual memory
hardware can be exploited to grant read/write access and to



transfer ownership of memory pages, which is more efficient
when no actual copy is needed [4], [16]. Also, regular copying
can be accelerated with shared memory by using free cores to
parallelize the copy operation [27].

III. CROSS-CORE INVOCATION MECHANISMS

In order to express a cross-core invocation it is necessary to
select its destination and action. The destination can be a core,
an object, or a channel. The invoked action is either selected by
the caller (function shipping like in active messages [28] and
thread activations [29]) or by the destination (handled by the
channel’s sink). Optionally, a CCI can be preemptive, that is,
processing the requested action is enforced by interrupting the
receiver’s current activity. These options lead to various CCI
mechanisms, which will be discussed in the next subsections.

Throughout all of these mechanisms, anonymous functions
emerged as a way to improve flexibility. In C++ these can be
implemented without language extensions, for example, in the
style of the method-to-functor primitive m2f in TACO [20].
This primitive performs argument binding by combining a
pointer to a function and argument values into a functor
(function object). The blocks extension from Apple’s Grand
Central Dispatch and the delegates in .NET provide equivalent
mechanisms. Functors can be passed between cores using mes-
sages and can be applied by providing the missing arguments.

A. Remote Procedure Calls (RPC)

Procedure calls are used to transfer control and data in local
programs. A caller that requests a service from the callee
is suspended until the request is processed. Transferring this
widely used abstraction to distributed systems leads to remote
procedure calls as CCI mechanism. The following pseudo code
gives some examples for such RPCs.

1 async ( core , p r o c e d u r e ) ;
2 async ( core , f u n c t i o n , c o n t i n u a t i o n ) ;
3 r e s u l t = sync ( core , f u n c t i o n ) ;

The caller specifies explicitly the destination core and a functor
that represents the desired procedure call with all its arguments
(line 1). A continuation can be provided that will process the
result on the destination core (line 2). For example, such a
continuation could send the result to the caller’s core using
an RPC like in line 1. The last line shows a synchronous
call where the caller is suspended until the result arrived.
Transferring the result and waking up to the caller has to be
implemented by the runtime environment somehow.

B. Remote Method Invocations (RMIs)

Remote method invocations use global object pointers to
select the destination. Such pointers combine the object’s
location (core) and memory address. In effect, this constructs
a partitioned global address space (PGAS) and the object’s
location determines where the invocation will be carried out.

Unlike the similar RPC mechanisms, the action functor is
applied on the destination object, for example, to call methods
of that object (line 4 in the example below). This approach

provides some flexibility as can be seen with collective invoca-
tions (lines 5–7): The same functor is simply applied on each
object of the group. For reductions a two-parameter functor
describes how the results are merged and the final result is
passed as continuation. Similarly, the gather operation can
apply the passed continuation on each individual result.
4 async ( o b j e c t , method , c o n t i n u a t i o n ) ;
5 a t e a c h ( o b j group , method ) ;
6 r e d u c e ( o b j group , method , combiner , c o n t i n u a t i o n ) ;
7 g a t h e r ( o b j group , method , c o n t i n u a t i o n ) ;

To combine future variables with RMIs, the continuation
functor has a global pointer to the future variable and invokes
its assign method using an asynchronous CCI. The future’s
implementation will handle suspending and waking up threads
that read from the future.

C. Invocation Channels

With channels, the caller selects only a destination but the
invoked action is selected by each destination individually. The
caller writes data to a channel (e.g. emits an event), the channel
is connected to sinks on any core, and the sinks invoke an
action locally to handle incoming data. Continuation passing
is achieved by passing the destination sink for the result as
part of the event data.

Such channels provide a different type of flexibility: In
contrast to RMIs, the source needs no knowledge about the
actual receiver(s) and associated reactions. Sinks can by bound
to any action, for example, to a functor that is applied on
received data or by assigning a preallocated activity that
is scheduled whenever data arrived. Furthermore, sinks can
collect and merge incoming data before invoking an action.
Future variables are sinks where the associated action depends
dynamically on the threads that wait for the future’s value.

D. Existing Implementations

The Goroutines approach [30] provides an asynchronous
invocation primitive with automatic load balancing between
cores and channels are used for communication but these do
not invoke actions. Inter-processor interrupts (IPIs) provide
data-less preemptive channels: Addressing is based on core
and interrupt identifiers, and the invoked action is selected by
the receiver’s interrupt vector. Asynchronous RPC mechanisms
are provided by X10’s at and async primitives [18] as well as
Chapel’s on and cobegin statements [31].

IV. RUNTIME ENVIRONMENTS

A runtime environment is needed that provides messaging
for CCI delivery and scheduling of pending invocations.

The messaging subsystem has to provide asynchronous send
primitives and a non-blocking polling primitive that receives
messages from any source. To ensure consistency, CCIs to
the same destination have to be delivered in-order and the
combination of polling and scheduling has to ensure in-order
processing of CCIs from the same source. Support for small
messages of a limited size is sufficient, e.g. a few cache
lines. For example, the mailbox system of MetalSVM [26]
and protocols from [23] can be used.



Processing an invocation can trigger follow-up tasks. For
instance, writing to an event channel’s sink usually triggers its
event handler, which is executed later. Preemptive invocations
require some kind of priority-based scheduling combined with
cross-core interrupts to force the receiver to process incoming
CCIs and their follow-up tasks in time. Finally, future variables
would need the ability to suspend and resume tasks that wait
for future values. The next subsection compares basic task
types. Then, useful scheduling policies are summarized.

A. Task Types: Activities, Protothreads, and Coroutines

The main difference between the following task types is how
their execution context is represented. However, this does not
necessarily impact performance [32]. The simplest type are
non-blocking activities. Once started, an activity runs until
completion and, then returns. Hence, activities do not need
an individual call stack. Synchronous CCIs such as waiting
for future variables is not possible directly, because running
activities cannot wait. Instead, result continuations are used
to trigger follow-up activities. This style is sufficient, for
example, to implement state machines in system components:
Events are sent as CCIs to the component and the invoked
actions perform state changes and can emit further events.

Protothreads [33] extend activities by a fixed-size pro-
cessing state. This allows a protothread to suspend itself
by storing the next instruction in the processing state and
returning control like any completed activity. The execution
is continued on the next activation by jumping to the stored
instruction. Because protothreads do not have an individual
stack, all longterm data has to be stored in the processing
state as well. For example, waiting on future variables is
achieved by attaching the protothread to the variable. Once
the value arrived, the variable reschedules that protothread to
continue its execution. Although blocking is still not possible
inside nested calls because of the fixed-size processing state,
protothread simplify the implementation of complex control
flows by converting them into a state machine implicitly.

In contrast, each coroutine has an own stack and is started
by switching into that stack. Blocking operations suspend
the coroutine by storing the execution state on the stack and
switching to the next coroutine’s stack or back to the scheduler.
Thus, a coroutine can suspend inside any nested call.

Interrupting short running activities and protothreads is
usually not beneficial. Nonetheless, interrupts can be used to
provide a limited number of preemption levels by executing
activities of higher priority on the same stack and then
continuing the interrupted activity [34]. Coroutines can be
suspended from the outside with interrupts by switching out of
the coroutine’s stack from within the interrupt handler. When
the coroutine is resumed at a later time, thus, the interrupt
handler is continued, which in turn returns to the coroutine.

Because operations that are used by activities and pro-
tothreads must never block, sending CCIs over the network
poses a new challenge. In case the CCI message could not
be sent because of contention, the send operation has to
fail. Coroutines and protothreads can suspend itself to retry

later. Special care is necessary with activities, for example, by
repeating the whole activity later or dropping the CCI.

B. Task Scheduling

The task types can be unified as task objects that have
a run() method and scheduling-specific data such as the
task’s priority. From the scheduler’s point of view, suspended
coroutines simply return from their run method. This can
even be extended to switch memory protection and protection
modes when entering and leaving the run method.

When multiple CCIs arrived, the order of their execution
has to be determined. However, the invocations from the same
source should be processed in-order to retain consistency.
This can be resolved by restricting invocations to short non-
blocking operations and executing them directly from the
messaging buffers. These simpler invocations can then invoke
longer running actions by enqueueing tasks for the scheduler.

Still, most tasks are short running and, hence, there is
no point in scheduling them fairly according to their past
processor time as it was common for time-sharing thread
schedulers. A simple First-Come-First-Served scheduling is
often sufficient and faster, because otherwise the scheduling
overhead exceeds the task’s actual runtime easily. Real-time
schedulers assign a priority to each task and process tasks
according to the priority, starting with the highest one. The
priority can either be determined statically at compile time
or dynamically at run-time. An example for the latter is the
Earliest-Deadline-First scheduling [35], [34].

Another aspect is the integration of application- and system-
level scheduling. Some systems separate both strictly and the
system’s tasks are scheduled only when the application hands
over or looses the control flow. For instance, MPI’s progress
engine is often implemented by a cooperative internal activity
scheduler. In contrast, application and system can share a sin-
gle scheduler, which is necessary for applications with realtime
scheduling needs. However, using simply higher priorities for
system tasks would in effect reproduce above separation. An
architectural compromise are hierarchical schedulers like the
event scheduling tree of the Vortex OS [36].

V. EXPERIENCES ON THE SCC

We implemented a minimal bare-metal environment on
the experimental Intel SCC processor [15]. The environment
provides interrupt handling, local memory management, var-
ious schedulers [34], and one-sided communication based on
active messages [23]. Basic CCIs are sent as active messages
and are executed directly from the communication memory
without any copying. Preemptive CCIs also trigger the external
interrupt of the destination core by writing into its on-chip con-
figuration registers. A core has to wait for new CCIs when its
task list is empty, which is achieved either by busy polling or
by sleeping with the hlt instruction until an interrupt signals
incoming CCIs. On top of this, REFLEX event channels [12]
were implemented, which are global pointers to sinks and
sinks trigger a statically allocated activity or protothread.
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Figure 2. CCI round trip time based on interrupts and on busy polling.

The first experiment studies the impact of interrupt over-
heads on the CCI roundtrip time: On core 0, an event is
written to a channel that points to sink on another core. There,
the sink triggers an activity that emits a result event back
to core 0. Figure 2 shows the median round trip times in
core clock cycles for the 800x1600x1066 MHz configuration
(tile/mesh/memory clock rate) with FIFO scheduling. The
round trips took around 2000 cycles with busy polling and
around 3000 cycles with hlt-based sleeping and sending
interrupts after the CCI message. Measuring SCC’s 3V3SCC
current meter showed that the processor’s power consumption
is reduced by a factor of two when all cores are halted instead
of busily polling for new messages.

Obviously, the cross-core interrupts for preemption and idle
sleeping do not come for free. Two directions for performance
improvements are latency hiding and overhead avoidance.
Latency hiding can be achieved by sending the interrupt
before transferring the message because, then, entering the
interrupt handling overlaps with writing the message to the
communication memory. In the above experiment, this strat-
egy was able to hide the additional interrupt latency nearly
completely. Interrupts were sent in both directions by writing
to the on-tile configuration registers, which takes 60–90 cycles.
Thus, handling a single interrupt takes around 450 cycles.
Unfortunately, this strategy could not be used in practice:
Sometimes the interrupt handler looks for the message too
early. Simply waiting for its arrival is not sufficient because
it could have been processed already, but not waiting long
enough deadlocks the system inside the hlt-based sleeping.

In contrast, overhead avoidance tries to suppress the regular
interrupt handling when the system can handle them directly.
For example, the scheduler can disable interrupts and, instead,
check the interrupt status register regularly between executing
tasks. The system’s reactivity is not degraded as long as these
tasks take less time than the interruptions would cost and,
thus, interrupts really need to be enabled only for long running
tasks. Such overhead avoidance was not effective on the SCC
because checking and resetting the interrupt status in the on-
chip configuration registers was too costly. This might be
resolved by a real processor register that provides fast checking
and manipulation of the interrupt status. Also instructions
that check for arrived messages more directly than repeatedly
fetching data from the communication memory would reduce
the polling overhead considerably.

Our first measurements exhibited large variations as shown
in Figure 3 with differences up to 1500 cycles between
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Figure 3. Round trip times before enabling caching of the page tables.
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Figure 4. Completion time of collective reduce invocations.

individual round trips. It turned out that some of the TLB
misses caused the core to stall because the page tables were
mapped as non-cached memory and accesses to the off-chip
memory take very long when they collide with the DRAM
refresh that happens every 64ms. With cached page tables, the
jitter shrunk to less than 10 cycles. In consequence, to reduce
jitter, caching should be enabled for any mostly-read data in
the off-chip memory—including page tables. Sharing parts of
page tables with enabled L2 caching is almost possible on the
SCC: The collective TLB shoot down invocation just has to
evict the modified parts from the L2 caches before invalidating
the TLBs. However, the state flags (accessed and dirty bit) are
not updated consistently without enabling write-through mode.

On top of the event channels, we implemented collective
invocations by using temporary sinks that count and merge in-
coming results at the multicast tree’s nodes. Starting on core 0,
one member object per core was added to the group. Figure 4
shows average completion times. A collective reduction with
all 48 cores took 14k cycles with interrupts and 11k cycles
with busy polling. As can be expected, the completion time
grew logarithmically with the number of participating cores.

VI. CONCLUSIONS

A survey of cross-core invocations at the level of bare-metal
applications was presented. With appropriate task scheduling,
preemptive cross-core invocations improve the reactivity of the
system and enable distributed realtime applications.

We presented experiences gained from implementing such
mechanisms on the SCC by using inter-core interrupts. How-
ever, the interrupt processing overhead increased the commu-
nication latency considerably. Overlapping message transfer
and interrupt processing can hide this latency but timing
issues pose a challenge while the computational overhead is
not reduced at all. Instead, new hardware mechanisms could
make preemptive cross-core invocations more efficient and
predictable.
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