
Middleware for Many-Cores
Why it is needed and what functionality it should provide

Randolf Rotta, Steffen Büchner, Jörg Nolte
Operating Systems and Distributed Systems Group

V B S

Introduction

I Many-core processors are hybrids of distributed and shared memory systems
I Middleware can combine advantages of messaging and shared memory
I Implemented prototype as C++ template framework

Why a middleware is necessary?

I High diversity between different many-core systems (e.g. network topology &
capabilities), but relatively homogenous inside (single instruction set)

⇒Use middleware to hide the diversity & achieve portable performance

D
R

AM
D

R
AM

D
R

AM
D

R
AM

D
R

AM
D

R
AM

4x8 core Intel XEON E7-4830
2.13GHz

2x4 core AMD
Opteron 2356

2.3GHz

D
R

AM

1x48 core Intel SCC
0.8GHz

shared L3

shared L3

shared L3

shared L3shared L3

D
R

AM
D

R
AM

D
R

AM

8 Cores

8 Cores

8 Cores

8 Cores

4 Cores

4 Cores

Caches

Router

Legend:

Memory

Coresshared L3

What functionality should be provided by a middleware?

I Conventional shared memory programming: Scalability issues
I Conventional message passing: Large messages evict caches
I State of the art: Software components and object-orientation,

bind components to cores (=Partitioned Global Address Space)
I Allocate shared objects in shared memory,

pass references to shared objects and components by method calls
⇒ Implicit communication and execution across cores

direct access 
to shared data

Cross Core Invocations coordinating
activities
between cores

cores

caches

memory

replicate data if necessary

Shared Objects: Memory-efficient Sharing

I Access shared data directly through the cache hierarchy
I E.g. shared page tables, memory mapped files, large messages
I Use virtual memory to map physical memory to same logical address in all

local address spaces, allocation is coordinated by CCIs,
optional replication between distributed memory

core 0 core 1 core core N

Shared Object Shared Object
(Replica if necessary)

Partitioned Global Address Space

Lo
ca

l L
og

ic
al

 A
dd

re
ss

 S
pa

ce
s

private memory

core-private objects
(like host memory)

local and global
memory

Cross Core Invocations: Coordination with Small Messages

I Initiate actions on other cores, offload tasks, wake up suspended activities
I E.g. offload tasks, query central services
I Lightweight Remote Method Invocation and Futures on top of

small active messages (<200 bytes) and cooperative threads

Sender
Core

Receiver's
Counter

Recveiver's
Msg. Buf.

Recveiver
Core

reserve slot
check free

poll + read

incr. read pos.
reset nfy

write msg
+ nfy

Sender
Core

Sender's
Msg. Buf.

Recveiver's
Msg. Buf.

Recveiver
Core

check ack
reset ack
write msg

set nfy
poll
read msg
reset nfy

set ack

Notification Vector Protocol Synchronized Ringbuffer Protocol

Example system-specific in-memory communication protocols.

0
500

1000
1500
2000
2500
3000
3500

Opteron Xeon SCC
cy

cl
es

0.0

0.5

1.0

1.5

2.0

Opteron Xeon SCC

m
ic

ro
 s

ec

CCI roundtrip times ranging from nearest to farthest core.

Collective Operations: Group-Based Invocations

I One-sided initiation of activities on a group of cores,
can wait for completion of all activities

I E.g. TLB shootdown, query distributed services
I One object per participating core, organized in multicast tree,

propagate events as CCIs, collect&reduce results with Futures

D
R
AM

D
R
AM

D
R
AM

D
R
AM

D
R
AM

D
R
AM

4x8 core Intel XEON E7-48302x4 core AMD
Opteron 2356

D
R
AM

1x48 core Intel SCC

D
R
AM

D
R
AM

D
R
AM

Legend:

Memory

Cores

CCI

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50
group size = number of cores

cy
cl

es

System Opteron Xeon SCC

Completion time of collective steps.

Conclusions

I Shared access to memory ⇒ no need for large messages
I Messages just for coordination ⇒ lightweight Cross Core Invocations
I Collective operations ⇒ scaleable coordination of many cores;

Propagation mechanism can be adapted to network topology
I Small message exchange is critical for overall performance;

In-memory communication ⇒ protocol overhead > network latency

http://www.tu-cottbus.de/betriebssysteme/ rrotta@informatik.tu-cottbus.de


