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Introduction

I Many-core processors are hybrids of distributed and shared memory systems
I Middleware can combine advantages of messaging and shared memory
I Implemented prototype as C++ template framework

Why a middleware is necessary?

I High diversity between different many-core systems (e.g. network topology &
capabilities), but relatively homogenous inside (single instruction set)

⇒Use middleware to hide the diversity & achieve portable performance
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What functionality should be provided by a middleware?

I Conventional shared memory programming: Scalability issues
I Conventional message passing: Large messages evict caches
I State of the art: Software components and object-orientation,

bind components to cores (=Partitioned Global Address Space)
I Allocate shared objects in shared memory,

pass references to shared objects and components by method calls
⇒ Implicit communication and execution across cores

direct access 
to shared data

Cross Core Invocations coordinating
activities
between cores

cores

caches

memory

replicate data if necessary

Shared Objects: Memory-efficient Sharing

I Access shared data directly through the cache hierarchy
I E.g. shared page tables, memory mapped files, large messages
I Use virtual memory to map physical memory to same logical address in all

local address spaces, allocation is coordinated by CCIs,
optional replication between distributed memory

core 0 core 1 core core N

Shared Object Shared Object
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Cross Core Invocations: Coordination with Small Messages

I Initiate actions on other cores, offload tasks, wake up suspended activities
I E.g. offload tasks, query central services
I Lightweight Remote Method Invocation and Futures on top of

small active messages (<200 bytes) and cooperative threads
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Notification Vector Protocol Synchronized Ringbuffer Protocol

Example system-specific in-memory communication protocols.
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Collective Operations: Group-Based Invocations

I One-sided initiation of activities on a group of cores,
can wait for completion of all activities

I E.g. TLB shootdown, query distributed services
I One object per participating core, organized in multicast tree,

propagate events as CCIs, collect&reduce results with Futures
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Conclusions

I Shared access to memory ⇒ no need for large messages
I Messages just for coordination ⇒ lightweight Cross Core Invocations
I Collective operations ⇒ scaleable coordination of many cores;

Propagation mechanism can be adapted to network topology
I Small message exchange is critical for overall performance;

In-memory communication ⇒ protocol overhead > network latency

http://www.tu-cottbus.de/betriebssysteme/ rrotta@informatik.tu-cottbus.de


