
From Parallel Systems to Wireless Sensor Networks
and Back

Jana Traue, Reinhardt Karnapke, Jörg Nolte
Distributed Systems/Operating Systems Group

Brandenburg University of Technology
Cottbus, Germany

{jtraue,karnapke,jon}@informatik.tu-cottbus.de

Abstract—Many researchers working in the field of wireless
sensor nodes have their roots in parallel and distributed com-
puting. Coming from parallel systems, they saw wireless sensor
networks as low end parallel systems, with lots of additional
challenges. In this paper we propose taking the step back, from
wireless sensor networks to parallel systems. In our opinion, the
lessons learned from wireless sensor networks should be applied
to a special case of parallel systems: Future many-core systems.

I. INTRODUCTION

Parallel and distributed systems have been used for many
decades, while wireless sensor networks have been a research
focus for little more than one decade. In the beginning of
research on wireless sensor networks, many researchers saw
them as an extremely challenging type of parallel system,
with the sensor nodes as cores and their radio modules as
interconnection network. In this representation, the cores are
slow processors with a small amount of memory. The intercon-
nection network has a very low bandwidth, high latency and
is prone to message losses, presenting the researchers with a
lot of additional challenges.

The increase in performance seen in single processor sys-
tems in the last decades will not continue much longer. For
this reason, multi-core systems have been developed, which
currently feature two to four, sometimes 8 cores. But these
multi-core systems will be replaced by many-core systems
with dozens or even hundreds of cores in the near future.
Many-core systems with 48, 64 or 100 cores are already
available to researchers and will probably find their way into
standard issue desktop computers soon.

Operating systems for these many-core systems will ex-
perience many of the problems currently found in operating
systems for wireless sensor networks. Therefore we propose
a return to the roots: Take the lessons learned in the resource
constrained wireless sensor networks back to the world of
parallel programming, namely to the many-core systems.

The next section takes a closer look at the development
from parallel systems to wireless sensor nodes before a look
on single processor systems and their development to multi-
and many-cores is taken in section III. The problems that will
be experienced when using many-core systems are described
in section IV, followed by a short description of current
challenges in wireless sensor networks in section V. The

similarities of the problems experienced in both worlds are
discussed in section VI before the concept of taking a step
back is described in section VII. Concluding remarks are given
in section VIII.

II. FROM PARALLEL SYSTEMS TO SENSOR NETWORKS
(HISTORY)

Wireless sensor networks (WSN) are envisioned to consist
of thousands of nodes, making the usage of low-cost parts
necessary. This low-cost requirement results in slow processors
with a little bit of memory, cheap transceivers with small
bandwidth and lossy communication. Even though these re-
strictions make working with wireless sensor networks harder
than working in traditional parallel systems, they attracted a
lot of attention from researchers around the world. Many of
those researchers came from the world of parallel systems,
and envisioned wireless sensor networks to be a special
case of parallel system. While parallel systems often use
shared memory as means of communication, sensor nodes use
messages, but methods have been invented to build one on
top of the other. An example for this is TinyDSM [1], where
a distributed shared memory is realized for wireless sensor
networks.

III. SINGLE-CORE AND MULTI-CORE VERSUS MANY-CORE
(DEFINITIONS, NOW)

A. Single-core to Multi-core

In the last decades, the number of transistors on integrated
circuits have doubled every two years or faster, in accordance
with Moore’s Law. While this increase in number of transistors
has resulted in ever faster processors for a long time, recent
years have seen a paradigm shift from single core CPUs to
multi-core CPUs. The single core CPUs are no longer the
focus of research due to two major problems: First, doubling
the number of transistors on a single core does not double the
processor’s speed. Instead, it only increases the performance
by 40-70 %. Second, the power consumption grows with the
number of transistors, resulting in problems for power - and
heat dissipation. For these reasons, current desktop and laptop
computers feature between two and four cores, with some
featuring 8 or 16 (using hyper threading).



The change from single core to multi core CPUs has posed
a huge problem for operating system developers. Previously
used locking mechanisms like interrupt locks were suddenly
not sufficient anymore. Still, concurrent access to the kernel
could lead to inconsistency in kernel data structures and had
to be avoided at any cost. In Linux, this cost was paid at first
by the introduction of the big kernel lock, which prevented
concurrent access by allowing only a single process to enter
the kernel, independent of the number of cores.

While this approach was effective, it was not efficient.
When a process running on one core accessed the kernel, all
other processes that wanted to access the kernel had to wait,
drastically reducing the gain of parallelism. The solution for
this problem was a replacement of the big kernel lock with
lots of individual locks. Now, each data structure in the kernel
is protected by an individual lock, making parallel access to
the kernel possible as long as different processes want to use
different services and work on different data structures. But
replacing the big kernel lock with individual locks took 10
years1, and increased the number of different locks drastically.
Therefore, the danger of implementing a deadlock has risen.

B. Multi-core to Many-core

In 2007, several publications predicted the production of
many-core processors. While multi-cores contained up to eight
cores at this time, many-cores were supposed to consist of up
to thousand cores [2], [3]. One of the first many-cores that
was commercially available, the Tile64 [4] that contained 64
cores, was released by Tilera in the second half of 2007. A
distributed cache coherence protocol assured coherence of the
caches by using one of five fast on-chip networks. The other
networks were dedicated to a special purpose, like serving
memory requests from one of the four memory controllers,
too.

While Tilera’s processors were commercially available, In-
tel announced its 80 core Terascale [5] processor that was
intended for research. Its successor, the Single Chip Cloud
Computer (SCC) [6] that comprises 48 cores, was released
in 2010. Each of the SCC’s modified Pentium cores had its
own 16 KB L1 caches and a 256 KB L2 cache. Unlike the
Tile64, the hardware did not manage coherence of the caches.
Sharing memory between multiple cores was still possible, but
consistency had to be assured by software. If these software
solutions had to rely on the external main memory modules,
communication would have been very slow. In order to avoid
such a problem, the SCC featured a fast, on-chip SRAM that
was intended for message passing (see figure 1).

IV. PROBLEMS OF FUTURE MANY-CORE SYSTEMS

Problems that already arose with multi-cores become even
more important with the increasing number of cores. In a
current NUMA architecture, the memory access time ranges
from 258 to 336 cycles depending on the distance between

1http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=
commitdiff;h=4ba8216cd90560bc402f52076f64d8546e8aefcb, last visited
July 2012

CPU L1 L2

R

M
C

M
C

M
C

M
C

SRAM

CPU L1 L2

Fig. 1. Schematic of the SCC. 24 tiles are arranged in an 8x6 grid. Each
tile comprises two P54C cores, a router and on-chip SRAM. Four memory
controllers allow to connect up to 64 GB of main memory.

core and memory controller [7]. This difference is expected to
grow and, consequently, a memory bound process should be
placed next to a memory controller rather than in the middle of
the grid. Choosing cores for processes, a task that is typically
handled by the scheduler, is tightly coupled to the memory
management. A nearby memory controller is useless if the
process frequently accesses data that is hosted by a different
controller. Such a usage pattern has to be detected and in some
cases processes have to be migrated in order to achieve a better
performance. Both of the many-core processors described
above are connected to four memory controllers which might
become a bottleneck. Therefore, and because of the difference
in access times, it is of utmost importance to utilize the caches.

Current systems, like Linux, run a single instance of the
operating system (OS) on the whole system. Several research
projects that develop operating systems for many-cores (e.g.
Corey [7], Barrelfish [8] and fos [9]) agree that a minimalistic
kernel should run on each core of a many-core processor.
These systems’ scalability is expected to benefit from kernel
instances that do not share data and communicate explicitly
via message passing. With the currently used point-to-point
on-chip communication networks, messages that take the same
route may cause congestion.

In addition to the above mentioned challenges, hardware
developers have to face the problems of power consumption
and heat distribution. Recent work has shown that software
that halts idle cores may halve the SCC’s power consumption
[10] and, hence, further research into energy efficient software
is worthwhile.

V. CURRENT PROBLEMS IN WIRELESS SENSOR
NETWORKS

Currently available sensor nodes are stronger than first
generation sensor nodes, featuring more memory, faster CPUs
and better transceivers. Still, they remain within the category
of embedded devices. Common examples include the Tmote
Sky from Mote IV Corporation (8MHz microcontroller, 10kB
RAM and 48kB Flash) or the eZ430-Chronos from Texas
Instruments (20MHz microcontroller, 4kB RAM, 32kB Flash).
Especially the small amount of RAM which must house the
data structures of application, communication protocols and
operating system remains a big challenge for sensor network
application developers.



TABLE I
CHALLENGES SHARED BY WIRELESS SENSOR NETWORKS AND MANY-CORE SYSTEMS

Challenge Problem in WSN Problem on Many-cores
Reduce energy consumption Battery lifetime Heat dissipation
Improve communication patterns Energy cost of transmissions Network congestion
Handle message loss Lossy medium and changing links Network congestion
OS memory consumption Small available memory Avoid off-chip memory access

However, it is not the only problem. A single node that
senses data is normally not sufficient for application require-
ments and nodes need to cooperate. This cooperation is done
by exchanging messages. Those messages must be transmitted
over lossy wireless links, which are not stable over time,
resulting in the need for adaptive communication protocols.

The third big problem is energy: Sensor nodes are usually
powered by batteries. These batteries provide an upper bound
for the time a node can spend in active mode. However,
lifetime goals for senor networks are often envisioned in
the scope of years, making energy conservation techniques
necessary.

VI. SIMILARITIES BETWEEN PROBLEMS IN MANY-CORE
SYSTEMS AND WSNS

While single core processors have reached a speed of
some GHz, currently available many-core systems use a much
reduced speed. The development of future many-cores will
probably be built upon slower, smaller cores, but use huge
amounts of them on a single die [2]. At the same time, wireless
sensor nodes are increasing in performance and memory
supply.

While both are still worlds apart, there are a number of
similar problems in both worlds, even though the reasons for
them are different.

Table I shows some of the similarities between the prob-
lems experienced by wireless sensor networks and many-core
systems. Both systems must be designed with a close look at
the energy consumption: sensor networks need to be careful
about the lifetime reachable with a set of batteries while
many-core systems get problems with the heat distribution.
In sensor networks, the radio module is one of the main
consumers of energy, therefore the communication patterns
must be designed with the energy constraints in mind. In
many-core systems with message passing, the interconnect
network between cores becomes a bottleneck and network
congestion should be avoided. Both systems suffer from mes-
sage loss and must use appropriate recovery mechanisms. In
WSN, the losses are most often due to the lossy medium and
changes of the logical topology, meaning the changing links
between nodes. While the medium (wire) is not lossy and the
connections do not change in many-core systems, messages
still get lost due to congestion. Sensor nodes need a small
operating system that fits into their memory, leaving enough
room for communication algorithms and application. In many-
core systems, the most basic parts of the operating system
should fit into the caches, which are not much larger than the
RAM of the sensor nodes. Otherwise, the latencies caused by

main memory accesses slow the system down and, even worse,
the memory controllers become a bottleneck.

VII. FROM SENSOR NETWORKS (BACK) TO PARALLEL
SYSTEMS

As the last section has shown, there are many similarities
between the problems experienced in wireless sensor networks
and those for future many-core systems. Finding new solutions
to those problems of many-core systems seems unnecessary, as
we have already worked on those same problems for more than
a decade, only in a different environment. This research on
wireless sensor networks has led to a huge number of solutions
for different problems, situations and applications.

One of the more obvious solutions seems to be to use a
miniature operating system which will be present on each of
the cores of the many-core systems. This is already done in
wireless sensor networks, where each of the nodes has its own
copy of the operating system for obvious reasons. Operating
systems for many-cores that already exist like Corey, Barrelfish
and fos agree in using a minimalistic kernel on each core.

The next step seems to be identifying more applicable
solutions from wireless sensor networks and moving them
to the many-core systems. For example, the heat dissipation
problems can be tackled by the usage of duty cycling in
combination with power aware scheduling, where scheduling
refers to the selection of cores on which a certain process will
be run.

VIII. CONCLUSION

Many researchers working on wireless sensor networks have
a background in parallel computing, some have started their
careers in the world of parallel systems. While there is still a
lot of research needed before wireless sensor networks can
be made usable for the broad public on a large scale, we
argue that it is time to take a break and reflect on what has
already been achieved. With this reflection it is possible to
identify those solutions from wireless sensor networks, that
can be taken back to the world of distributed and parallel
systems. Especially operating systems for the upcoming many-
core systems can benefit a lot from the experiences already
gathered.

IX. ACKNOWLEDGMENTS

The authors wish to thank Intel Research Braunschweig for
granting us access to the SCC and the Many-core Application
Research Community (MARC) program.



REFERENCES

[1] K. Piotrowski, P. Langendoerfer, and S. Peter, “tinydsm: A highly
reliable cooperative data storage for wireless sensor networks,” in
Proceedings of the 2009 International Symposium on Collaborative
Technologies and Systems, ser. CTS ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 225–232. [Online]. Available:
http://dx.doi.org/10.1109/CTS.2009.5067485

[2] S. Borkar, “Thousand core chips: a technology perspective,” in
Proceedings of the 44th annual Design Automation Conference, ser.
DAC ’07. New York, NY, USA: ACM, 2007, pp. 746–749. [Online].
Available: http://doi.acm.org/10.1145/1278480.1278667

[3] A. Agarwal and M. Levy, “The kill rule for multicore,” in Proceedings
of the 44th annual Design Automation Conference, ser. DAC ’07.
New York, NY, USA: ACM, 2007, pp. 750–753. [Online]. Available:
http://doi.acm.org/10.1145/1278480.1278668

[4] T. Corporation, “Tile64 processor - product brief,” Tilera
Website, http://www.tilera.com/sites/default/files/productbriefs/
PB010 TILE64 Processor A v4.pdf.

[5] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin, “Programming
the intel 80-core network-on-a-chip terascale processor,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 38:1–38:11. [Online].
Available: http://portal.acm.org/citation.cfm?id=1413370.1413409

[6] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and
T. Mattson, “A 48-core ia-32 message-passing processor with dvfs in
45nm cmos,” in Proceedings of the International Solid-State Circuits
Conference, 2010.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang, “Corey: an operating system for many cores,”
in Proceedings of the 8th USENIX conference on Operating
systems design and implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 43–57. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855741.1855745

[8] P. of the 12th Workshop on Hot Topics in Operating Systems, Ed., Your
computer is already a distributed system. Why isn’t your OS?, 2009.

[9] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos):
the case for a scalable operating system for multicores,” SIGOPS
Oper. Syst. Rev., vol. 43, pp. 76–85, April 2009. [Online]. Available:
http://doi.acm.org/10.1145/1531793.1531805

[10] R. Rotta, T. Prescher, J. Traue, and J. örg Nolte, “In-memory
communication mechanisms for many-cores experiences with the
intel scc,” TACC-Intel Highly Parallel Computing Symposium,
http://www.tacc.utexas.edu/ti-hpcs12/program, April 2012.


