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Abstract—Wireless sensor networks gather data, which is
then transmitted in a sense-and-send manner to a central sink.
The large number of sensor nodes makes configuring them
before deployment impossible, resulting in the need for self
configuration. The possibly large area that needs to be covered
results in the necessity for multihop communication, and is
prone to link failures. Therefore, communication protocols are
needed that can guarantee a certain delivery ratio even under
hard environmental conditions.

A large scale emergency scenario represents one of these
hard situations. One of the most fundamental problems in
large scale emergencies is the coordination of rescue workers.
To dispense units in an efficient manner without endangering
them, a central command station needs as much information
about the current situation as possible. Therefore, the applica-
tion requirements are basically the same, making the usage of
wireless sensor networks in emergency situations a viable task.

In this paper we discuss the advantages of using self-
stabilization in such sensor networks and present a self-
stabilizing cross-layer medium access control/routing protocol
for data gathering scenarios.

Keywords-Wireless Sensor Networks, Fault Tolerance, Self-
stabilization

I. INTRODUCTION

In emergency situations, especially when they occur on

a large scale, one of the most pressing problems is the

coordination of first responders and rescue workers. Usually,

a central command station should be used, which coordinates

all activities in order to avoid searching the same area twice,

and also deciding when to pull out the rescue crews, if con-

ditions get too risky. But keeping such a central command

station informed of the current situation is not easy. The

rescue workers can not depend on existing infrastructure

which might have been damaged. Rather, they need to rely

only on hardware they brought themselves.

Sensor networks which collect environmental data like

e.g. temperature values or the number of nearby rescue

workers can help the command center see the big picture and

dispense their units accordingly. Lightweight sensor nodes

can be dropped by the rescue workers while they move

around the emergency site. But the data gathered by the

sensor nodes has to be delivered to the command center

somehow.

The radio modules attached to low cost sensor nodes

usually only have a small transmission range, meaning that

most of the nodes deployed during an emergency will not be

able to transmit to the command center directly. Rather, they

need to transmit their information over multiple hops, using

intermediate nodes. Due to the unforeseeable conditions in

the emergency area, routing decisions can not be made

before deployment. Also, network characteristics change

often, making robust, adaptive, on-demand communication

protocols necessary.

The design of a robust protocol has to take into account

the problems specified above. The common approach is

to augment an existing non robust implementation with

additional error handling procedures for each prospective

fault. This leads to very complex code, that has a high

memory consumption at runtime and is therefore prohibitive

in the kind of system considered here. A single sensor-node

usually features only about 1-4 kB RAM and 16-128 kB

flash. Additionally, this approach necessarily leaves out all

cases not anticipated during the design phase.

This can be avoided by specifying the fault free case and

regarding everything that diverges from this as faulty. Self-

stabilizing algorithms are designed in that fashion. They are

based on a description of the valid local states and guarantee

that, despite changes through transient faults, one of these

states will eventually be reached again. By restricting the

algorithms to work on local information only (i.e., the

state of a node and that of its immediate communication

neighbors), their implementation can be kept concise and

yet they handle a large fault class, consisting of faults that

are notoriously hard to detect.

In this paper we present a self-stabilizing combination of

MAC - and routing protocol for data gathering (sense-and-

send) scenarios, where all nodes need to deliver their data

to a single sink.

The self-stabilizing design enables the protocol to com-

pute a data gathering tree in an ad-hoc sensor network taking

the communication pattern into account. After a transient

fault occurs, the protocol is able to converge back into a

stable state and bring the WSN back to service.

The Performance of the presented protocol depends on the

depth of the generated tree. When a transient fault occurs,



it is possible that the subtree of the faulty node has to be

restabilized.

This paper is structured as follows: Section II gives a brief

introduction of self-stabilizing algorithms and the SelfWISE

framework we used. SelfTDMA, our cross-layer protocol,

is described in section III and evaluated in section IV. We

finish with conclusion and future work in section V.

II. SELF-STABILIZATION

Self-stabilization was first mentioned by Dijkstra in his

paper ”Self-Stabilizing Systems in Spite of Distributed Con-

trol” [1]. It has been designed for a network of processors

with a set of registers. Each processor possesses a local view
of the network. This means it has read and write access to

its own registers and read only access to the registers of its

neighbors. All values stored in the registers of a processor

combined are called the state of the processor. The union of

all processor states is called the system state.

To design a self-stabilizing algorithm it is first of all

necessary to define a predicate: the set of stable states of

the system. A stable state describes an error free state of the

whole network. To reach such a stable state, a set of rules

of the form guard → assignment is given. If the guard

predicate is resolved to true the rule is called enabled. If a

rule is enabled the list of assignments may be executed.

The operation of a self-stabilizing algorithm uses step-

wise execution. At each step each processor checks for

enabled rules. An omnipresent controller, called daemon,

knows which rules are enabled and decides which as-

signments are executed. There are three typical daemons:

central, synchronous and distributed. The central daemon

only allows the execution of exactly one rule at a time.

In contrast, when the synchronous daemon is used, each

processor with at least one enabled rule runs the assignment

part of exactly one enabled rule. The third daemon, the

distributed daemon, is a mixture of both base types. Here, a

non-empty set of processors with one or more enabled rules

runs the assignment part of one rule.

An algorithm described in this form is self-stabilizing, if

it meets the two conditions of convergence and closure. The

convergence condition guarantees that the system reaches a

stable state from each arbitrary state in finite time. Closure

means that once a stable system state is reached, the system

stays in a stable state as long as no error occurs. Rule

execution never leads from a stable state to a non-stable one.

It is possible that no rules are enabled in a stable state. As

a result, self-stabilizing algorithms guarantee an eventually

consistent system state.

A. Self-Stabilization in Wireless Sensor Networks

To use the approach of self-stabilization in the world

of wireless sensor networks, several transformations have

to be done. In the following, a computation device is

defined as a sensor node with built in RAM, instead of a
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Figure 1. Structure of SelfWISE-Framework

processor with registers. The network between the nodes

is based on wireless communication, not on distributed

memory or direct data register access. Considering this type

of communication, the abstraction of the local view needs

to be redesigned. Based on the broadcast characteristics of

the wireless medium, one execution step is divided into

three parts: At first, each node shares its local state with

its neighbors. In the second part, each node evaluates the

rule guards. Execution of assignments is done in part three.

Another problem that needs to be solved is the abstraction

of the daemons. In the world of wireless sensor networks,

no omnipresent control unit which reaches all nodes exists.

There are several transformations for each type of dae-

mon [4], [5], [6]. Considering the standard operation of

a system of independent sensor nodes, the abstraction of

the distributed daemon seems to be the best match. In the

following, the approach presented in [8], [13] is used. Each

node decides whether or not to execute the assignment of

an enabled rule based on a fixed probability.

If transient faults, e.g. link breaks, occur, they affect the

local view of at least one node. The change of the local view

can cause a violation of the system predicate, so at least one

guard has to be enabled. The enabled rule will be executed

and the system starts to converge back to a stable state.

B. SelfWISE

To ease the implementation and execution of self-

stabilizing algorithms on wireless sensor networks, Weyer

and Turau developed the SelfWISE framework [12]. It is

divided into two parts:

The first part provides a language which enables the

implementation of algorithms using predicate logic expres-

sions. The second part is a modular middleware which

supports the execution of the generated algorithm. Each

exchangeable module fulfills a special task. Figure 1 shows

a schematic representation of the framework used at each

node.

The Platform module connects the general parts of the

framework with the characteristics of a particular hard-



ware. This module takes care of platform depended tasks

like communication and random number generation. For

the execution of the algorithms it is necessary to explore

and determine a bidirectional communication neighborhood,

which is done by the Neighborhood module. Based on the

explored neighborhood, the State-Manager module shares

the current state of the node and manages the states of

the own neighborhood. The state manager also provides an

interface which is used to request the states of neighboring

nodes for the evaluation of the guards. The management

of rules, evaluation of guards and the execution of the

assignment part is done by the Rule-Engine. Which enabled

rule is executed depends on the implementation of the

rule engine. Which module is activated is defined by the

Controller. The abstraction of the daemon is also included

in the Controller. If any rules are enabled, it decides whether

or not any one of these rules is executed.

The SelfWISE framework is able to handle several depen-

dent and independent self-stabilizing algorithms. Whether

or not the composition of algorithms is also self-stabilizing

depends on the implementation of these algorithms.

III. SELFTDMA

In this section we describe the SelfTDMA slot assignment

scheme. The goal of this approach is to increase the data flow

from the data sources to a fixed sink by taking the converge-

cast communication pattern into account. To optimize the

data flow the increasing network load closer to the sink needs

to be considered. This network load causes an increasing

probability of message collision and congestion. To avoid the

problem of collisions we use a time division medium access

control mechanism. The slot assignment supports the data

flow on paths from data sources to the sink by decreasing

latency and avoiding congestion.

The SelfTDMA scheme consists of three succeeding self

stabilizing algorithms. Each algorithm has only read access

to the results of the previous one, so we can guarantee

stabilization if each algorithm stabilizes.

In the following subsections the three self-stabilizing al-

gorithms are presented in detail, followed by the description

of the TDMA slot assignment. Section III-A shows the

self stabilizing tree construction algorithm. The computed

minimal spanning tree is, on one hand, used for routing

messages to the sink. On the other hand it is also used to

determine shortest paths between leafs and the sink. Section

III-B describes the second algorithm. This algorithm counts

and shares the number of paths between leafs and sink and

the overall count of paths. The computed tree from step

one is used as base for the second step. The third algorithm

(section III-C) labels each path with a unique number. Based

on these numbers, each node is able to determine a set of

IDs of paths it participates in. Using these IDs, each node

is able to compute the slots it is allowed to send in, and

the slots of its children. The slot assignment is described in

subsection III-D.

The state of each node, managed by the state-manager, is

a composition of the state variables of the three algorithms.

A. Tree Construction

To compute the routing tree the algorithm from Dolev[2]

is used. This algorithm generates a minimal spanning tree

and provides information about the hop distance to the sink

and the ID of the next hop (called parent) at each node.

The resulting routing tree is rooted at the sink. This base

algorithm of Dolev is expanded to compute a boolean value

which is true, if a node has no children.

The state of this algorithm consists of three variables, an

ID for the parent, an integer for the hop distance and a

boolean for the isLeaf flag.

The algorithm is composed of three rules. Rule one, only

executed by the root, assigns a distance of zero and an

invalid parent ID to its state variables. The second rule

selects a parent with minimal hop distance to the root from

the set of neighbors. If more than one node with minimal

distance exists, the first node of the set is selected as parent.

Based on the selected parent, the distance value is set to the

parents distance plus one. Rule three determines that a node

is a leaf, if no node exists, whose parent register is equal to

the node identification of the current node.

B. Exchange of Tree Information

The second self stabilizing part of the SelfTDMA algo-

rithm counts the paths between leafs and sink. The compu-

tation starts at the leafs. Rule one sets the amount of paths

a leaf is participating in to one. Rule two is applied by all

non leaf nodes. Each non leaf node computes the amount of

paths it is participating in by adding the number of paths its

children participate in. Starting from the leaf, each node on

the path to the root computes correct values for the amount

of paths in the spanning tree. Finally, the root is able to

compute the overall path count of the tree by applying rule

three. The result of the computation is propagated back to

the leafs using rule four.

The state of this algorithm stores a variable for the amount

of paths it is participating in and the overall number of paths

in the network.

Please note that the second algorithm stabilizes if and only

if the spanning tree algorithm is stable. As long the first step

is unstable, the execution of the rules of algorithm two can

lead to wrong decisions.

C. Path Allocation

The purpose of the third algorithm is to choose path

indices. These indices are stored in a bit array. Each node

has to choose an index for each path it participates in. There

are three constraints for how each node can select indices:

First, no two nodes at the same hop-distance to the root



choose the same indices. Second, the set of chosen paths of

one node is a subset of the indices of its parent. Third, the

highest used index is equal to the number of paths in the

spanning tree.

The algorithm starts at the root. Using rule one, the root

node chooses the indices of all paths in the tree, because

the root is member of all paths. Rule two is applied by all

non-root nodes. It is used to choose an available and free

ID from the parent node.

Because of the parallel processing of all nodes it is

possible that two nodes that share a parent choose the same

ID. This would be a contradiction to the first constraint

mentioned before. To dissolve such double selections, each

parent node computes a set of chosen paths of its children

(rule three). This set is also used to decrease the probability

of a wrong selection at rule two. During computation of the

already chosen IDs, the parent node is able to detect double

selected path IDs. Rule four displays the multiple times

chosen path ID and the node ID of one of the responsible

nodes. When a child node is causing a double allocation,

rule five frees the corresponding path ID.

The parallel execution of all algorithms and changes of

neighborhood can lead to the problem that a formerly chosen

path ID is not longer available or that a node selects too

many paths. Rule six frees IDs which are no longer provided

by the parent node. If a node has chosen more path IDs than

the amount of paths it participates in, rule seven frees an

arbitrary path ID.

The state of the third algorithm consists of two bit arrays

representing the IDs of the path the node itself has selected

and all IDs its children have selected. Additionally to these

arrays two integers show the array index and node ID of a

collision detected by this node.

D. Slot Allocation

Based on results of these three self-stabilizing algorithms,

each node is able to compute in which slots it is allowed to

send and the slots its children are using. The main goal of

the SelfTDMA algorithm is to reduce the buffer congestion

in the data gathering scenario. To reach this goal the idea of

the SPR algorithm [9] is adapted. This adaptation reduces

the forwarding latency of packages on the path from leafs

to the sink.

Each node is able to compute its slots σ with the following

equation:

σ := {i · κ+ (κ− (d mod κ))|0 ≤ i < #p, P[i] = true}
Here, d is the hop distance to the sink, #p is the amount of

paths the node is participating in and P is the bit array of

chosen path IDs.

The result of the equation is a TDMA frame divided

into subframes for each path from leaf to sink in the

spanning tree. First, path one is activated, followed by the

subframe for path two and so on. Each path subframe has κ

consecutive slots. All nodes of a currently active path with

a distance (κ− (d mod κ)) = 0 use the first slot . All nodes

with (κ − (d mod κ)) = 1 use the second slot and so on.

After κ hops on the path to the sink the slots are reused.

This allocation scheme enables forwarding of a message up

to κ slots per path subframe.

Each node allocates one slot for each path it participates

in. Thus nodes with higher network load closer to the

root have more slots. This decreases the probability of

congestion.

The constant κ affects the behavior of the MAC-protocol

significantly. A high value of κ increases the amount of

hops a package can be forwarded per path activation. It also

reduces the probability of collisions caused by the reuse of

slots each κ hop on the path. But a high value also causes a

bad slot utilization because each subframe contains κ slots.

If the length of some paths is lower than κ, the first slots

of the subframe will be unused. The length of the whole

TDMA frame depends on the amount of paths and the size

of κ. As in all TDMA schemes, a long frame increases the

latency of messages drastically.

Taking advantage of the minimal spanning tree, κ can

be set to three, to avoid collisions within communication

distance. If the interference distance is much greater than

the communication distance, a higher value of κ should be

used.

IV. EVALUATION

To evaluate the protocol, we implemented SelfTDMA and

SelfWISE for the event driven operating system REFLEX

[11]. The evaluation is dived into two parts. First, the

protocol is evaluated under controlled conditions in the

simulator OMNeT++ [10], an integration of REFLEX was

already available [7]. Here, different topologies and different

error scenarios are evaluated. The second evaluation is done

in a real world setup, based on the eZ430-Chronos platform

from Texas Instruments [3].

A. Implementation

The implementation of SelfWISE consists of simple mod-

ule implementations. The Neighborhood is easily explored

by exchanging the local neighbor table. A node that receives

a neighborhood message adds the node from which it

received the message to its own table. A bidirectional link

between node A and B is assumed, if node A receives a

neighbor table from B with an entry of A.

The RoundRobinRuleEngine evaluates all registered rules

at the start of each step. The first enabled rule is marked,

and is prepared for execution. The Controller decides, with

a user defined probability, if the marked rule is executed.

The state of all algorithms is exchanged periodically. The

simple state manager only manages states of neighbors with

bidirectional communication links. All states of neighbors

connected via unidirectional links are ignored.



The SelfTDMA protocol also controls the execution of

the SelfWISE framework. Before the application is started,

a setup phase allows the continuous execution of the frame-

work. After the start of the application, the computed TDMA

frame is activated. The frame for the path activation is

extended by some slots for the execution of the SelfWISE

framework. The subframe at the start of the TDMA frame

is long enough to run three self stabilizing steps.

B. Simulations using OMNeT++

The goal of the OMNeT++ simulations is to test the

behavior of the protocol under controlled conditions. On the

used physical layer no errors occur during transmission of

messages. Even though in reality the range of interference

is larger than the communication range, they are simulated

as being of equal size. Instead of error due to interference,

different error situations are simulated using a scenario

manager. This scenario manager is able to inject link breaks

and complete node failures into the network.

Based on this OMNeT++ setup, different topologies were

evaluated. The size of the network was varied between 40,

60, 80, 100 and 200 nodes, with an average number of

neighbors of 4, 6, 9, 12, 15 and 18 nodes. The evaluated

scenarios vary in failure frequencies, failure duration and

ratio between link breaks and complete node failures.

The test application was a simple sense-and-send ap-

plication. Each node generated messages periodically, and

transmitted them to the sink. At the sink, the data from

the received messages was recorded. With this, the packet

delivery ratio and the average latency can be calculated. In

the simulation, one node in the network generated a packet

and transmitted it to the sink every ten seconds.
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Figure 2 shows the measured latency values for three

different scenarios: In Scenario A, an error occurred every

ten seconds, it lasted ten to twenty seconds. Eighty percent

of these errors were link breaks. In Scenario B, an error oc-

curred every thirty seconds, it lasted thirty to sixty seconds.

Eighty percent of these errors were link breaks. The third

scenario contains no errors and is used as reference.

The figure shows that the different error scenarios affect

the latency of message transmission only marginal. An

increasing node count increases the latency because of the

longer paths between leafs and sink.
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Figure 3 shows the reached delivery ratio. In the error-free

case, the protocol reached a delivery ratio of one hundred

percent. Taking a closer look at both other scenarios it

can seen that the packet delivery ratio does not decrease

significantly. In both scenarios a delivery ratio of 98 to 99

percent is reached.

C. Real world evaluation

In the second part of the evaluation the algorithm was

evaluated on modified eZ430-Chronos nodes from Texas

Instruments. These sensor nodes have a program memory

of 32kB, 4kB of RAM and transmit in the sub-gigahertz

band (868MHz). The usage of REFLEX-Code in the sim-

ulations and on the real hardware enabled us to keep the

necessary software modifications to a minimum. The Self-

WISE platform implementation was replaced and extended

by a hardware random number generator. For the TDMA,

a kind of clock synchronization was necessary. A round

synchronization at the start of the application was used,

which is of course not as accurate as the synchronization



used in the simulations. In this experimental setup each node,

except for the sink, generated a packet every ten seconds and

transmitted it to the sink.

The experiment was run with a small three times three grid

on two different locations. The first experiment was located

at the second floor of the main building of our university. The

sensor nodes were placed on the ground and the experiment

was repeated three times. Even though no retransmissions

were used, an average packet delivery ratio of 67.5 percent

was reached.

The second experiment was located at the lawn in front of

the main building. The sensor nodes were placed on poles

twenty centimeter above the ground. The experiment was

repeated five times with the same parameters. The measured

packet delivery ratio shows a slightly better result of 70.8

percent, still without retransmissions.

During the experiment, the communication was monitored

using passive monitoring. The monitoring tool shows that

about ten percent of received packets were invalid. The

reasons for this are as yet unknown. One possible expla-

nation for this could be strong interference. Another one

would be hardware problems. Other experiments conducted

with the same hardware (results submitted to S-cube 2012)

seem to show an error in the state machine of the radio

module. Which of the possible explanations holds true if

any, or if there is a different one entirely, remains to be seen.

Experiments are currently underway, which should help in

finding the right explanation.

V. CONCLUSION

In this paper we have presented a robust, self-stabilizing

TDMA/routing protocol for wireless sensor networks used in

emergency management. Simulations conducted so far show

a good stability behavior. When errors occur, the system is

returned to a stable state quickly.

Even though the implemented self-stabilizing algorithm

does not use any retransmissions, a delivery ratio of more

than 98 % was reached in simulations. Using real sensor

network hardware from Texas Instruments, a delivery ratio

of about 70% was achieved in the real experiments. This

represents a huge information gain for central command,

and can be further increased by using retransmission and/or

aggregation schemes.
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