
Sensorium - An Active Monitoring System for
Neighborhood Relations in Wireless Sensor

Networks

Stefan Nürnberger, Reinhardt Karnapke, and Jörg Nolte

Brandenburg University of Technology Cottbus
{snuernbe,karnapke,jon}@informatik.tu-cottbus.de,

Abstract. Communication neighborhood in wireless sensor networks
changes often as links break or appear. Therefore, monitoring link qual-
ity and (logical) network topology is necessary. As node placement has
a large influence on the radio neighborhood and its changes, different
positions should be evaluated before starting the actual application.
In this paper we introduce Sensorium, an active monitoring system
that supplies the user with an insight into the neighborhood relations
between nodes and their changes in time. It can be used before the
actual deployment to evaluate different possibilities of node placement
and choose the one that offers the best connectivity.

Key words: wireless sensor networks, active monitoring, robustness,
Sensorium

1 Introduction

Wireless sensor networks offer a wide variety of applications which merit a num-
ber of design goals. When a sensor network is designed and deployed, network
lifetime is one of the major goals. But there are two factors that need to be
considered during deployment: Sensor coverage and network connectivity. The
application dictates the area that has to be surveyed, thus deciding the mini-
mum number of nodes needed to reach the desired coverage. To determine the
needed number of nodes to reach the necessary connectivity, it has to be mea-
sured in a pre-deployment phase. But measuring it only once is not enough.
As various experiments have shown, network connectivity varies a lot over time
[20, 18, 9, 6, 8, 5]. These changes make it necessary to monitor the connectiv-
ity either constantly while the application is running, or for a sufficient time
before the deployment. Monitoring during network operation always introduces
runtime overhead and active monitoring changes the surveyed system. For this
reason, we decided to use a pre-deployment monitoring approach.

In this paper we present Sensorium, a monitoring system for neighborhood
relations in wireless sensor networks. It collects the information of each node
placed in a location that could be used in the real deployment before the sensing
application is started. The connectivity information is then gathered at a central



2 Stefan Nürnberger et al.

sink, enriched with a map of the deployment area and presented visually. Based
on this information, a user can decide where to add additional nodes or to move
already deployed ones, in order to have the best connectivity possible.

This paper is structured as follows: Section 2 shows different approaches
that can be used when designing a monitoring system for sensor networks. Our
system, Sensorium, is presented in section 3 and an exemplary deployment
described in section 4. Related work is given in section 5. We finish with a
conclusion in section 6.

2 Designing A Monitoring System for Wireless Sensor
Networks

When designing a monitoring system for wireless sensor networks, it is always
necessary to have at least a partial knowledge of the intended application. De-
signing a general monitoring system that can be used for all applications is
nearly impossible and will automatically lead to a waste of resources when data
is gathered that is not needed. Therefore it is mandatory to define the monitoring
issues first. These can include for example the liveliness of the sensor network as
a whole or individual node failure. Connectivity, i.e., the ability of the sensors to
deliver the sensed values to the sink is another critical aspect, even though there
is not much that can be done to change it after deployment. Sometimes sensors
on individual nodes will fail, delivering false data, which can also be detected
on the sink, , e.g., by comparing the values detected by neighboring nodes. If
the difference is too high, one or more of the sensors must be faulty. The energy
status of nodes can be measured and used for traffic shaping to prevent node
failures. After node failures, the human operator will need to know if the area
that has to be monitored is still completely covered.

Some of these monitoring goals can be reached without transmitting addi-
tional data, simply by deriving information from the traffic that arrives at the
sink. Others require the monitoring system to generate its own information on
the nodes and transmit it to the sink in one way or another. This second ap-
proach is called an intrusive way or an active monitoring system while systems
that use the first approach are called passive monitoring systems.

2.1 Passive Monitoring

Passive monitoring systems aim to provide all information desired by the user by
deducting it from the messages that are transmitted by the application anyway.
Sources of information are , e.g., the number of packets that arrived at the sink
either from a certain node or from a certain part of the network. When the
routing topology (, e.g., a tree) is known, it is possible to find node failures that
are responsible for missing data from a whole subtree. Another possible source
of information is the application data collected. If the values collected from one
particular node are not within a certain boundary or diverge too much from
those of neighboring nodes, the probability of sensor failure is high.



Sensorium 3

The big advantage of passive monitoring is that it does not interfere with the
application in any way. Timing, network load and energy consumption remain
the same whether it is used or not. It is also possible to make a post-mortem
analysis of the network from stored data. There are, however, a number of disad-
vantages. When no messages from a node arrive at the sink, it is not possible to
distinguish between the different possible reasons: Packet loss, congestion, link
failure and node failure all lead to the same error pattern. Another disadvan-
tage is that only a limited view of the status of each node is provided. If the
application data does not include the energy status of the nodes, it can only
be roughly approximated. Neighborhood information and area coverage are also
problematic. The most important problem, though, is that passive monitoring
is only usable for applications that communicate regularly, like , e.g., habitat
monitoring. When the application does not communicate regularly, it is not pos-
sible to satisfy the liveliness criterion needed , e.g., by networks deployed for fire
protection or intrusion detection.

2.2 Active Monitoring

There are two ways of realizing active monitoring, in band and out of band. Both
of them can be used to gather periodic data or request data on demand. The big
advantage of active monitoring is that any kind of data that could be of interest
can be monitored. The biggest disadvantage is that it interferes with the normal
operation of the sensor network. If it is realized with in-band communication
(i.e., using the same means of communication as the application) it increases
the network load which can lead to congestion and thus packet loss. Even if
no packet loss occurs, it can influence the timing behavior badly. If additional
communication hardware is used, the energy consumption of the sensor nodes is
still increased. Even if the additional hardware comes with its own power supply,
it still needs to access at least the memory to retrieve , e.g., neighborhood tables.
Also, the additional hardware makes the nodes more expensive. All this influence
on the node behavior can either mask errors or even introduce new ones.

Even though there are so many disadvantages that need to be considered,
active monitoring is absolutely necessary for a number of criteria. When liveliness
is the number one goal, and failing nodes have to be replaced immediately, active
monitoring should be used. It is also quite useful for monitoring of the logical
topology of a network. This enables the evaluation of possible locations for node
placement in a pre-deployment phase, to find the minimum number of nodes
needed and their placements to reach the desired area coverage.

3 The Architecture of Sensorium

Sensorium was developed as a tool that enables the user of a wireless sensor net-
work to find out the best placement and the number of nodes required to ensure
connectivity between nodes and the sink. To supply this information, Senso-
rium uses the active monitoring approach, and gathers extensive information



4 Stefan Nürnberger et al.

about the status of every node. While this would interfere with the normal oper-
ation of a sensor network, Sensorium is meant to be used in a pre-deployment
phase, where no application is running yet. It could also be used after deploy-
ment, but then all the disadvantages of active monitoring described above would
take effect.

In order to provide information about network connectivity, a simple neigh-
borhood discovery protocol is used: all nodes transmit messages regularly. Upon
reception of such a message a node notes that at the current point in time there
had been an incoming link. To retrieve this information, the sink node sends info
request messages into the network, which are answered by the nodes with their
current state information. The network behavior is therefore similar to that of
a typical sense-and-send application, where a powerful sink requests data from
the sensor nodes, which is then merged and stored for further evaluation.

In Sensorium, no data packet aggregation is used on the forwarding nodes,
because Sensorium already aggregates neighborlists, routing metrics, sensor
data and all other requested information into a single packet. Such a packet is
already fairly large. As these types of data can not be combined without losses
and aggregating two messages would double the size, the probability of packet
loss would increase too much.

Sensorium uses a modular architecture which allows a user to easily ex-
change routing protocols or the evaluation interface and add new information
sources (, e.g., new types of sensors). This modular architecture makes it also
easy to switch between hardware platforms, and even allows the usage of one
programming language on the sensor nodes and another on the sink or the host
system where the results are displayed for the user.

3.1 Notion of Chronological Sequence

When monitoring network connectivity, it is necessary to be able to identify
links between nodes, and their changes in time. Therefore some notion of time
is needed, to build a row of snapshots of the logical network topology. In Sen-
sorium time is divided into epochs, with each node collecting its neighborhood
information anew in each new epoch. Clock skew is tolerated. This is possible
because the nodes always send their current epoch value with their answers,
enabling the sink to calculate the skew from its own epoch counter. The skew is
used when requesting values from the past that have been stored on the sensor
nodes (see data preparation at the sink, section 3.4). Please note that choosing
the right length of the epoch is crucial for the success of Sensorium. If it is too
long, changes will be missed. If it is too short, the network load gets too high,
possibly resulting in congestion. Also, determining the connectivity takes time,
as the neighborhood discovery protocol needs to transmit its messages. Epochs
must be larger than this amount of time.



Sensorium 5

3.2 Message Routing

The need to transmit data back to the sink in an ever changing radio neighbor-
hood makes the usage of an adaptive routing protocol mandatory. The choice of
routing protocol is heavily influenced by the communication scheme exhibited by
Sensorium: One to many for broadcasts from the sink to all nodes (requests),
many to one for replies from the sensor nodes to the sink, and one to one for
history requests from the sink to a node and the answers. For the first case,
transmission from the sink to all sensor nodes, a simple flooding (with duplicate
suppression) is used. This ensures the highest delivery ratio possible (if any path
to a node exists, it will receive the message) and does not introduce much over-
head, as all nodes need to receive the message anyway. The overhead measured
in data packets could be reduced a little by having only a subset of nodes re-
transmit the messages, , e.g., using multi point relay nodes like OLSR [4] does.
But finding these nodes and keeping the information up to date would introduce
unwanted protocol overhead, which could get quite large if the rate of changes
increases. The second case, where the sensor nodes transmit to the sink, has to
be handled like a one to one communication though, because no aggregation can
take place on the intermediate nodes for reasons described above. Please note
that the second case is now identical to the third one, and we will use the same
protocol for both cases. For the third case we need a reactive routing protocol
that does not rely on topology information, as we are only collecting that infor-
mation now. Occasional packet losses can be tolerated, as the history function of
Sensorium is used to automatically re-request missing data. Therefore, a best
effort protocol with a fairly high probability of successful delivery is sufficient.

In previous work we introduced Buckshot Routing [13], a robust source rout-
ing protocol for wireless sensor networks. In Buckshot Routing, a node that
receives a message does not only forward it if its own identity is enclosed, but
also if one of its neighbors is on the path the message has yet to travel. This
leads to a broader tunnel (with a breadth of one hop) around the source route
along which the message travels, circumnavigating broken or unidirectional links,
failed nodes and other obstacles. Sometimes the links that are used to circum-
vent these problems are unidirectional themselves, but pointing the other way.
Buckshot routing has a delivery ratio that is close to that of flooding while keep-
ing the number of involved nodes much smaller, especially in large networks. We
use Buckshot Routing for all communication from sensor nodes to the sink in
Sensorium. The original path around which Buckshot Routing builds its tun-
nel is obtained when the request from the sink is flooded into the network. Each
node that forwards the message attaches its own identity, collecting the path
that has been taken. The inverted path is then used for the answers from each
sensor node to the sink.

Duplicate detection is realized using the identity of the sender and a sequence
number defined by the sink. If a node is reset for any reason, it still receives the
current sequence number with the next request from the sink, avoiding all false
positives in duplicate detection.



6 Stefan Nürnberger et al.

3.3 The Request Handler

The request handler which runs on all sensor nodes is used to evaluate the queries
sent by the sink. It works on a configurable set of information sources which are
represented as bits in a bit field in the query messages. This representation
enables the sink to specify different sources within each query. The answers are
represented in type-length-value (tlv) encoding, which eases the inclusion of new
sources by simply adding a new type and specifying a position in the bit field.

In our examples the sources used are neighborhood details, routing informa-
tion, packet statistics, temperature, light intensity and current energy level. The
request handler is realized as a service that decodes the requests, compiles the
requested information from its sources and transmits the response messages. The
sink then combines the information from all nodes to a snapshot of the status
of the whole network.

3.4 Data Preparation at the Sink

The sink runs a local version of almost all node components. The routing is
a little different, though. Instead of forwarding packets to another node, they
are collected and evaluated here (replies) or injected into the sensor network
(requests). The sink provides some of the information sources just like the other
sensor nodes (neighborhood information, packet statistics) but omits some others
(no sensors, no battery). It also does not have to store a local history as requests
to the sink should never fail.

There are two modes of operation for the sink, idle and monitoring. In idle
state the sink simply waits for the first requests from the user to switch into the
active, monitoring mode. Once it has been switched to monitoring, it sends out
the periodic information requests to all nodes and keeps the information up to
date. This is done by collecting all incoming data, sorting it according to the
epochs and identifying nodes from which data is still missing.

The counter for missed responses from those nodes is increased, if it reaches
a certain threshold the nodes are marked as currently unreachable. At the same
time, a history message is created and entered into the history queue for those
nodes not marked as unreachable. The messages contained therein are sent re-
peatedly at regular intervals, until an answer is received or the node in question
is marked as unreachable. Once any message is received from a node that has
been marked as unreachable before, it is marked as reachable again and a history
request for all missed data is generated and entered into the queue. To enable
this recovery of lost data, the sensor nodes need to store it locally for a certain
amount of time. This is realized using a ring buffer in which the last n values
are stored. Which sources are included in the ring buffer is configurable, it does
not have to be all that are monitored.

The sink also offers an application programming interface which can be used
to control the monitoring process (, e.g., define which sources should be requested
in the queries) and request the collected information of a whole epoch (involves



Sensorium 7

no communication inside the sensor network). It is the general interface for user
applications.

3.5 The User Interface

The user interface is used to switch the modes on the sink between idle and
monitoring, and to define the desired information sources for the queries. It
also offers the possibilities to configure the presentation and evaluation of the
gathered data, as all data is transmitted from the sink to the user interface
unevaluated. Figure 1 shows an example of the web interface which is used to
gain fast access to listings of all data already gathered and the visualization
of the logical topology of the network (radio neighborhood). The web interface
can run on almost every platform, even on mobile devices like smart phones for
on-site evaluation as it only requires a web browser.

Fig. 1. The Web Based User Interface of Sensorium

Seeing the logical topology is already helping the user a great deal, but the
actual geographic information is still necessary to decide which nodes may be
removed while keeping the area coverage required by the application. Therefore, a
GIS based interface is also provided. It visualizes the network as graphic overlay,
and can use data from any geographic database. This is especially useful for
deployments like , e.g., fire detection in a nature-sanctuary, where a map taken
by airplane can be combined with the GPS coordinates delivered by the nodes.
The GIS interface can also visualize the sensor values (, e.g., temperature or
light intensity) and the neighborhood- and routing information. All gathered
data that is not represented directly is easily accessible from here. An example



8 Stefan Nürnberger et al.

of the visualization taken from our outdoor experiments is shown in figure 3,
section 4.3.

4 Deploying Sensorium

To evaluate our prototype implementation, we made a number of experiments
which are described in this section, after the hard- and software we used is
presented.

4.1 Hardware

We employed the SunSPOT nodes developed by Sun Microsystems as the sensor
node platform for our implementation of Sensorium. The SunSPOT hardware
consists of a baseboard with the computing and communication parts and a
stacked sensor board with the sensor hardware and additional connectors. The
baseboard features a 32bit ARM920T processor, 512kB of RAM and 4MB Flash
memory as well as a 2.4GHz IEEE 802.15.4 compatible radio module. The sensor
board includes temperature and light sensors as well as a three axis accelerom-
eter, eight LEDs and two user buttons. External components can be connected
to the sensor board through six analog inputs and five general purpose I/O pins.
For the determination of a node’s physical position, we connected a SiRF-III
based GPS module to each node.

Fig. 2. One SunSPOT with GPS Module and a Base Station

A consumer grade laptop is used as the sink node in our deployments. It
is equipped with a 1GHz PowerPC G4 processor, 768MB of RAM and has an
attached SunSPOT base station for communication with the wireless sensor
nodes. The base station consists only of the SunSPOT base board. No sensor
board or battery is attached to it. A SunSPOT node with GPS module and the
base station are shown in figure 2.



Sensorium 9

4.2 Software

The whole software for Sensorium is written in the Java programming lan-
guage because of the used SunSPOTs platform. If any other hardware was used,
it would be no problem to implement the necessary components for the sensor
nodes in , e.g., C++ as only the packet types have to be adhered to. We have
chosen the SunSPOTs because we wanted to evaluate neighborhood relations
on sensor nodes equipped with an IEEE 802.11.4 transceiver. This was our first
evaluation of the SunSPOT software development kit from Sun Microsystems.
The SunSPOTs run a lightweight Java Virtual Machine, which enables rapid
application development for wireless sensor networks in a well known program-
ming language. The software for the sensor nodes and the sink depends on the
SunSPOT SDK. Communication between sink and user interfaces (not within
the sensor network) is based on Java RMI and is thus uncoupled from the SDK.
While this design enables the use of dedicated machines for data gathering and
evaluation, in our field experiments those services were consolidated on one ma-
chine. The system also allows for concurrent access to the gathered data from
different user interfaces. The central data management on the sink ensures that
the view on the network is consistent for all users even across different kinds of
user interfaces.

The web interface for Sensorium is a Rich Internet Application based on
the open source Echo Web Framework [12] which allows interactive web appli-
cations to be written completely in Java. In our installation the application is
hosted on an Apache Tomcat Web Server [10]. Concurrent access to this in-
terface is possible, while the application manages independent sessions for each
user. The clients need only be equipped with a reasonably modern web browser
with JavaScript support. A Java installation or Java RMI are not needed.

The implemented GIS interface is based on uDig [16], a standards compliant
open source geographic information system. Since uDig itself is based on the
Eclipse Rich Client Platform [17], the application is platform independent and
easily extensible with custom plugins.

4.3 Experiments

In the first row of field experiments we deployed networks in varying size from
6 to 25 nodes. The requested data included detailed neighborhood information,
energy level and the geographical position of the nodes determined from the
attached GPS modules. Unfortunately we experienced an unusually low commu-
nication range. The sensor nodes were only able to communicate reliably over
the fair distance of five to seven meters. Since this is also approximately the
accuracy of the GPS modules, the received geographic coordinates were quite
useless to determine the physical layout of the sensor network. The difference to
the experiences of others that were able to communicate over a distance of up
to 70 meters [23] with the same hardware was probably caused by a high noise
level in the 2.4GHz band at the deployment site. While the exact source of this
noise is unknown, we were forced to reduce the covered area of our deployments.



10 Stefan Nürnberger et al.

The experiments have shown that it is almost impossible to predict the net-
work topology of an ad hoc deployment. Our topology varied between a very
dense network and complete network separation. We also experienced a very
unbalanced neighbor count among the nodes despite the regular grid layout
we employed in our field experiments. Through the use of Sensorium in the
pre-deployment phase we were able to track the topology changes almost imme-
diately and adjust the topology accordingly. A real world deployment without
the use of a live monitoring system would have been fatal under the mentioned
circumstances.

Fig. 3. Deployment at the University Library

The topology visualization through the web interface of Sensorium is good
for small networks, but got quite cluttered with increasing node and neigh-
bor count. More sophisticated graph layout algorithms could help diminish that
problem. Later analysis of the log files on the sink showed that a considerable
amount of information was retrieved from the nodes’ history buffers. Without
those the achieved exhaustive topology view would not have been possible.

In a later experiment with 6 nodes the GIS based user interface was eval-
uated. As different deployment site the university library building was chosen.
The requested data included neighborhood information, energy level, the nodes’
geographic position, their current routing information and the readings from
the built in light sensors. Again, some of the information had to be retrieved
from history buffers. A screenshot from this deployment is shown in figure 3.



Sensorium 11

The gathered information from the sensor network fits nicely into an overlay of
geographic data like the shown digital orthophoto of the area.

An automated statistical evaluation of the gathered data is still missing, but
may be integrated into the existing user interfaces in the future. The history
management mechanism has proven to be an essential part of the system that is
able to compensate the insufficiencies of the unreliable wireless communication.

5 Related Work

Pimoto [1] is a completely passive monitoring system. It relies on dedicated
monitoring nodes that are deployed within the monitored network. Those nodes
capture the traffic from the network and push it to a central server. Bluetooth
communication is used to avoid transmitting the data in-band where it could
influence the monitored system. Through this design the monitoring does not
need to be suspended while data is transferred to the sink. Of course, this only
works when the sensor network operates in another frequency band than Blue-
tooth. The captured traffic is enhanced with meta data such as the capture time
and the monitoring node’s address. The server combines the data from all nodes
and automatically reorders packets with the information provided in the meta
data. Display and analysis of the traffic generated by the sensor nodes is accom-
plished through a custom plugin for Wireshark, a popular network monitoring
tool formerly known as Ethereal [7]. Pimoto may be described as a packet snif-
fer for wireless sensor networks that can be used for protocol debugging. The
developers emphasize that due to the redundant hardware the system may be
used to analyze already deployed networks. But the completely passive operation
renders it unsuitable for applications that exhibit little or no traffic at all. It also
means that in contrast to Sensorium Pimoto is not able to collect information
about radio neighborhood.

The authors of Sympathy [14, 15] utilize another approach to monitoring.
They use a concept of metrics to identify whether the monitored network is in
a state of error. Their primary metric is the number of packets that arrive at
the sink. Applications that yield the expected amount of data are likely to be
working correctly. This way the impact on bandwidth and energy consumption
is minimized. For applications that are not expected to communicate, Sympathy
offers the possibility to let nodes actively transmit periodic metrics like neighbor
count and current parent in the routing topology to the sink. When the metrics
suggest a state of error, e.g., some node repeatedly fails to transmit data, Sym-
pathy systematically inquires additional metrics from the nodes on the failed
path. Since single node failures in the sensor network may lead to subsequent
faults, when , e.g., the network gets separated, Sympathy employs an empirical
decision tree to identify the root cause of each detected failure. This way the
human operator of the network is presented with the most likely cause for the
detected behavior and may induce direct action. Sympathy is primarily thought
of as a sensor network debugger. As such it gives little insight to the workings
of a functional network. Comprehensive information is only generated when a



12 Stefan Nürnberger et al.

fault is assumed. Furthermore, a good deal of information about the expected
application behavior and network topology has to be provided in order to yield
accurate results. As Sympathy uses the messages generated by the application to
get an insight into the state of the network, it can not be used in pre-deployment
like Sensorium.

PAD [11] is a system similar to Sympathy that omits the active inquiry part
and uses a packet marking algorithm instead. Each packet transmitted through
the network is marked with a hop count and one of the forwarding nodes’ id.
The sink builds a belief network from this information, which is in turn used to
identify failures and their causes. The authors claim an accuracy of about 90%
for the fault identification algorithm. Since the correctness of the belief network
converges slowly with the number of received packets, the approach is less likely
to work for frequently changing topologies.

For sensor networks based on TinyOS, a nesC component framework for
active network monitoring and management called SNMS [19] can be used. It is
intended to be deployed alongside a sensor network application. SNMS provides
a flexible, application cooperative means to gather information about the state
of the sensor nodes and execute basic commands like node reset. Application
programmers may define additional parameters that are exported through the
system. Interpretation of this data is left to the network operator. SNMS offers
query based health monitoring of the deployed applications as well as an event
logging system. The nodes log events locally and transmit them to the sink when
a user defined threshold is exceeded. SNMS has also been extended with an RPC
mechanism that enables the management system to execute arbitrary commands
of the deployed application. The extended system is called L-SNMS [22] and
offers an enhanced Java based user interface for the visualization of events in
the network and additional management functionality such as reprogramming
of nodes. L-SNMS is the only system of those described above that offers a
visualization of the gathered information, which in our opinion is absolutely
necessary to help the user understand what is happening inside the monitored
sensor network. Therefore, Sensorium offers multiple user interfaces which show
the logical and/or geographical topology of the network enriched with further
gathered information.

Different tools for sensor network visualization such as WiseObserver [3],
Mote-View [21] or SpyGlass [2] are available. While WiseObserver and Mote-
View visualize data available from a connected database, they are not concerned
with obtaining this data in the first place. SpyGlass uses a simple flooding based
scheme to periodically broadcast sensor readings to gateway nodes. All three
systems focus on the efficient visualization of routing information and sensor
readings. SpyGlass also supports the creation of custom specialized visualization
plugins. In contrast to these protocols, Sensorium offers a complete solution,
gathering data in the sensor network, taking care of lost messages, enriching
the gathered data with freely available terrain information and presenting the
processed information to the user.



Sensorium 13

6 Conclusion

In this paper we have presented Sensorium, an active monitoring system for
wireless sensor networks. It is meant to be used in a pre-deployment phase, to
evaluate possible placements of individual sensor nodes. Sensorium actively
collects neighborhood information from the sensor nodes to deliver a complete
view of network connectivity to the user. When this is evaluated over a certain
time, a good placement for the sensor network can be found. We have shown that
our prototype implementation works in real world experiments with SunSPOT
sensor nodes. An interesting fact discovered in one of them is that the com-
munication range we measured in the first deployment was only a few meters
while other researchers using the same hardware were able to reach up to 70
meters. If the sensor network had been deployed without active monitoring, the
insufficient connectivity would have been discovered much later, leading to loss
of application data.

References

1. A. Awad, R. Nebel, R. German, and F. Dressler. On the need for passive monitoring
in sensor networks. In Proceedings of the 11th EUROMICRO Conference on Digital
System Design Architectures, Methods and Tools, volume 00, pages 693–699. IEEE
Computer Society, 2008.

2. C. Buschmann, D. Pfisterer, S. Fischer, S. P. Fekete, and A. Kröller. Spyglass: a
wireless sensor network visualizer. SIGBED Rev., 2(1):1–6, 2005.

3. J. A. Castillo, A. M. Ortiz, V. López, T. Olivates, and L. Orozco-Barbosa. Wiseob-
server: a real experience with wireless sensor networks. In PM2HW2N ’08: Pro-
ceedings of the 3nd ACM workshop on Performance monitoring and measurement
of heterogeneous wireless and wired networks, pages 23–26, New York, NY, USA,
2008. ACM.

4. T. Clausen and P. Jacquet. Optimized link state routing protocol (olsr) rfc 3626,
2003.

5. D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path
metric for multi-hop wireless routing. In MobiCom ’03: Proceedings of the 9th
annual international conference on Mobile computing and networking, pages 134–
146, New York, NY, USA, 2003. ACM.

6. T. L. Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, and S. Brosnan. Design and
deployment of a remote robust sensor network: Experiences from an outdoor water
quality monitoring network. In LCN ’07: Proceedings of the 32nd IEEE Conference
on Local Computer Networks (LCN 2007), pages 799–806, Washington, DC, USA,
2007. IEEE Computer Society.

7. B. Hards. A guided tour of ethereal. Linux Journal, 2004(118):7, 2004.
8. T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,

P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh. Vigilnet:
An integrated sensor network system for energy-efficient surveillance. ACM Trans.
Sen. Netw., 2(1):1–38, 2006.

9. K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: Experiences
from a pilot sensor network deployment in precision agriculture. In Proc. 14th



14 Stefan Nürnberger et al.

Intl. Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), Apr.
2006.

10. R. M. Lerner. At the Forge: Server-Side Java with Jakarta-Tomcat. Linux Journal,
2001(84):10, 2001.

11. K. Liu, M. Li, X. Yang, and M. Jiang. Passive diagnosis for wireless sensor net-
works. In SenSys ’08: Proceedings of the 6th ACM conference on Embedded network
sensor systems, pages 371–372, New York, NY, USA, 2008. ACM.

12. NextApp Inc. Echo Web Framework
http://echo.nextapp.com/site/echo3.

13. D. Peters, R. Karnapke, and J. Nolte. Buckshot routing - a robust source routing
protocol for dense ad-hoc networks. In Ad Hoc Networks Conference 2009, Niagara
Falls, Canada, 2009.

14. N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. Sym-
pathy for the sensor network debugger. In SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, pages 255–267,
New York, NY, USA, 2005. ACM.

15. N. Ramanathan, E. Kohler, L. Girod, and D. Estrin. Sympathy: A debugging sys-
tem for sensor networks. In LCN ’04: Proceedings of the 29th Annual IEEE Inter-
national Conference on Local Computer Networks, pages 554–555. IEEE Computer
Society, 2004.

16. P. Ramsey. User Friendly Desktop Internet GIS (uDig) for OpenGIS
Spatial Data Infrastructures. Technical report, Refractions Research Inc.,
http://udig.refractions.net/docs/udig-summary.pdf, 2003.

17. D. Rubel. The heart of eclipse. Queue, 4(8):36–44, 2006.
18. L. Sang, A. Arora, and H. Zhang. On exploiting asymmetric wireless links via

one-way estimation. In MobiHoc ’07: Proceedings of the 8th ACM international
symposium on Mobile ad hoc networking and computing, pages 11–21, New York,
NY, USA, 2007. ACM Press.

19. G. Tolle and D. Culler. Design of an Application-Cooperative Management System
for Wireless Sensor Networks. In Proceedings of the Second European Workshop
on Wireless Sensor Networks (EWSN), pages 121–132. IEEE Operations Center,
2005.

20. Turau, Renner, and Venzke. The heathland experiment: Results and experiences.
In Proceedings of the REALWSN’05 Workshop on Real-World Wireless Sensor
Networks., Jun 2005.

21. M. Turon. Mote-view: a sensor network monitoring and management tool. Em-
bedded Networked Sensors, IEEE Workshop on, 0:11–17, 2005.

22. F. Yuan, W.-Z. Song, N. Peterson, Y. Peng, L. Wang, B. Shirazi, and R. LaHusen.
A lightweight sensor network management system design. Pervasive Computing
and Communications, IEEE International Conference on, 0:288–293, 2008.

23. M. Zennaro, H. Ntareme, and A. Bagula. Experimental evaluation of temporal and
energy characteristics of an outdoor sensor network. In Mobility ’08: Proceedings
of the International Conference on Mobile Technology, Applications, and Systems,
pages 1–5. ACM, 2008.


