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Abstract

Wireless sensor networks operate in an unstable envi-
ronment and thus are subject to arbitrary transient faults.
Self-stabilization is a promising technique to add tolerance
against transient faults in a self-contained non-masking
way. A core factor for the applicability of a given self-
stabilizing algorithm is its convergence time. This paper
analyses the average stabilization time of three algorithms
commonly regarded as central building blocks for wireless
sensor networks. The analysis is accomplished with Self-
WISE, a framework providing programming abstractions
for self-stabilizing algorithms. The performed analysis con-
siders the target models as well as network size and density.
This demonstrates the usability of SelfWISE for evaluating
self-stabilizing algorithms under a wide range of models.
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1. Introduction

The characteristics of the wireless communication
medium and other environmental influences (natural as well
as artificial) lead to the frequent occurrence of transient
faults [1]. Therefore, algorithms for wireless sensor net-
works (WSNs) need to be fault-tolerant especially against
this kind of faults; otherwise operation over longer peri-
ods are not feasible. Self-stabilizing techniques [9] pro-
vide non-masking fault-tolerance in a self-contained man-
ner. The applicability of these techniques to wireless sensor
networks (WSNs) has therefore been a hot research topic in
recent years. One important measure for the suitability of
a self-stabilizing algorithm is its convergence time, because
it expresses the time the service is not available. However,
analytical studies of convergence time yield upper bounds
only, which may be far from the average case.

What makes the property of self-stabilization outstand-
ing, is that it can be formally verified in mathematical

proofs. The complexity of such a proof directly depends on
the assumptions made about the order and level of concur-
rency in which nodes may execute the algorithm. To keep
things simple, the majority of algorithms use a sequential
execution model, where exactly a single node executes at
a time. This allows to concentrate on issues directly con-
cerned with the self-stabilization property and leave aside
concurrency issues. It is legitimate to do so, because it has
been shown that algorithms written for one model can be
adapted to run under another model. This is accomplished
by generic transformers, which preserve the self-stabilizing
properties, without detailed knowledge of the particular al-
gorithm. To use self-stabilizing algorithms in sensor net-
works it is necessary to adapt them to a suitable model.

SelfWISE is a framework, which provides a program-
ming abstraction that allows a formal specification of algo-
rithms. These are automatically compiled into WSN appli-
cations based on a runtime environment where the devel-
oper can choose among a set of common transformations.
This paper uses SelfWISE to assess the average conver-
gence time of three algorithms with relevance to WSNs:
Maximal independent set - used in clustering -, vertex col-
oring - used to construct TDMA schedules -, and breadth
first spanning tree - used in routing algorithms. The results
are compared with upper bounds from theoretical analyzes.
Insights into the influence of different model adaptations to
the resulting convergence time are provided.

The paper is structured as follows: First basic terms and
concepts of self-stabilization in WSNs are introduced. Then
we describe the SelfWISE programming abstraction and
runtime environment. The algorithms analyzed in this pa-
per are introduced using the formal notation provided by
the SelfWISE language. Section 4 presents results and an
evaluation. The paper concludes with a recapitulation of the
results and by defining goals for future work.



2. Self-Stabilization in WSNs

Applying self-stabilizing algorithms in the field of
WSNs to increase the fault-tolerance is currently an active
research area [6, 7, 8, 10, 13, 14]. A tremendous advantage
of self-stabilization is that it does not handle individual fail-
ures separately. Instead of modeling individual errors that
may occur and providing corresponding recovery routines,
self-stabilizing systems are based on a description of the
error-free system and rules to reach and maintain this state.
This avoids the drawback of fault masking approaches that
handle a priori known faults only. Rules are based upon the
states of a node and its direct neighbors. This strictly local
view leads to scalable solutions with immanent integrated
fault-tolerance regarding transient faults that may corrupt
the state of some nodes. Common examples of such tran-
sient faults are: message loss or corruption, memory cor-
ruption, or node resets.

algorithm MaximalIndependentSet;
public bool in;

rule R1:
in = false and forall(Neighbors v : v.in = false) –> in := true;

rule R2:
in = true and exists(Neighbors v : v.in = true) –> in := false;

Figure 1. Maximal Independent Set [4]

Figure 1 shows a simple example for a self-stabilizing
algorithm: it constructs a maximal independent set (MIS) as
described in [4]. The language of SelfWISE (see Section 3)
is used to express this algorithm. The membership of a node
in the independent set is indicated by setting the variable
in to true. Such an algorithm typically consists of a set
of rules, which in turn consist of a guard and a statement
which shall be executed when the guard evaluates to true.
Commonly their structure is very simple and they are easy
to understand. Self-stabilizing algorithms are defined more
formally in the following section.

2.1. Models of Self-Stabilization

A wireless communication network is represented by a
graph G = (V,E). Vertices vi ∈ V of the graph repre-
sent network nodes and edges ei ∈ E represent bidirec-
tional communication links between those. The diameter
of the graph is denoted by ∆. The state si of each node
vi ∈ V is defined by the set of local variables. The tuple
(s1, . . . , sn) forms the configuration of the network and de-
fines the global state. A self-stabilizing algorithm consists
of rules in the form of guarded statements:

guardi → statementi

Guards are Boolean expressions based on the state si

of the node vi and the states of all nodes vk ∈ N(vi)

in the neighborhood of vi. The node degree is given by
di = |N(vi)|. If a guard of a node evaluates to true, it is
called enabled. An enabled node performs a move by ex-
ecuting the statement of a rule. Statements can change the
local state only. An execution is a sequence of configura-
tions c0, c1, . . . such that the transition from ci to ci+1 is
caused by moves of nodes that are enabled in configuration
ci.

Informally self-stabilization means that if a system is in a
fault-free state, it remains in this state as long as no transient
error occurs. After a transient error has occurred, the sys-
tem reaches a fault-free state in finite time. More formally
let P be a predicate over the configuration of the network
that defines the fault-free state of the system. A configura-
tion is legitimate relative to P if it satisfies P . A system is
self-stabilizing with respect to P if the following two prop-
erties hold: (1) Closure: A transition always moves a legit-
imate configuration into a legitimate one. (2) Convergence:
Starting from an arbitrary configuration a legitimate one is
reached within a finite number of transitions. This defini-
tion holds under the assumption that faults may corrupt the
configuration of the network, but not the behavior of the
network, i.e., rules are stored in fault resilient memory.

To model the different degrees of concurrency in dis-
tributed systems the concept of daemons was introduced.
A daemon defines the execution model of a self-stabilizing
system. It chooses a subset of enabled nodes that perform
their moves concurrently. Three different daemons are de-
fined: Central daemon – only one node is selected from
the set of enabled nodes, synchronous daemon – all en-
abled nodes are selected, and distributed daemon – a non-
empty subset is selected. The communication model de-
scribes the underlying assumptions about the communica-
tion paradigms that are used to exchange the node state in-
formation among the neighborhood.

Many self-stabilizing algorithms are defined for an ab-
stract computational model: central daemon, shared mem-
ory, coarse-grained atomicity. This model simplifies the
design and verification of self-stabilizing algorithms. But,
the assumptions of this model are against the spirit of dis-
tributed systems since it does not allow concurrency (i.e.,
central daemon and atomicity) and are not feasible in wire-
less networks (i.e., shared memory). Algorithms developed
for a central daemon often do not stabilize under a dis-
tributed or synchronous daemon due the concurrent execu-
tion within the neighborhood. The MIS algorithm depicted
in Fig. 1 is an example of such an algorithm. To solve this
so called transformations have been proposed [6, 3, 2, 10].
They convert algorithms designed for such abstract models
into semantically equivalent algorithms that stabilize under
weaker assumptions.



2.2. Transformations for WSNs

In general transformations are defined for adopting the
communication or the execution model. To overcome the
shortcomings of the shared memory model, Herman [6] in-
troduced a concept for exchanging node states that uses the
broadcast characteristic of the underlying wireless channel.
The cached sensornet transformation uses periodic broad-
casts of the own state and a cache to store the states received
from the neighbors. Rule evaluation is performed by using
the cache. For ensuring atomicity during the evaluation of
the rules, a concept of rounds must be introduced [10]. At
the beginning of each round the nodes evaluate and execute
the rules and broadcast the new state during the rest of the
round. To prevent collisions a random backoff timer is used.

Transformations of the execution model ensure the ex-
clusive execution within each neighborhood under the dis-
tributed or synchronous daemon. The idea behind these
transformations is to break the symmetry by using unique
identifiers or randomization. A strict transformation con-
verts the algorithms in such a way that the execution of the
resulting algorithms is equivalent to an execution under the
central daemon. An algorithm A is transformed into A′

such that only one node in each neighborhood performs a
move of A concurrently. Examples for strict transformer
are the deterministic conflict manager (CMD) [3] that uses
unique node identifiers and BitToss [2]. The latter elects a
neighbor by a Bernoulli trial until solely a single one node
is enabled. The main drawback of these strict transformer
is the limited concurrent activity, exactly one node within
each neighborhood executes its statement. Often this limi-
tation is too restrictive and a higher degree of concurrency
is needed. Algorithms converted by a weak transformation
produce an execution that is not possible under a central
daemon. The reason for this is the fact that nodes may per-
form a move within a neighborhood concurrently. The idea
is that potential deceptive statement executions are resolved
after some time, but with the advantage of a faster conver-
gence. Examples for weak transformations are the random-
ized conflict manager (CMR) [3] and the randomized trans-
formation introduced by Turau and Weyer [10], which both
lead to a probabilistic convergence. The latter reference also
proposed a transformation that is even self-stabilizing in the
case of occasional message losses.

2.3. Convergence Time

Convergence time is a central performance measure of
self-stabilizing algorithms. It represents the responsiveness
of an algorithm with respect to the occurrence of transient
faults. By means of the convergence time the suitability of
a given algorithm for the use in real WSNs can therefore
be determined. A high convergence time inhibits the use
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Figure 2. The SelfWISE framework

of an algorithm in a real sensor network because it reduces
the fault rate that an algorithm can tolerate. If the mean
time between the occurrence of two faults is shorter than
the convergence time, the algorithm will hardly stabilize.

The convergence rate of a given algorithm strongly de-
pends on the execution model that is applied. Tradition-
ally most self-stabilizing algorithms have been written for
the central daemon model. Since this model boils down to
a sequential execution model convergence under a central
daemon clearly is an upper bound [8, 7]. Whenever the ex-
ecution model allows distributed execution the convergence
time is likely to be better than that.

Section 2.2 introduced some transformations that have
been proposed. To our knowledge no analysis of the trans-
formation’s influence on the convergence time has been car-
ried out. Naturally, deriving measures of the convergence
time analytically is done by proving upper bounds. Whereas
deriving analytically the average convergence time of an al-
gorithm is so laborious due to the size of the value space,
that it is practically impossible. The only way to estimate
the average convergence time for an algorithm under a cer-
tain model is simulation. To our knowledge there has been
one publication that evaluated the convergence time by sim-
ulation for a limited subset of transformations for the execu-
tion model [8]. In this paper a detailed analysis of the con-
vergence time of three algorithms commonly regarded as
central building blocks for WSN applications is presented.

3. SelfWISE

SelfWISE [13] is a programming abstraction designed
for applying self-stabilizing algorithm in WSNs. It consists
of the SelfWISE framework (see Fig. 2) that is the run-
time environment for executing self-stabilizing algorithm
and a language to express those algorithms (see Fig. 1, ref-
fig:color, and 4). The SelfWISE language is similar to the
formal definitions of self-stabilizing algorithms found in lit-



algorithm VertexColoring;
public map int Neighborhood.numOfNeighbors as d;
public int c;
declare set int colors := (1 : d);
declare bool B1 := c in (v.c |Neighbors v) or c > d + 1;
declare bool B2 := colors = (v.c |Neighbors v);

rule R1:
B1 and B2 –> c := d + 1;

rule R2:
B1 and !B2 –> c := choose(colors \ (v.c |Neighbors v));

Figure 3. Vertex Coloring [5]

erature to simplify the usage for algorithm developers and
to hide the complexity of wireless sensor networks. A com-
piler converts algorithms into C (or C++) code that is linked
against the SelfWISE framework. The SelfWISE frame-
work is running on top of the underlying operating system
on each sensor node. At the time of writing there exist
two implementations of the framework. One for TinyOS
and one for REFLEX [12], an event driven operating system
for deeply embedded systems. An optional application can
use the available interfaces to operate on the outcome of the
self-stabilizing algorithm.

The SelfWISE framework, as depicted in Fig. 2, con-
sists of the following components. The easily exchange-
able controller implements the execution model. Based on
the implemented transformation the controller evaluates the
guards and executes enabled rules via the rule engine. The
rule engine hides the details of each algorithm from the con-
troller. The local state of each node and the cached states
of each neighbor are stored by the state manager. Node
states are broadcast via the neighborhood protocol that is
also responsible for establishing neighbor relations between
nodes. The compiler creates additional de- and encoding
routines for sending and receiving node states.

Figure 3 shows a self-stabilizing algorithm that creates
a unique vertex coloring within 1-hop as introduced in [5].
Each node has a variable c that indicates the color of the
node. The given algorithm tries to minimize the number
of colors used. The maximal color index of each node is
equal to the number of neighbors plus one. The algorithm
is based on the predicates B1 and B2. B1 evaluates to true
if the color is already used within the neighborhood or the
color of the node is larger than the maximum available. The
predicate B2 is true if all color indices from 1 to number
of neighbors are used in the neighborhood. The algorithm
assigns a new color to a node if its color is already used or
greater than allowed. The choose operator selects non-
deterministically an unused color. Under this condition the
algorithm stabilizes under the central scheduler only. If the
available color space is increased to twice the number of
neighbors or higher, as suggested in [8], the algorithm stabi-
lizes under distributed control without any transformation.

algorithm SpanningTree;
public map NodeID Platform.ID as ID;
public int dist;
public NodeID parent;
declare int minD := min(v.dist |Neighbors v);

rule R1:
ID = 0 and !(parent = null and dist = 0) –>

parent := null;
dist := 0;

rule R2:
ID != 0 and !(parent in (v.ID |Neighbors v : v.dist = minD)

and dist = minD + 1) –>
parent := choose(v.ID |Neighbors v : v.dist = minD);
dist := minD + 1;

Figure 4. Spanning tree algorithm [1]

The last example of a self-stabilizing algorithm, as
shown in Fig. 4, creates a spanning tree rooted at the node
with the id zero. The algorithm is a non-uniform algorithm
since the root node and all other nodes execute different
rules [1]. The node identifier must be provided by the un-
derlying platform and is mapped into the variable ID, which
can be used within the algorithm. Each node has two vari-
ables. The hop distance to the root node is stored in dist
and the parent node in the tree is stored in parent. Due to
the non-uniform character of the algorithm the tree is con-
structed in a wave-like manner starting at the root node.
Each node selects the node with the lowest distance as its
parent and assigns itself a distance incremented by one. The
root has an empty parent and a distance of zero. Due to
the wave-like execution the algorithm stabilizes under dis-
tributed control without any transformation.

4. Evaluation

For the two available implementations of the SelfWISE
framework several simulations are performed. TOSSIM the
integrated TinyOS simulator and OMNeT++[11], which has
been enhanced to simulate sensor nodes running REFLEX,
are used for evaluating the different transformations intro-
duced in Section 2.2. Both simulators yield similar results,
so here the TOSSIM results are presented only. Each trans-
formation and algorithm combination is simulated on a set
of topologies. The number of nodes are varied (40, 60, 80,
100, 200, 400, 600, 800, and 1000) with different node den-
sities (4, 6, 9, 12, 15, and 18). For each combination of net-
work size and node density, different topologies are created.
Each topology is simulated 10 times with different random
seeds. That results in 22.000 simulations for each combina-
tion of transformer and algorithm leading to over 300.000
simulations in total for each simulator. To simulate the con-
vergence time of the transformations no message losses due
to noise or link variations over time are modelled. Colli-
sions can occur if two nodes are transmitting concurrently.
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Figure 5. Simulations with node density 9

 0

 10

 20

 30

 40

 50

 0  5  10  15  20

c
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

ro
u

n
d

s
)

density

Random
CMD
CMR
BitToss

(a) Maximal Independent Set

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20

c
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

ro
u

n
d

s
)

node density

Random
CMD
CMR
BitToss

(b) Vertex Coloring

 0

 100

 200

 300

 400

 500

 600

 0  5  10  15  20

c
o

n
v
e

rg
e

n
c
e

 t
im

e
 (

ro
u

n
d

s
)

node density

Random
CMD
CMR
BitToss
Synchronous

(c) Spanning Tree

Figure 6. Simulations with 400 nodes

To minimize the probability of collisions the round length
is scaled appropriately.

Figures 5 and 6 show the results of the simulations.
The used transformations are: BitToss [2], deterministic
conflict manager (CMD) [3], randomized conflict manager
(CMR) [3], randomized transformation (with a fixed prob-
ability p = 0.5) [10], and the synchronous daemon. The
communication model utilizes CST as transformation.

CMD creates the fastest transformed maximal indepen-
dent set algorithm (see Fig. 5(a)). If node identifiers are ran-
domly distributed with a high probability in each neighbor-
hood exactly one node concurrently performs a move. Since
the variable in is initialized to false for all nodes, the max-
imal independent set is created after the first step of CMD.
This advantage inverts for algorithms where a higher degree
of parallelism does not lead to an increasing number of con-
flicts (see Fig. 5(b) and 5(c)). The real drawback of CMD is
the usage of node identifiers. If a topology contains longer
chains of increasing node identifiers, the convergence time
dramatically increases (see Fig. 6). The probability of such
chains increases with decreasing node density. This effect
can be seen for topologies with density 4 and 6.

BitToss is not influenced by the distribution of the node
identifiers since it is based on a Bernoulli trial. But, the trial
increases convergence time since the election of the execut-

ing node can be postponed. This effect increases when more
nodes need to perform a move currently within a neighbor-
hood.

CMR and randomized transformation are selecting
nodes based on randomization. This leads to more con-
current executions but also to deceptive executions. The
main drawback of CMR is that the random process is scaled
directly by the node degree. So the convergence time un-
der CMR always depends on the node density (see Fig. 6).
This leads to an increased convergence time in higher den-
sities. The simulations clearly indicate, that for algorithms
with a possible higher degree of concurrency (e.g., spanning
tree) CMR is faster than CMD. The randomized transforma-
tion outperforms all presented transformations, except for
MIS (see above). With adverse node identifier distribution,
CMD’s gain vanishes (see Fig. 6(a)) even here.

The upper bound for maximal independent set is given
as 2n rounds [4] under the central daemon. Under dis-
tributed control the number of rounds is reduced due to
the concurrent execution of moves among non-neighboring
nodes. The convergence time of vertex coloring is shown
to be O(n) [5]. Average convergence time is clearly linear
with a very small constant. The simulation results suggest
that it might be even better. More data is needed to sub-
stantiate such a claim. Here, it can be seen plainly that the
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randomized transformation depends on n only and not on
node density. The upper bound for the spanning tree al-
gorithm, which stabilizes under the synchronous daemon,
is given as O(∆) rounds [1]. The randomized transforma-
tion does not introduce much overhead here either. Even
for this strongly concurrent algorithm it remains the only
transformation (apart from synchronous execution), where
convergence time depends on ∆ only. Note that in fixed size
networks ∆ decreases with increasing node density.

The vertex coloring algorithm stabilizes under a syn-
chronous daemon when the color space is enlarged (see
Section 3). That variant was simulated with a color space
of 2d and d2 under the synchronous daemon. In Fig. 7
the results are compared with coloring under the random-
ized transformation with different probabilities. The con-
vergence time of the randomized transformation is compa-
rable to the synchronous daemon with respect to the lower
color space used. Increasing the probability slightly de-
creases the convergence time. If the probability p is de-
creased the convergence time rapidly increases, since with
a low value for p the selection of a node can be postponed.

5. Conclusion

In this paper the first evaluation of the average con-
vergence time of self-stabilizing algorithms and appropri-
ate transformations is given. Due to the modular concept
of SelfWISE evaluating different transformations is simpli-
fied. It provides a useful programming abstraction for self-
stabilizing algorithms and computational models.

Our results clearly show that the average convergence
time for the considered algorithms is generally much better
than the upper bounds given in literature. Comparing results
of the different transformations with upper bounds reveals a
particularly interesting property of the randomized transfor-
mation: It is the only transformation where the convergence
time does not depend on other parameters than the conver-

gence time of the original algorithm.
The randomized transformation [10] shows good perfor-

mance in all given topologies. Additionally, the benefit of
solutions based on randomization over those based on iden-
tifiers is shown.

The next steps for future work are the usage of the Self-
WISE framework on real sensor hardware to validate the
gathered results under realistic conditions. It would for in-
stance be interesting to evaluate the duration of one round:
what is the minimum time for a round under realistic condi-
tions and what factors have an influence on this time?
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