Integration of Event-Driven Embedded Operating Systems
Into OMNet++ — A Case Study with Reflex

Soéren Hockner
LS Verteilte
Systeme/Betriebssysteme
BTU Cottbus
Cottbus Germany
shoeckne@informatik.tu-
cottbus.de

ABSTRACT

Developing wireless sensor network (WSN) applications is
a challenging task. Simulations are a key component in
the development process, since they offer simple means of
testing and evaluating the applications without the need of
time consuming and tedious deployment. But simulations
alone are not sufficient to evaluate such applications. Only
experiments on real hardware can ultimately verify the cor-
rectness of a given algorithm and its implementation. To
take the most benefit from a WSN simulator it must be able
to simulate a sensor network, where all nodes run the same
implementation of the algorithm that will later be deployed.
We show how to integrate event-driven operating systems
into the OMNeT++ discrete event simulator. At the ex-
ample of REFLEX we show how an integration can be easily
achieved with minor effort. Additionally we discuss an alter-
native approach which promises better scalability but comes
at the cost of less flexibility at the application layer and re-
quires more deeply intrusions into the operating system. We
argue that the integration is feasible and that it yields a sim-
ulation tool, which can perform similar to other tools like
TOSSIM or COOJA but benefits notably from the flexibility
of OMNeT++ and its cornucopia of readily available models
provided by the community.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Systems]:

Realtime and embedded systems; D.2.5 [Software Engi-
neering|: Testing and Debugging

General Terms

Experimentation

Keywords
Simulation, OMNeT++, Sensor networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OMNeT++ 2009, Rome, Italy.

Copyright 2009 ICST/ACM, ISBN 978-963-9799-45-5 ...$5.00.

Andreas Lagemann
LS Verteilte
Systeme/Betriebssysteme
BTU Cottbus
Cottbus Germany
ae@informatik.tu-
cottbus.de

Jorg Nolte
LS Verteilte
Systeme/Betriebssysteme
BTU Cottbus
Cottbus Germany
jon@informatik.tu-
cottbus.de

1. INTRODUCTION

Wireless Sensor Networks (WSN) typically consist of do-
zens to hundreds of tiny micro controller based computers
(usually called motes or nodes) equipped with a set of prob-
lem specific sensors and actuators. Additionally every node
has a transceiver allowing for wireless communication. Typ-
ical sensor network applications are sense and send and mo-
nitoring. In sense and send applications every single node
simply samples its sensor readings and periodically sends the
data to a well known sink, where the data is processed. In a
monitoring application individual nodes evaluate their sen-
sor readings and react by issuing warning messages, when
the values are not within predefined bounds. Both appli-
cations demonstrate the event-driven nature of WSN. That
means that the behavior of sensor network applications is
dependent on the set of events that they are exposed to and
on the possible set of interactions induced by each particular
ordering of events.

This implies that programs for WSN cannot be sufficiently
tested let alone evaluated on a single node. The authors
of [13] postulate that the right simulation tool for WSN
must allow to study the whole application, including the
operating system (OS) and the network stack. Furthermore
these tools, according to [13], need to handle large numbers
of nodes while providing sufficient detail to capture the sub-
tle effects caused by unpredictable interference and noise.
According to the authors, many researchers have concluded
that fulfilling all these requirements simultaneously is in-
tractable. They have therefore instead applied very abstract
simulations for instance by adapting ns-2 ([16], [21] and [7]).
While these are valuable simulation approaches they do not
study the actual implementation of the WSN application,
which actually hampers if not inhibits deployment, because
you have to implement the algorithm twice: once for the sim-
ulator and once for the sensor node. This is not only very
tedious, additionally it may lead to correct algorithms im-
plemented wrongly. Guaranteeing consistency between two
implementations is tremendously hard. Therefore it would
be most advisable to have some means of using the same
implementation for the simulation as well as for the target
platform with at most some minor adaptations in a central
location.

While there are many ways to achieve this (refer to Sec-
tion 2), we chose to integrate our lightweight, event based
operating system REFLEX [20] into OMNeT++ . This was
a relatively easy task. The reason for that lies in the design

of both REFLEX and OMNeT++ .

This paper presents the key properties of the design of
OMNeT++ and REFLEX used for the integration and illus-
trates how the integration was done. It is on the one hand
intended to serve as a guideline to fulfilling similar tasks with
similar operating systems resp. simulators. On the other
hand it will identify enabling properties of the simulator
and the OS which serve the goal of seamless integration of
the two worlds.

The paper is structured as follows: The next section dis-
cusses related work in the field of simulating wireless net-
works. The following two sections give a short overview of
REFLEX and OMNeT++. Then the integration is described
in detail and possible alternatives are discussed. At last we
conclude with possible future work.

2. RELATED WORK

The choice of an adequate simulator is a crucial decision
for researchers in WSN, since the quality of the simulation
directly correlates to the quality of the results to be pub-
lished. A recent trend is that publications not relating to
experimental results are rarely accepted at conferences with
a WSN related topic. It would seem that more and more
researchers will agree that simulation alone is not sufficient
to evaluate solutions for WSN. Nevertheless simulation is an
essential step in the development process. Since the deploy-
ment of WSN applications is very tedious and cumbersome,
it is advisable to evaluate the application as accurately as
possible before carrying out the deployment of the actual
sensor network.

There have been many approaches to simulating WSN ap-
plications. Simulations can be roughly classified into three
classes according to their level of abstraction. The first class
operates on the network layer and abstracts from the oper-
ating system and the specific platform. One representative
of this class is ns-2 [5]. It is a general purpose network
simulator which led to an immensely accelerated progress in
the field of network protocol research by providing a com-
mon toolbox for studying a wide range of network protocols
against various traffic models. ns-2 has also been utilized for
WSN simulations ([16], [21], [7]). The problem with these
simulation approaches is that they remain too abstract and
do not address issues with the actual implementation of the
algorithms.

The second class operates at the operating system level.
A common example of this class is TOSSIM [13], a discrete
event simulator for sensor networks that use the TinyOS
platform. With TOSSIM it is possible to compile TinyOS
applications directly into its framework and then run thou-
sands (according to [13]) of motes simultaneously executing
the same application.

The third class enables simulation at the machine code
level. A representative for this is Avrora [18]. Avrora pro-
vides cycle accurate simulation of the behavior of sensor net-
work devices and communication. The authors claim that
avrora was as scalable as TOSSIM while it was merely 50%
slower. As the name suggests, it is restricted to AVR based
microcontrollers. A similar tool exists for MSP430 micro-
controller based nodes called MSPsim [10]. It is however
not capable of simulating whole WSN as a standalone appli-
cation but is merely intended to be used with a cross level
simulator like COOJA [15].

COOJA has been designed to integrate all three categories

into one modular extensible simulation framework by simu-
lating code on all three levels simultaneously. Behavior at
network level can be simply implemented in Java. The other
two levels are based on the Contiki [9] operating system. It
can be simulated on the OS level, where the Contiki appli-
cation including all system components is compiled into a
shared library. The simulator controls the application via
the Java native interface. It can also be simulated on the
machine code level by utilizing MSPsim.

OMNeT++ is a discrete event simulator like ns-2 and
TOSSIM. Unlike TOSSIM and ns-2 it is very generic and
modular, which allows it to model everything that fits the
event driven approach. Therefore it offers a proper plat-
form to integrate all kinds of simulation approaches. OM-
NeT++ is already widely used as simulation tool for WSN.
Several frameworks exist, which offer models useful for WSN
simulation e.g. for wireless communication and node mobil-
ity ([2], [3], [1], [6], [4] among others). Due to the modular
design of OMNeT++ , components of the different modules
can be mixed relatively easy, to fit specific needs. The in-
tegration of REFLEX into OMNeT++ gives us access to a
great number of modules supported by a large user commu-
nity and offers the opportunity to profit from future develop-
ments made for OMNeT++, as they can be easily integrated
with our current models.

3. REFLEX-THE REALTIME EVENT FLOW

EXECUTIVE

REFLEX is an event driven operating system for deeply
embedded systems and is particularly useful for embedded
control applications as well as wireless sensor nodes. It is
mostly written in C++ (aside from few parts of the plat-
form specific code written in assembler) and therefore ben-
efits from a sound object oriented design. It has a mono-
lithic structure which means that both the program and the
operating system are compiled into one single binary im-
age. For space and performance reasons REFLEX is a single
threaded system which uses a specific task model to repre-
sent independent activities. All tasks share the single sys-
tem stack, therefore a task switch does not involve a stack
switch. As a consequence all tasks must exhibit a run to
completion semantic. This task model is well known and
sufficient to model typical applications for embedded sys-
tems. Tiny OS [14] for instance is using this model as well.
REFLEX, like Contiki [9], has an event driven architecture.
The basic structural entity is the component. A component
can contain activities (tasks) and interrupt handlers. They
represent logical blocks which may for instance be composed
to implement a complex state based control algorithm. The
handlers and tasks provide active behavior and are therefore
the entities managed by the scheduler. Handlers and tasks
are connected by event channels. Events may contain data
and are exchanged via these channels. Events are always
buffered by the channels, including the possibly contained
data. Whenever an event is assigned to a channel, the corre-
sponding receiving task is added to the scheduler’s ready list
and eventually selected for activation. This strategy effec-
tively guarantees that only such tasks are activated, which
have valid input, i.e. their corresponding input channels have
data available for processing.

Figure 1 illustrates the component based design of a RE-
FLEX application, it is taken from [20]. Additionally to the

Application Control- Control- 1 Control-
layer function function function
AN
AW 4
Driver Interrupt- . . Interrupt-
layer Driver Driver handler
Z ! ! Z
Hard 7 A\ A 7
algyv:?re Sensor Actuator Actuator Sensor

Hardware Software Interrupt L
P event > event o handler DAC“VIW |:|Componenl
Figure 1: Reflex Event Flow Model

component structure each application can be divided into
layers. The lowest layer is established by the hardware com-
ponents themselves, which can be coarsely classified into
sensors and actuators. The hardware for our example ap-
plication consists of two sensors and two actuators. The
driver layer contains components for the control of the de-
vices present at the hardware layer. Tasks that are responsi-
ble for controlling devices are called drivers. Interrupt han-
dlers are a special kind of task, which are not activated by
the scheduler but directly from an interrupt, triggered by a
sensor. They are the only entities that can be activated inde-
pendently of the event flow. Therefore they should be kept
as short as possible, merely take care of the pieces of work
that cannot be postponed and defer the actual handling to
an activity by issuing an appropriate event. It can be easily
seen in figure 1 that the initial source of each event is al-
ways an interrupt. While the communication between nodes
is completely asynchronous, the activities and handlers in-
side of components can share state information without ex-
plicit synchronization. This approach is similar to Tiny-
GALS (Globally Asynchronous Locally Synchronous) [8]. It
has several advantages, e.g. implicit synchronisation as has
been shown in [11].

What distinguishes REFLEX from other event-driven em-
bedded operating systems, is its flexible scheduling frame-
work [20], which gives the developer the choice between
several scheduling strategies at compile time. It supports
FCFS- (First Come First Serve), FP- (Fixed Priority), EDF-
(Earliest Deadline First) and TT- (Time Triggered) schedul-
ing. Some of these strategies support resp. require preemp-
tive scheduling of tasks. When using preemptive schedul-
ing schemes, some caution is indicated to preserve the im-
plicit synchronization properties. For instance when using
preemptive FP-scheduling (a non-preemptive version exists
t00), all tasks inside the same component which concurrently
access their shared state must be assigned the same priority,
otherwise synchronization has to be implemented explicitly.

Portability is a crucial property of operating systems for
deeply embedded systems. REFLEX provides support for
easy porting by a strict modular organization of the source
code. A large section of the core system code is written
independently of specific hardware. All hardware depen-
dent code is subdivided into a controller specific part and a
platform specific part. A controller refers to a specific mi-
crocontroller architecture. A platform however refers to a
specific device consisting of a microcontroller equipped with
a set of devices (e.g. sensors, actuators, radio etc.). Con-

trollers for which REFLEX has been ported include MSP430,
HCS12, MIPS32, Atmegal28, Atmega8535, M16C, H8300
and linux for executing REFLEX on 1386 based systems (for
testing or simulation). Platforms for which ports exist in-
clude CardS12, MICA2, OMNetPP, guest, ESB, MICA2DOT,
SK-XC164CS, GLYNRSC, Megal28, RCX and TMoteSky.

4. OMNET++

OMNeT++ is a discrete event simulator written in C++.
To execute simulations with OMNeT++ a model needs to
be defined, which consist of modules. There are two kinds
of modules, simple modules and compound modules. The
simple modules are basic building blocks. They are the ac-
tive components of the model, programmed in C++ and
represented by the cSimpleModule class, which serves as a
base for the implementing class. Simple modules can be
combined into compound modules and so forth. Both sim-
ple and compound modules are instances of module types.
During model design, the developer declares module types,
instances of which can be combined to more complex mod-
ules. At last, the system module is defined as an instance
of any defined module type. Both kinds of module types
can be transparently used as building blocks. This allows
for restructuring a module instance by breaking it up into
several module instances or synthesize several components
into one module without affecting the interface of the build-
ing block. Modules communicate with messages which are
typically sent via gates but may possibly be sent to their
destination module directly (via method calls). Gates de-
fine the input and output interfaces of modules. A channel
connects an input gate with an output gate. Connections
are always contained within a single hierarchy level. The
gates of a simple module may be either connected with cor-
responding gates of other simple modules within the same
compound or with a gate of the enclosing compound module
of the same type. Figure 2 (taken from [19]) demonstrates
the structure of OMNeT++ models. Boxes represent mod-
ules, arrows represent connections and small square boxes
represent gates.

system module
simple modules

compound W/ \
e o T

Figure 2: The model structure of OMNeT++

Events are represented as messages in OMNeT++ . A sep-
arate event class is not provided. A message is an instance
of the class message or any derived type. They are sent
from one module to another; therefore the module where
the event will occur is called the message destination. Pa-
rameters add more flexibility to the usage of modules and
facilitate the reuseability of modules. They are mainly used
to pass configuration data to simple modules and to help
define model topology. A module can define an arbitrary
number of parameters.

Since simple modules are the active elements of a model, a
designer may redefine four methods defined in cSimpleMod-
ule. The initialize() method is called before the simula-
tion start, in order to initialization of the module. If needed,
an arbitrary number of initialization stages can be defined in
order to solve dependency issues. The handleMessage () and
the activity () methods are called during event processing.
Each method represents a different approach to event pro-
cessing. While handleMessage () is called each time a mes-
sage is delivered at the corresponding module, activity ()
implements the process interaction approach. Each simple
module can use exactly one of both alternatives. Modules
implementing handleMessage () and such using activity()
can be mixed freely. When using the coroutine based ap-
proach, the receiveMessage() method has to be used in
order to receive messages. The call of receiveMessage is
blocking, i.e. due to the cooperative nature of the corou-
tine approach this is the only point where the control is
transfered to the simulation kernel and then possibly to an-
other module. Each module using the process interaction
approach, must call receiveMessage regularly. If it does
not, the simulation will not proceed anymore. The purpose
of most simulations is gathering statistical data about the
algorithms simulated. For this purpose cSimpleModule of-
fers the finish() method. This method is called at the end
of a simulation run, before the module’s corresponding ob-
jects are destroyed. It provides the module developer with
the opportunity to gather all relevant data and for instance
write it into a file.

S. REFLEX FOR OMNET++

A lot of research results in Wireless Sensor Networks (WSN)
have been published which were solely based on data gath-
ered in simulations and never have been verified with data
from experiments on real hardware. Recent results suggest
that simulation alone is not sufficient for evaluation of WSN
algorithms. Due to the inherent complexity of distributed
systems combined with uncertainties and fluctuation intro-
duced with the wireless medium, simulators alone are in-
capable of providing sufficiently exact models. Nevertheless
simulation is a vital step in the development process of WSN
algorithms, since WSN deployment is tremendously expen-
sive and debugging of embedded applications is cumbersome
at best.

The goal of integrating REFLEX into OMNeT++ was there-
fore to provide researchers with the opportunity of imple-
menting their algorithms once for the REFLEX operating
system and have that code run in a simulated WSN for test
and basic evaluation as well as on real sensor nodes like
TMoteSky or ScatterWeb with only minor porting effort.

When adding functionality to OMNeT++ modules, the
developer has the choice between two alternative program-
ming models: coroutine based and event-processing-function.
When using coroutine-based programming , the module code
runs in its own thread. This thread is scheduled non-pre-
emptively. It receives control from the simulation kernel
each time the module receives an event (i.e. a message).
Typically the function containing the coroutine code will
never return. It will usually consist of an infinite loop con-
taining send and receive calls. When using the event-pro-
cessing function, the simulation kernel simply calls the given
function of the module object with the message as argument.
This function has to provide a run to completion semantic,

i.e. it has to return immediately after processing the mes-
sage. The drawback of the coroutine-based approach is that
it requires more memory since every module needs its own
CPU stack. When the model contains a large number of
modules this can have significant influence on the simula-
tion performance and its general applicability. On the other
hand this approach is more natural if a module represents a
sensor node.

OmNeT++ REFLEX p
Scheduler
A\
sleep
Channel [Power
Control Manager
A\
A
send or
recv.
mes- schedule
sage received task
4 .
interrupt
OmnetNode

Serial Port

message'data

Figure 3: Components of the OMNeT++ -version
of Reflex

For our purpose the latter approach provides a less intru-
sive way of integrating REFLEX. Since it is a single threaded
system, REFLEX can be easily mapped onto the coroutine
model without modification. Although REFLEX enforces
run to completion semantics for tasks, it is still possible
to use blocking code in the main thread (e.g. while wait-
ing for a message to arrive). Such REFLEX applications
could not be run in the simulator when using the event-
processing-function. For these reasons we decided to use the
coroutine-based approach first, although it might be interest-
ing to investigate the alternative, because it could provide
better scalability regarding the number of sensor nodes a
simulation model can contain, without suffering severe per-
formance penalties. The limiting factor for the coroutine
based approach is the total of memory available. Since each
coroutine holds its own stack, an upper bound for the num-
ber of nodes in a simulation run is the amount of memory
available divided by the amount of memory reserved for a
coroutine stack. The latter should be chosen carefully, be-
cause if it was dimensioned too small, stack overflows will
occur, resulting in unpredictable behavior of the simulation.

With the coroutine based approach there is one additional
pitfall, which has to be kept in mind by the developer. Be-
cause the REFLEX-scheduler continuously queries the task
queue and only calls the wait routine when the queue is
empty, the application must be designed such that there is
no task which will be scheduled continuously without de-
pending on external input. An application in which such
a task exists, will effectively cause the simulation to stop
since it will never allow another OMNeT++-coroutine to be

scheduled which results in no events being generated and so
no time progress in the simulation being made.

5.1 Architecture

In figure 3 you can see the components involved in the
integration of the REFLEX operating system into the OM-
NeT++ simulator. The most central component is the Om-
net Node, it serves as a gateway between the OMNeT++
runtime environment and that of REFLEX. Viewed from an
OMNeT++ perspective, Omnet Node is a SimpleModule.
The Omnet Node processes messages received from other
nodes and initiates an interrupt handling. Whenever Om-
net Node receives a message from Channel Control it reads
the message’s kind attribute and calls the interrupt guardian
of REFLEX to indicate that there is an event pending at the
Serial Port'. Therefore messages have to hold a valid inter-
rupt vector in their kind attribute. Channel Control is the
module which represents the wireless channel in the INET
framework.

This approach allows adding additional devices to the sim-
ulation by simply defining a special message type represent-
ing an interrupt from that device. If a temperature sensor
shall be modeled for instance, a message type, which con-
tains the time and the measured temperature at that time
would have to be created. At runtime the driver for the sim-
ulated sensor could read the appropriate values from a file
containing data from a real measurement to fill in the fields
of the message. The interrupt would be initiated by simply
sending this message. Until now only one device in addition
to the radio is implemented: the system timer.

A WSN typically consists of a greater number of nodes.
Since an OMNeT++ model is a monolithic application, all
instances of Omnet Node reside in the same address space.
Since each Omnet Node represents a REFLEX driven node,
there are multiple instances of REFLEX running in a single
address space. The REFLEX system needs reference to its
main system object. This is usually no problem, since in one
address space normally only one instance of REFLEX exists.
Therefore a mechanism is needed which yields a reference
to the system object of the currently active node. This is
implemented via a global pointer, which is always set appro-
priately when control is transfered to another Omnet Node
module.

Figure 4 visualizes the control flow of a message being re-
ceived and processed. The module Channel Control models
the wireless channel (it is part of the INET framework). It
is responsible for calculating the set of receiving nodes for
each message sent and delivering it accordingly. When the
message is received by an Omnet Node its kind attribute
is retrieved, which has to represent a valid entry in the in-
terrupt vector table (see above). With this entry the mod-
ule managing the vector table called Interrupt Guardian is
invoked. The Interrupt Guardian invokes the appropriate
handler. The handler, after doing some preprocessing very
shortly, triggers an activity responsible for post processing.
The trigger method of the activity then simply adds itself to
the ready list of the scheduler, which will eventually activate
it.

To understand how the transfer from the simulation en-
gine to the REFLEX runtime and vice versa is realized, first
the workflow of the REFLEX scheduler has to be considered.

Lwe chose this name, because the transceiver is connected
via the serial port on many sensor nodes

A scheduler mainly consists of an infinite loop in which the
task queue is continuously checked for tasks. When it is
not empty, the scheduler removes one task from the queue
according to its scheduling strategy and activates it. When
the task completes, the next task is selected and activated.
When the list is empty, the scheduler signals the system that
it may enter a power save state. The available power save
modes are platform dependent. Therefore the corresponding
method has to implemented for each platform. Recall that
the portability of REFLEX is provided by strictly separating
independent code from such depending on a certain platform
resp. controller (refer to Section 3. The Linux controller can
be used, since OMNeT++ will run on Linux and most Unix
based systems. The OMNeT++ simulator then constitutes
an additional platform. The code for this platform contains
the Omnet Node module and some additional modules use-
ful for a WSN model. It also contains a modified version
of the _wait () system call which is called by the scheduler
when the ready list is empty. Here the switch to the simu-
lation runtime is implemented. The OMNeT++ runtime is
queried for new events (by issuing a receive() call), which
may lead to a context switch to another coroutine.

_wait ()

{
//blocks until a message is handed
//to this component
active_message = receive ();

//interrupt handler
dispatchMsg (msg);

//return to scheduler
return;

Figure 5: The code of the OMneT++ specific ver-
sion of the _wait() method

In figure 5 the code for this method is shown. The public
static member active_node of the class OmnetNode is neces-
sary to give the handlers access to the message representing
the interrupt. Since this information usually is available
from special hardware registers or similar, the interface of
the handlers does not provide means to submit it. The dis-
patchMsg() call reads the message contents, extracts the
message kind carrying the index for the vector table and
calls the interrupt resolving component of REFLEX with this
index.

5.2 Experiences

Our simulation framework for REFLEX based WSN has
for instance been used for simulating a combined routing
layer for wireless sensor networks and mobile ad-hoc net-
works [17]. This example is particularly interesting because
it demonstrates the possibility to integrate arbitrary models
with our REFLEX based sensor node models. The object of
the routing protocol was to support a scenario, where first
responders equipped with some PDAs capable of WLAN
and ZigBee communication are sent to a disaster area where
a wireless sensor network that monitors the area for lethal
amounts of contaminants or signs of life, has already been

Post

Channel Interrupt

Guardian

Interrupt Processing
Handler Act.
T T

Scheduler
T

message

msg kind

handler

pre proc.

schedule
self

trigger
act.

I I
I I
| |
I I
I I
I I
I I
| |
I I
1 1
I I
I I
| |
I I
I I
I I
I I
| |
I I
T N
I I
I I
| |
I I

Figure 4: Interaction of OMneT++ and REFLEX components

deployed. The idea is that the PDAs build a mobile ad-hoc
network for mutual coordination of the first responders. Via
ZigBee they are also capable of communicating with sensor
nodes in range and therefore with the sensor network. The
routing protocol should provide means to allow all combina-
tions of mutual communication between PDAs and sensor
nodes. The routing protocol should use weights assignable
by the user to in route calculations. So it would for instance
be possible, to use the MANET as a backbone for the WSN,
conserving the small energy reserves of the sensor nodes.

For the evaluation besides experiments on real hardware,
some simulations where executed. The simulated network
consisted of 40 sensor nodes and 8 PDAs. The sensor nodes
were modeled using the OMNeT++ platform for REFLEX.
The PDAs were modeled using CsharpSimpleModule [12],
which allows definition of OMNeT++-modules in C#. For
mobility and communication the INET framework has been
used. The simulations were caried out on a PC with Intel
XEON CPUs at 2.4 GHz nominal CPU speed and 2GB of
RAM.

We recently used our framework for simulating up to 1000
nodes on a 10000 m * 10000 m playground. Nodes were com-
municating over a wireless channel using INETs Channel-
control which we modified to simulate perfect links (i.e. no
collisions and no bit errors). The communication pattern
was rather sparse. To simulate the system clocks, a timer
signal occured each millisecond at each node. We let the
same simulations run on TOSSIM in parallel. Though we
did not perform the simulations on a strictly comparable
basis (different platforms, uncontrolled environmental influ-
ences) the results suggest that we are at least not slower
than TOSSIM. The simulation results are presented in a pa-
per currently under review so we can give no reference here.
Our simulations were run on a MacBook with a 2.1 GHz
Intel Core 2 Duo and 4 GB of RAM. Apart from setting the
stack limit to 64 KB we did not need to make any changes
to the systems settings.

This shows that our approach is capable of simulating net-
works of relevant size and it supports our claim that REFLEX
models can be integrated with existing models.

6. CONCLUSION AND FUTURE WORK

We have presented the integration of an embedded oper-
ating system called REFLEX into the discrete event simulator
OMNeT++ . The goal was to provide a simulator for WSN|,
which enables developers to run applications written for RE-
FLEX once in the simulator as well as on any hardware plat-
form supported by reflex with only minor modifications. The
OMNeT++ platform provides radio communication based
on the INET framework and a system timer to provide ac-
cess to simulation time from the application. By utilizing
some similarities in the design of REFLEX and OMNeT++
seamless integration was easily possible.

We chose to use the coroutine based approach of OM-
NeT++ , because that allowed for an integration with less
modifications of REFLEX and imposes less restrictions on the
developer regarding the program structure. Nevertheless it
would be interesting to investigate the possibilities of the
event processing approach. The benefit of that approach is
that it would allow for larger simulations (i.e. with a greater
number of nodes) since it induces much less runtime over-
head than coroutines. To achieve this, the scheduler of RE-
FLEX has to be reimplemented without the endless loop. The
implementation would have to guarantee that every time the
system receives a message the scheduler will be called after
that message is handled.

7. REFERENCES

[1] Castalia. http://castalia.npc.nicta.com.au/.

[2] The inet framework. http://www.omnetpp.org/
staticpages/index.php?page=20041019113420757.

[3] The mobility framework.
http://mobility-fw.sourceforge.net/.

[4] Nesct: A language translator.
http://nesct.sourceforge.net/.

[6] The network simulator.
http://www.isi.edu/nsnam/ns/.

[6] The pawis simulation framework.
http://pawis.sourceforge.net/.

[7] D. Braginsky and D. Estrin. Rumor routing algorthim
for sensor networks. In WSNA ’02: Proceedings of the

[10]

[13]

[14]

[15]

[16]

1st ACM international workshop on Wireless sensor
networks and applications, pages 22-31, New York,
NY, USA, 2002. ACM.

E. Cheong, J. Liebman, J. Liu, and F. Zhao. Tinygals:
a programming model for event-driven embedded
systems. In SAC ’03: Proceedings of the 2003 ACM
symposium on Applied computing, pages 698—704, New
York, NY, USA, 2003. ACM.

A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors
(Emnets-1), Tampa, Florida, USA, Nov. 2004.

J. Eriksson, A. Dunkels, N. Finne, F. Osterlind, and
T. Voigt. Mspsim — an extensible simulator for
msp430-equipped sensor boards. In Proceedings of the
European Conference on Wireless Sensor Networks
(EWSN), Poster/Demo session, Delft, The
Netherlands, Jan. 2007.

K.Walther and J.Nolte. Event-flow and
synchronization in single threaded systems. In First
GI/ITG Workshop on Non-Functional Properties of
Embedded Systems (NFPES), 2006.

A. Lagemann and J. Nolte. Csharpsimplemodule:
writing omnet+-+ modules with c# and mono. In
Simutools ’08: Proceedings of the 1st international
conference on Sitmulation tools and techniques for
communications, networks and systems & workshops,
pages 1-8, ICST, Brussels, Belgium, Belgium, 2008.
ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering).

P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
accurate and scalable simulation of entire tinyos
applications. In SenSys '03: Proceedings of the 1st
international conference on Embedded networked
sensor systems, pages 126-137, New York, NY, USA,
2003. ACM.

P. Levis, S. Madden, J. Polastre, R. Szewczyk,

K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Tinyos: An operating
system for sensor networks. Ambient Intelligence,
pages 115-148, 2005.

F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level simulation in cooja. In
Proceedings of the FEuropean Conference on Wireless
Sensor Networks (EWSN), Poster/Demo session,
Delft, The Netherlands, Jan. 2007.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,

R. Govindan, and S. Shenker. Ght: a geographic hash
table for data-centric storage. In WSNA ’02:
Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages
78-87, New York, NY, USA, 2002. ACM.

T. Senner, R. Karnapke, A. Lagemann, and J. Nolte.
A combined routing layer for wireless sensor networks
and mobile ad-hoc networks. Sensor Technologies and
Applications, International Conference on, 0:147-153,
2008.

B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora:
scalable sensor network simulation with precise
timing. In IPSN ’05: Proceedings of the 4th

(19]

20]

(21]

international symposium on Information processing in
sensor networks, page 67, Piscataway, NJ, USA, 2005.
IEEE Press.

A. Varga. The omnet++ discrete event simulation
system. In Proceedings of the European Simulation
Multiconference (ESM’2001), Prague, Czech Republic,
June 2001. IEEE.

K. Walther and J. Nolte. A flexible scheduling
framework for deeply embedded systems. In AINAW
’07: Proceedings of the 21st International Conference
on Advanced Information Networking and Applications
Workshops, pages 784—791, Washington, DC, USA,
2007. IEEE Computer Society.

Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.

SIGMOD Rec., 31(3):9-18, 2002.

