
“aswin120” — 2009/2/23 — 10:40 — page 1 — #1

Ad Hoc & Sensor Wireless Networks Vol. 00, pp. 1–22 ©2009 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

MLMAC – An Adaptive TDMA MAC Protocol
for Mobile Wireless Sensor Networks

Stephan Mank, Reinhardt Karnapke and Joerg Nolte

Distributed Systems and Operating Systems Group,
Brandenburg University of Technology Cottbus, Cottbus, Germany

E-mail: {smank, karnapke, jon}@informatik.tu-cottbus.de

Received: December 15, 2007. Accepted: December 24, 2008.

Today, wireless sensor networks are typically realized using cheap radio
transceivers offering low bandwidth communication only. When physi-
cal events in the real world trigger spontaneous communication in many
nodes, the single communication channel is under heavy load and many
messages are lost due to collisions. CSMA/CA schemes are well suited to
spontaneous communication, but do not provide a high channel utilization
under heavy load. TDMA protocols have some conceptual advantage here,
but in the case of mobile sensor nodes they need to be adaptive and estab-
lish TDMA schedules on demand. In this paper we introduce the MLMAC
(mobile LMAC) protocol. MLMAC is a novel TDMA based MAC proto-
col that can react on changing radio neighborhoods in mobile networks.
In addition to the conceptual description of MLMAC, we also present the
results of real experiments with a group of mobile sensor nodes based on
RCX robots.

Keywords:

1 INTRODUCTION

Sensor networks are collections of small sensor nodes with wireless neigh-
borhood broadcast facilities. Since sensor networks shall be deployed in large
scales (possibly thousands of nodes [1,2]), today’s sensor nodes are typi-
cally optimized for minimum cost. This low cost policy often results in the
usage of cheap radio transceivers offering low bandwidth communication only.
These lack most of the common capabilities of WLAN or bluetooth networks.
Even typical tasks like medium access control or the addressing of individual

1

“aswin120” — 2009/2/23 — 10:40 — page 2 — #2

2 S. Mank et al.

nodes in the direct radio neighborhood are left entirely to software layers [3],
no hardware support is supplied.

In this paper we present Mobile LMAC (MLMAC), a novel TDMA MAC
protocol for mobile wireless sensor networks. It is a modification of the
lightweight medium access protocol (LMAC) [4] which has been adopted
for our RCX robots and for a different scenario. The mobility of nodes in our
scenario is the reason why finding a slot for transmission is more difficult and
must be repeated as nodes can enter or leave a radio neighborhood at any time.
To the best of our knowledge, no previous implementation of LMAC has been
used on real hardware.

This paper is structured as follows: Section 2 describes our MAC proto-
col while Section 3 shows some aspects of the implementation. Section 4
describes the setup of our experiments and their results. We finish with related
work in Section 5 and a conclusion in Section 6.

2 MOBILE LMAC (MLMAC)

2.1 LMAC
In [4] L. F. W. van Hoesel and P. J. M. Havinga introduced LMAC (lightweight
medium access control), a MAC protocol for stationary sensor networks with
a single sink. LMAC is based on a TDMA scheme. Time is divided into frames
and slots. Each node reserves a slot in which it can send, this slot reoccurs
every frame. Every Slot is further divided into a phase used to send a control
message and another one where the data payload is transmitted.

Table 1 shows the contents of a LMAC control message. Its total size
amounts to 12 Bytes. It contains the identity of the sender and its slot number
followed by the most important field Occupied Slots, which represents a
bitmask of Slots. An unused slot is represented by a 0 while a 1 represents an
occupied one. Thus it is possible for every node to determine unoccupied slots

Description Size (bytes)

Identification 2
Current Slot Number 1
Occupied Slots 4
Distance to Gateway 1
Collision in Slot 1
Destination ID 2
Data Size (bytes) 1
Total 12

TABLE 1
The control message used in LMAC

“aswin120” — 2009/2/23 — 10:40 — page 3 — #3

Adaptive TDMA MAC 3

by combining the control messages of its neighbors. This is done by perform-
ing a simple OR operation on the fields Occupied Slots of all received
control messages. The distance to the Gateway is also transmitted, along with
information of overheard collisions. Finally, the ID of the destination (used
for power management) and the size of the data unit are given.

The initialization of nodes is started by the gateway, which defines its own
slot and is used for synchronization. After one frame, all direct neighbors
of the gateway know its slot and choose their own ones. This information
is transmitted to their neighbors who synchronize on these messages. After
each frame, a new set of nodes with a higher hop distance from the gateway
is synchronized until every node knows its slot. These slots only need to be
locally unique, as the nodes only compete with others up to 2 hops distant. To
conserve node energy, a node’s transceiver is turned off for the remainder of
the current slot when it is not addressed in the control message.

2.2 Differences and similarities between LMAC and MLMAC
All of the attributes described above make LMAC an excellent choice for its
intended scenario, a stationary sensor network with communication only from
the nodes to the sink. But our scenario is quite different. We assume a mobile
sensor network, consisting, e.g., of robots equipped with fire extinguishers.
Those robots would patrol an endangered region, and act on threats that arise.
If one of them found a fire, it would call in others for support, in addition to
informing the next fire engine. Another application would be a toxic waste
dump, where leakage of certain gases might be detected. In these cases, it is
often to expensive or not feasible to permanently position sensor nodes with
possibly expensive sensors on every possible location. Therefore, mobility is
needed.

The choice of such scenarios has a number of consequences for the
developed MAC protocol. First, there may not be a gateway to start the syn-
chronization (see Section 2.2.1). Second, the chosen slots are not fixed in
time. Due to mobility, it may become necessary for a node to choose a new
slot when it enters a different radio neighborhood (see Section 2.2.2). Third,
MLMAC needs to differentiate between bidirectional and unidirectional links
(Section 2.3).

2.2.1 Slot synchronization
In LMAC the synchronization is always started by the gateway. As MLMAC
was developed for mobile networks which can possibly contain multiple sinks,
this is not possible. The node that wants to send a packet first starts the syn-
chronization. This removed the necessity to use the field Distance to
Gateway for synchronization. Even when it is not used for synchroniza-
tion, the field Distance to Gateway could be used to support routing
decisions in stationary sensor networks. In mobile sensor networks how-
ever, this distance could not be determined only once and saved for further

“aswin120” — 2009/2/23 — 10:40 — page 4 — #4

4 S. Mank et al.

Description Size (bytes)

Identification 1
Slot number and Status 1
Occupied Slots 1–2
Identity of the Synchronization 1
Age of Synchronization 1
Total 5–6

TABLE 2
The control message used in Mobile LMAC (MLMAC)

use, as the mobility of node leads to a change in topology after a certain
time. This time depends on the range of the transceivers and on the speed
of the nodes, but eventually the change in topology will take place. The
field Distance to Gateway is removed from the header of MLMAC.
The fields Destination ID and Collision in Slot were not used
either, because of the used hardware. There was no way to shut down the
transceivers and the radio module used a built in checksum to discard faulty
packets. Thus, collisions could not be detected directly and this part of LMAC
was not implemented. As this decision is based solely on the used radio mod-
ules, it could be revoked in the future, when a different platform is used (see
Section 6).

MLMACs control message format is shown in Table 2. This control mes-
sage is quite different from the one used in LMAC. Due to our small sensor
network, we reduced the field containing the identity of the sender to one Byte.
Slot number and Status contains 5 Bit for the senders slot and 3 Bit
for its status. The field Occupied Slots is used exactly as in LMAC, only
its size is reduced.

The field Occupied Slots in the control message of a node contains
the used slots of all its neighbors and itself. In the case of node 4 on Figure 1 the
slots 3, 4, 5, 6 and 8 would be marked as used, which results in a representation
as 00111101. Note that in this example the third bit from the left represents
the third slot.

The figure shows how slots are chosen with a simple example containing
only eight nodes. In this example you can see that node 2 is not synchro-
nized yet. It receives the control messages from its neighbors and combines
them. 10000100 (from node 1) — 00111000 (from node 3) — 00111101
(from node 4) = 10111101 (seen on node 2).

This means that node 2 can choose between slots 2 and 7. If it chooses
slot 2, its control message would contain the bitmask 11110000 in the field
Occupied Slots, as node 2 receives messages from nodes 1, 3, and 4 and
adds its own choice. If it chooses slot number 7 the field Occupied Slots
would contain the bitmask 10110010.

“aswin120” — 2009/2/23 — 10:40 — page 5 — #5

Adaptive TDMA MAC 5

FIGURE 1
Occupied slots as seen by each node.

Note that this method solves the hidden station problem, because slot num-
bers are unique in a 2-hop neighborhood. This way, two nodes with a common
neighbor will never transmit at the same time.

The number of slots can be chosen between 3 and 16 in our implementation,
thus the size of Occupied Slots varies between 1 and 2 Byte. If more
slots per frame are needed, the size of the field Occupied Slots grows.
Thus far, the choice of slots is done in the same way as in LMAC, except for
the fact that the synchronization started by a node rather than by the gateway.

2.2.2 Slot changes
The second difference is the fact that MLMAC stays adaptive even after slots
are chosen. The last two fields of a control message are needed, because every
node can start a synchronization. Due to this fact, it is possible that two dis-
tant nodes start a synchronization separately, as both of of them assume that
they are the first to send. Their neighbors would synchronize with them and
increase the Age of Synchronization by one before retransmitting.
In this case, two different synchronizations would be flooding the net and meet
somewhere in between the two starter nodes at some time in the future. At this
point, nodes would realize that some of their neighbors use a different syn-
chronization by comparing the field Identity of Synchronization.
Now the field Age of Synchronization is compared. If the received
value is equal to or higher than the local value saved in a node, this node
becomes unsynchronized again and tries to find a new slot following the syn-
chronization it just received. In this way, an older synchronization, which
means one that has spread over more hops and thus a larger number of nodes,
removes a younger one step by step. Once this procedure has begun, there will
be a new set of nodes which follow the older synchronization every Frame,
leading to a new set of nodes giving up their slot and so on until finally the
whole network is synchronized.

“aswin120” — 2009/2/23 — 10:40 — page 6 — #6

6 S. Mank et al.

FIGURE 2
Starting of different synchronizations.

Figure 2 shows an example sensor network consisting of 6 times 6 nodes.
On the left side of the figure it can be seen that node 213 wants to transmit a
message, but does not have a synchronization yet. Therefore, it starts a new
synchronization. The synchronization carries the identification of the starter
node (213) and is transmitted to all neighboring nodes.

On the right side of the figure the retransmission of the synchronization
from node 213 reaches all neighboring nodes, which increment the age of the
synchronization by one before retransmitting. At the same time node 117 wants
to transmit a message. As it is not synchronized yet (still in the Wait-state,
see Section 2.4), it starts a synchronization of its own.

Figure 3 shows how the two different synchronizations spread through
the network. On the left side of the figure the synchronization 213 has already

FIGURE 3
Two different synchronizations flooding the sensor network.

“aswin120” — 2009/2/23 — 10:40 — page 7 — #7

Adaptive TDMA MAC 7

FIGURE 4
Two different synchronizations flooding the net.

spread to 20 nodes and has an age of 2 on the edge. The other synchronization,
started by node 117, has only reached 4 nodes so far, with an age of 1.

When the two synchronizations collide at the nodes in the bottom right,
the nodes compare the different ages. As the synchronization from node 213
is older, the nodes discard their existing synchronization and pick a new slot
according to synchronization 213.

This can be seen on the right side of the figure. All nodes within 3
hops of node 213 are following its synchronization, only those not yet
reached are unsynchronized or follow node 117. The last stage of the syn-
chronization process can be seen on Figure 4, where all nodes follow the
synchronization with the id 213. Now the whole network is synchronized and
no more collisions occur, not even collisions of control messages. As long as
no change in topology occurs, this is a stable state.

Due to the mobility of nodes, a node X may leave the radio range of node Y.
Both nodes then realize that they do not receive any more control messages
from each other and remove the other one from the field Occupied Slots
which is transmitted in their control messages. When X moves into the radio
range of another node Z, and Z knows a different node W that uses the same
slot as X, the control messages of X and W collide at Z. Therefore, Z does not
receive any more control messages in that slot and marks it as unused. Nodes
X and W receive the control message from Z and realize that there must have
been a collision of control messages. After this, they give up their current slot
and try to find a different one.

2.3 Handling of unidirectional links
To determine whether a link is unidirectional or bidirectional, a neighbor list
is used. In this list a counter is stored for every neighbor. When a node X
receives a control message from node Y which does not contain the slot of

“aswin120” — 2009/2/23 — 10:40 — page 8 — #8

8 S. Mank et al.

FIGURE 5
The finite state machine used in MLMAC.

node X, X increments the counter for Y in its neighbor list. If the received
control message contains X’s slot, the counter is decreased. The range of the
counter is 0–N where N can be configured freely. Then, a threshold can be
set, from where on the link will be counted as (partially) unidirectional. The
need for this will become apparent when the state machine of MLMAC is
discussed in Section 2.4

Ignoring or removing unidirectional links is a way often chosen by devel-
opers of MAC and routing protocols. We think that there are other ways which
may be beneficial, and we are working on exploring some of them as outlined
in our future work in Section 6.

2.4 The finite state machine of MLMAC
MLMACs state machine is shown in Figure 5. The rectangles represent states,
the arrows transitions between them. The text on the arrows describes the nec-
essary event for that transition and the action that is taken separated by a slash.

Initially, all nodes begin in the Wait-state. When they want to send a
message without having received any control message previously, they change
into the Starter-state. When only one node switches to starter, this is
a stable state and the node remains there. If another node switched to the
Starter-state earlier, this node gains knowledge of that fact after some time
and switches to the Sleep-state from which it will return into the Wait-state
after a certain time.

“aswin120” — 2009/2/23 — 10:40 — page 9 — #9

Adaptive TDMA MAC 9

If a node receives a control message from another node in Starter- or
Ready-state while it is in the Wait-state it synchronizes its local time with
that of the originator of the control message and switches into the Unsync-
state. After waiting one frame to overhear all transmitted control messages and
calculate used slots, it chooses its own one and transitions into the Sync-state.
When the chosen slot occurs the next time, the node starts to transmit its own
control message. This is then repeated every frame and the node changes to
state Slotverify. This state is used to verify that no other node has chosen
the same slot during the last frame, which may have happened if multiple
nodes were waiting for a new slot and the frame was relatively full.

As said before, the hardware used in the experiments does not enable us
to detect collisions directly. Therefore, an indirect way of detection had to be
implemented: A node X that has transmitted a control message can determine
if a collision occurred by listening to its neighbors’ control messages. If no
collision occurred, the neighboring nodes have added X’s slot to the field
Occupied Slots in their control messages. Otherwise they did not. When
X receives control messages containing its slot, it knows that no collision
occurred because no other node has chosen the same slot. Therefore, it switches
into the Ready-state.

Like the Starter-state, this is a stable state as long as no collision occurs.
If a collision occurs, there must have been a mistake in the process of choosing
slots, and the node returns into the Sleep- and finally into the Wait-state to
start over again.

Note that MLMAC also distinguishes between collisions on unidirectional
and bidirectional links. If a collision on a unidirectional link occurred on a
node in Slotverify- or Ready-state, this node stays in the same state.

3 IMPLEMENTATION

3.1 Hardware
We used modified Lego RCX robots [5] to evaluate our protocol
experimentally.

These robots feature a Renesas H8/300 micro-controller, which is a 16 Bit
processor with a clock frequency of 16 MHz. The RCXs have three input
channels and three output channels on top and an infrared module in the front.
The Robots have been additionally equipped with a radio module of type
ER400TRS [6] which we use instead of the included infrared module (IR)
to enable broadcast protocols (see Figure 6). The ER400TRS has a range of
up to 250 meters, operates in the Pan-European 433 to 434 MHz frequency
band and uses a 3.6 V power supply. The over the air data rate is 19200 Baud.
To enable the usage of the ER400TRS, an external connector to the serial
port has been attached which allows us to connect either the IR or the radio
module.

“aswin120” — 2009/2/23 — 10:40 — page 10 — #10

10 S. Mank et al.

FIGURE 6
A modified RCX robot.

For our indoor experiments we reduced the range of the ER400TRS to
about one meter. It may seem that the choice of radio module was not the best
for our scenario, but when sensor nodes are designed, the chosen hardware is
not always the best, either. Rather, it is normally the cheapest hardware that
is chosen.

3.2 Software
Instead of the original software supplied with the Lego robots, we used
Reflex [7,8], an event driven operating system for deeply embedded systems
in our experiments. We decided to use this operating system for 3 reasons. First,
the resource constraints of wireless sensor networks are not much different
from those of deeply embedded systems. Second, reflex was already ported
for the H8/300 processor family when we started our work on the MLMAC.
Third, it is implemented in C++, which leads to a number of advantages like,
e.g., the usage of object oriented programming. We were able to concentrate
on the features of MLMAC, without having to worry about the underlying
platform.

On top of Reflex we used Copra [9–11], a configurable communication
framework. Its layered structure supplies an easy way of switching between
different implementations for a single layer, which we used in our tests to
switch between MLMAC and the simple probabilistic collision avoidance
MAC we used for comparison.

4 EXPERIMENTS

We decided to experiment with a real sensor network right from the start for two
reasons. First, to the best of our knowledge, LMAC has only been simulated.
Second, we have observed drastic changes in link quality even in stationary
sensor networks, as the authors of [12] have. Knowledge of these changes is
vital for a MAC protocol, but we have not seen a realistic simulation model

“aswin120” — 2009/2/23 — 10:40 — page 11 — #11

Adaptive TDMA MAC 11

thereof. Thus, we think it is necessary to experiment with real sensor nodes.
For the same reason we did not simulate MLMAC but went to the real nodes
right away.

In our experiments, we compared MLMAC to a competition based protocol,
a simple collision avoidance protocol. As MLMAC is a TDMAbased protocol,
it should avoid collisions completely after a start period. A simple collision
avoidance protocol on the other hand allows collisions but should produce a
better throughput in low load situations, as nodes do not have to wait for their
turn to send. Thus, latency should be smaller.

In CSMA/CA the channel is sensed before transmission, and if it is occu-
pied the transmission is delayed for a random time. This reduces the probability
of collisions. Due to the transceivers we used, the implemented MAC could
not be a real CSMA/CA. The radio modules use an inbuilt checksum and only
packets that were received flawlessly are handed to the software. As the radio
modules only deliver whole packets, it is not possible to really listen to the
medium. Therefore the channel is always assumed to be busy, and a random
time is waited before the transmission of a packet. In this paper, the resulting
protocol is called CA-MAC.

4.1 Static single-hop experiments
In the static single-hop experiments all robots were within direct radio range.
The two MAC protocols were evaluated using 3, 5, and 9 robots. Every node
wanted to transmit 50 packets with a size of 49 bytes to all other nodes. The
size of the packet was chosen to represent some aggregated data received
from attached sensors plus some header information. Node 1 started the trans-
mission and every other node followed suit as soon as it received an initial
packet. The number of slots was configured in MLMAC to match the number
of nodes in the experiments. The size of a slot is statically determined by the
size of the transmitted packets (data and control) and properties of the used
radio modules (preamble size and data rate). This resulted in a slot length of
0.17 seconds and frame lengths of 1.53 seconds (for 9 nodes), 0.85 seconds
(5 nodes) and 0.51 seconds (3 nodes). The CA-MAC sent at random intervals,
but over the whole length of the experiment it transmitted the same number
of packets as were sent in the MLMAC experiments.

Figure 7 shows the results of the static experiments. The experiments with
3 and 5 nodes were repeated three times, the ones with 9 nodes two times.
The numbers shown on the figure are the averaged results. As you can see
MLMAC always received all packets after the initialization phase was over.
When using only three nodes, MLMAC even received all packets during
initialization. Only during initialization with 5 or 9 nodes a few packets were
dropped. The CA-MAC does not need to initialize, therefore no distinction
is made. Due to the nature of the collision avoidance, the collision rate was
high, though. Between a third and half of the packets were lost. This confirms
that MLMAC is much better suited for our scenario than the CA-MAC.

“aswin120” — 2009/2/23 — 10:40 — page 12 — #12

12 S. Mank et al.

FIGURE 7
Average of received packets in the static experiment.

4.2 Static multi-hop line experiments
In preparation for the mobile experiments we continued with two different
experiments using a line topology. For these experiments all 9 robots were
arranged in a row with nodes 1 and 9 at the ends. To find proper distances
between nodes, one node transmitted packets periodically and the next node
was moved until it was unable to receive those packets. Then, it was placed
a step nearer to the transmitting node. The experiments were performed
outdoors, on a concrete road. In the first experiments, node 1 transmitted
50 packets and node 9 counted how many arrived. Each node in between
counted how many were forwarded and how many were dropped. The packets
were sent in time intervals equaling the length of one, three and five slots of
MLMAC in three different experiments. In the second line experiment node 1
started transmitting 50 packets and once the first packet reached node 9, it
started to transmit 50 packets, too. For the MLMAC, this was only done with
sending intervals of 3 or 5 slots, as it is impossible to transmit 2 packets
every slot without using some further means like, e.g., aggregation. The pack-
ets were forwarded using a simple duplicate suppression algorithm. When
a node received a message it remembered the originator (node 1 or 9) and
the sequence number of that packet. When a packet with the same or a lower
sequence number was received later, it was discarded, if its number was higher
it was retransmitted. All experiments were conducted with MLMAC and with
CA-MAC and repeated 9 times for each of them. Again, the CA-MAC sent at
random intervals, but over the whole length of the experiment these intervals
evened out to those used in the MLMAC experiments.

Figure 8 shows some results from the first experiments. If each node would
only be able to receive messages from its direct neighbors, all graphs should
have been steadily decreasing or stayed at the same level as a packet that
was lost at, e.g., node 3 could never be received at the following nodes 4
to 9. Instead the figure shows that, e.g., when using the CA-MAC with a

“aswin120” — 2009/2/23 — 10:40 — page 13 — #13

Adaptive TDMA MAC 13

FIGURE 8
Forwarded packets for each node. The packets originate at node 1 and stop at node 9.

transmission interval of roughly 5 slots node 3 received only 8 messages
while its neighbors received 19 (node 2) and 28 (node 4). This reveals a
strong variation in radio range of the sending nodes. In a few cases, node 9
even received packets from node 1 directly. The overall low throughput can
be explained by the same fact because the number of slots per frame was
set to low for the MLMAC, as we assumed that 3 or at most 4 slots would
be sufficient. For the CA-MAC the variation in radio range produced more
collisions as more nodes were able to disturb each other. Still, even with a
much too small number of slots, the results of MLMAC are much better than
those of the CA-MAC when messages are transmitted every 3 or 5 slots.

Figure 9 shows the number of packets originating at node 1 forwarded
by each node in the second experiments, while Figure 10 shows the same

FIGURE 9
Forwarded packets for each node. The packets originate at node 1 and are forwarded to node 9.
Node 9 sends to node 1 at the same time.

“aswin120” — 2009/2/23 — 10:40 — page 14 — #14

14 S. Mank et al.

FIGURE 10
Forwarded packets for each node. Packets originate at node 9 and are forwarded to node 1. Node 1
sends to node 9 at the same time.

for those originating at node 9. The results are similar to each other and to
those of the first line experiments. A big difference can be seen in the results
using MLMAC when sending every 3 slots. Obviously, node 1 had problems
finding its slot as 42 messages were lost from node 1 to node 2. Otherwise,
they confirm the results obtained earlier. The radio range is not stable and
therefore the number of slots was too small.

4.3 Static multi-hop square experiments
After we saw the variations in link quality and radio range in the line exper-
iment, we performed some experiments to determine the stability of links in
time. Therefore, we arranged nine robots in a square of three times three with
a distance of ten meters between neighbors. This distance was determined as
above. After placement, we tried to build a routing tree and send messages
from various starter nodes. As we assumed that the node in the middle would
be heard by all, we only started building the trees from the nodes on the cor-
ners. The nodes one, three, four and seven which were on the corners of the
square repeatedly tried to build a routing tree. Once this tree was established
10 messages were sent. After this, the number of received messages on each
node was determined.

On Figure 11 you see two routing trees, which were obtained in our experi-
ments. On the left side you can see a routing tree that nearly follows the theory.
Direct neighbors of node 1 can communicate directly, the nodes 8 and 4 that
are farthest away from 1 need a second hop via node 5. Node 6 experienced
some problems and was not able to transmit to node 1 even though it could
hear node 1 directly. This is shown as a dashed lines which represents an uni-
directional link which would normally have been discarded. On the right side
you see a different routing tree obtained from the same starting node a little

“aswin120” — 2009/2/23 — 10:40 — page 15 — #15

Adaptive TDMA MAC 15

FIGURE 11
Two RCX routing trees started from node 1 at different points in time.

FIGURE 12
Two routing trees started from node 4 at different points in time and one started from node 3.

time later. Now, all nodes can communicate directly with node 1 except for
nodes 6 and 9 which have no connectivity at all. While these two routing trees
are not optimal, they somehow still represent the expected layout.

On Figure 12 you see the same experiment again, this time started from
node 4. The left side of Figure 12 is very much the same as the right side of
Figure 11. All nodes communicate directly with node 4, except for node 7
which does not communicate at all, node 1 which is connected through node
9 and 6 through 3. The middle of the figure shows a completely different
picture. There are only three nodes which communicate directly with node 4,
the nodes 3, 5 and 7. Node 2 is connected via node 3 which is acceptable,
even that node 1 uses node 3 to reach node 4 is no problem. The problem is,
that node 8, which should be a direct neighbor of node 4 needs three hops
to connect. This was no single effect either – when we started the protocol
from node 3 which can be seen on the right side, node 1 needed three hops
to connect, too. The trees obtained from node 7 were not much better, either.
Some routing trees we obtained did not even reach half the nodes.

As said before, after building the trees we sent 10 messages from each
source and counted the number of arriving messages. For these experiments,
only the best two routing trees from each node were used. Note that the ones

“aswin120” — 2009/2/23 — 10:40 — page 16 — #16

16 S. Mank et al.

10 10 10
10 10 0
10 10 10

10 3 1
0 10 0
10 10 10

FIGURE 13
Number of received messages out of 10 using the routing trees in Figure 11.

0 10 10
3 10 10
2 10 10

8 3 10
0 8 0
8 8 8

0 8 10
8 9 10
8 10 10

FIGURE 14
Number of received messages out of 10 using the routing trees in Figure 12.

discussed before are those best trees, some others were quite disastrous. The
number of received messages varied between 1 and 10 out of 10. In the case of
the routing tree shown in Figure 11 on the right side node 4 received only one
message from node 1. All results for both routing trees can be seen in Figure 13,
the italic numbers represent the starter nodes. In the case of the routing tree
shown in Figure 12 on the left side, node 8 received three messages from
node 4. This seems strange as the range of the longest hop is 22, 4 meters
instead of 28.3 meters but the number of hops increased from one to three.
When node 3 was master and node 1 had a distance of three hops with a longest
hop length of 20 meters eight packets were received out of ten. The total
number of received packets for all three routing trees is shown in Figure 14.

Similar effects have been observed in [12]. The authors describe an outdoor
experiment in which they used 24 ScatterWeb ESBs [13] in an area of 80 times
140 meters. Every hour, a routing tree was built, and information sent to a
sink. The experiment ran for three weeks. Often neighboring nodes did not
hear each other while distant nodes did. In some cases these did not even have
line of sight but were blocked by a building.

We have not yet seen any simulator that could produce such behavior, and
we have not found any model to describe these effects either. All these results
confirmed that we needed to evaluate MLMAC on a real sensor net in the
mobile scenario.

4.4 Mobile experiments
In the mobile experiment the RCX robots moved around a room of 6 times
8 meters containing normal bureau furnishing with a speed of 6 meters per
minute in a nearly random manner. Initially, they only moved forward but
every time they hit an obstacle, they moved back a pace, turned for a random
time in a random direction and started moving again. As all nodes started
with a different facing, the mobility soon led to a multi-hop environment. The
application was the same as in the static experiment. 50 Packets with a size
of 49 Bytes were transmitted by each node and node 1 started the experi-
ment. Due to mechanical failure, we could use only 8 robots, not 9 as in the

“aswin120” — 2009/2/23 — 10:40 — page 17 — #17

Adaptive TDMA MAC 17

FIGURE 15
Average of received packets in the mobile experiment.

static experiment. This resulted in a frame length of 1.36 seconds. Also, the
Experiment with 3 nodes was ignored, as there would be no gain from it.

Figure 15 shows the results of the mobile experiments. Again, after the ini-
tialization, MLMAC delivered all packets flawlessly. During the initialization
phase a few packets have been lost as was expected. The CA-MAC delivered
between 18 and 27 percent of the packets. When the results are compared
to the static experiment, it can be seen that mobility can be a challenge for
medium access, the CA-MAC suffers heavily. MLMAC on the other hand
performed nearly the same when mobility was used.

4.5 Program code size
Table 3 shows the size of the whole program code of a simple application that
uses MLMAC or CA-MAC on the RCX robots. Note that this size depends
on the architecture in use as the size of primitive data types and pointers in
C++ varies on different platforms. The important part that you can see in the
table is that MLMAC needs only about 4 kilobyte more than CA-MAC. This
is less than a third of the size of CA-MAC. The overhead in program code size
is acceptable for the gain in performance as shown earlier. Note also that the

MAC protocol text data bss total

MLMAC 14072 456 3522 18050
CA-MAC 10116 402 3376 13888

TABLE 3
Program code sizes of a simple application using MLMAC or CA-MAC, including
operating system and drivers

“aswin120” — 2009/2/23 — 10:40 — page 18 — #18

18 S. Mank et al.

size measured is for our feasibility study implementation and we are positive
that it could be reduced by careful re-implementation.

5 RELATED WORK

There have been numerous proposals of MAC layers for wireless sensor
networks. These include contention based ones as well as plan based ones.
Prominent examples of contention based protocols are S-MAC [14], T-Mac
[15] and D-Mac [16]. Examples of plan based ones are LMAC [4], AI-LMAC
[17], LooseMAC and TightMAC [18].

S-MAC or Sensor-MAC [14] is a variation of the DCF mode used in the
IEEE 802.11 standard, which has been optimized for low energy consumption.
It uses the same type of packets (RTS, CTS, ACK and DATA), but their
meaning is changed a little. Instead of sending an RTS for each data packet, the
medium is reserved (RTS) and confirmed (CTS) for a whole stream of them
in S-MAC. While this already leads to a reduction of packets, the main energy
consumption is achieved by introducing sleep states. All nodes change from
sleep to active regularly, and neighboring nodes synchronize their sleeping
times as much as possible to ensure fast distribution of messages. Otherwise,
an active node would have to extend its waking period until the neighboring
node it wants to transmit to wakes up.

T-MAC [15] is an extension of S-MAC. In S-MAC, the sleep- and active
period have a fixed size. Nodes that are in an active state remain active, even
if no messages need to be transmitted to or from them. This is where the
optimizations of T-MAC take hold. Instead of a fixed active time, a flexible
one is used. In the beginning of its active state, a node transmits or listens to the
medium. When it does not need to transmit any more packets and no other node
wants to transmit to this node, it goes to sleep. This mechanism concentrates
all transmissions at the beginning of the active phases of the nodes, which
leads to a longer sleep period, but also to more collisions of RTS packets.

The main focus of D-MAC [16] is the efficient forwarding of data packets.
S-MAC and T-MAC often introduce a sleep delay, because the next node
may still be asleep when another wants to transmit data. This is especially
dangerous, if all nodes need to transmit to a single sink (tree topology), which
leads to timing problems and packet loss due to buffer overflow. D-MAC uses a
data tree model, where nodes on the path to the sink wake up in a chain reaction,
removing the sleeping delay. This is possible, because every node only accepts
data packets from its children and forwards them only to its parent. This allows
dividing each cycle into three phases: In the fist, active phase a node receives
messages. In the second phase it forwards the message. After receiving the
acknowledge for the message, the node transitions into phase three and sleeps.

All of the protocols described above are not suitable for our scenario.
S-MAC and T-MAC would suffer from the high load and low bandwidth.

“aswin120” — 2009/2/23 — 10:40 — page 19 — #19

Adaptive TDMA MAC 19

D-MAC works only for a single sink, and needs fairly stable links. All three
protocols have problems with the mobility of nodes we assume. Therefore,
we choose to investigate a plan based protocol.

The authors of [4] have introduced LMAC, the lightweight medium access
protocol for wireless sensor networks, which is the basis of this work. While
some of their assumptions do not hold for our scenario, the main idea of
representing the slots used by the neighboring nodes as a bitmask can be
found in MLMAC, too. One of their features, turning radio modules off to
save energy, is not implemented in the current version of MLMAC. It could
be added without much afford, though, if different hardware was used.

AI-LMAC is introduced in [17]. It is an enhancement of LMAC which
allows dynamic reallocation of slots, depending on the network load. The
authors assume a routing tree which leads to a sink and optimize the slot
usage along the branches of this tree. This is realized by the usage of so called
Data Distribution Tables, which are used to determine the network load which
results after a query from the sink. With this information, slots can be reserved
according to the presumed needs. This approach does not fit into our scenario
however, as we do not want to use a single sink. Rather, all nodes communicate
among each other. Another difference is that MLMAC allows free choice of
routing protocol.

Another plan based protocol is LooseMAC [18]. In this protocol, the node
density is assumed to be known in advance. This enables a node to calculate
the size of a frame and the number of slots in each frame. Once this is done, a
newly started node switches to the NEWSLOT-state when it has chosen its slot.
This is the first of three states a node can reach. A node in this state transmits a
control message containing its ID and two status bits in its chosen slot. After
transmitting this message, the node transitions into the WATCH-state. In this
state it listens to the medium for one frame to determine if a collision occurred.
If it did, the node starts again by selecting a new slot. Otherwise it reaches the
Ready-state. Once all nodes are in this state, no more collisions can occur.

TightMAC [18] is an extension of LooseMAC. TightMAC uses the same
states as LooseMAC, but adds the statesReady-1, Ready-2 andReady-3,
which can be reached by a node once all its neighbors within a certain distance
have reached the Ready-state. A node reaches the state Ready-1 once all of
its direct neighbors are in Ready-state. This incremental behavior is also true
for the other two states. Once a node reaches the Ready-3-state, it knows
that all its neighbors within two hops have at least the Ready-1-state. Now
this node transmits the number of its direct neighbors. Once it has received
this message from all of its neighbors, too, it can calculate the minimum
number of slots needed in a frame. With this information, the already used
frames from LooseMAC can be split into multiple TightMAC frames. This
way, neighboring nodes can have frames of different sizes, which makes the
protocol more complicated, but the throughput is increased. Seen from the
point of a LooseMAC frame, one node may now occupy more than one slot.

“aswin120” — 2009/2/23 — 10:40 — page 20 — #20

20 S. Mank et al.

The knowledge about neighbors in the two hop distance is important to
find a good schedule, and is also used in MLMAC. Also, the state machines
described in LooseMAC and TightMAC inspired us during the work on
MLMAC.

6 CONCLUSION AND FUTURE WORK

In this paper we have introduced Mobile LMAC, a novel TDMA protocol
for mobile wireless sensor nodes. Mobile LMAC is based on the LMAC
protocol but in our scheme each node can spontaneously establish a TDMA
schedule on demand or join/leave existing schedules while nodes are moving.
Thus a high channel throughput can be achieved for mobile sensor nodes even
in heavy load situations. We have shown the feasibility of our protocol by
means of experiments with a real mobile sensor network based on modified
RCX robots. Furthermore, we compared the results with similar experiments
using a simple collision avoidance MAC. The latter is reasonably well suited
for sporadic communication between mobile nodes and does not require the
exchange of additional protocol data. However, in the case of high load the
Mobile LMAC achieved a far better result.

In the future we will derive simulation models from our experiments and
investigate the effectiveness of Mobile LMAC in large multi hop settings.
We also plan to port MLMAC to other sensor nodes, which we can mount
on top of the RCX robots like we did with the ScatterWeb Embedded Sensor
Board (ESB) [13], (see Figure 16). This way, the RCX robots will only be the
platform for mobility and the radio module of the sensor node can be used to
experiment with power savings as in LMAC.

FIGURE 16
An RCX with an mounted ESB.

“aswin120” — 2009/2/23 — 10:40 — page 21 — #21

Adaptive TDMA MAC 21

At the moment, a different matter is being addressed. In wireless sensor
networks, the used cheap transmitters often lead to unreliable connections
between nodes. Studies on real hardware have shown that unidirectional links
are fairly common, sometimes temporary, sometimes permanent. It has also
been shown that these links often bridge a far wider range than bidirectional
links. Therefore, we are working on a way to exploit this longer range. Using
the unidirectional links instead of discarding them results in a number of
change necessary in the state machine of MLMAC and the need for a way
to send acknowledges over multiple hops. Currently, a cooperation with a
routing layer is investigated to solve this problem.

REFERENCES

[1] Ioannis Chatzigiannakis, Sotiris Nikoletseas and Paul Spirakis. Smart dust protocols for
local detection and propagation. In POMC ’02: Proceedings of the Second ACM Interna-
tional Workshop on Principles of Mobile Computing. ACM Press, New York, NY, USA,
pp. 9–16, 2002.

[2] Ioannis Chatzigiannakis, Sotiris Nikoletseas and Paul G. Spirakis. Efficient and robust
protocols for local detection and propagation in smart dust networks. Mob. Netw. Appl.,
10(1–2) (2005), 133–149.

[3] J. M. Kahn, R. H. Katz and K. S. J. Pister. Next century challenges: mobile networking for
“smart dust”. In MobiCom ’99: Proceedings of the 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking. ACM Press, New York, NY, USA,
pp. 271–278, 1999.

[4] L. F. W. van Hoesel and P. J. M. Havinga. A lightweight medium access protocol (lmac) for
wireless sensor networks: Reducing preamble transmissions and transceiver state switches.
In INSS, Japan, June 2004.

[5] Holly Patterson-McNeill and Carol L. Binkerd. Resources for using lego mindstorms. In
Proceedings of the Seventh Annual Consortium for Computing in Small Colleges Central
Plains Conference on The Journal of Computing in Small Colleges, pp. 48–55, USA, 2001.
Consortium for Computing Sciences in Colleges.

[6] circuit design inc. low power radio solutions. www.lprs.co.uk/main/product.info.php?
productid = 154.

[7] Karsten Walther, Reinhard Hemmerling, and Jörg Nolte. Generic trigger variables and event
flow wrappers in reflex. In ECOOP – Workshop on Programming Languages and Operating
Systems, June 2004.

[8] Karsten Walther and Jörg Nolte. Event-flow and synchronization in single threaded sys-
tems. In Proceedings of First GI/ITG Workshop on Non-Functional Properties of Embedded
Systems (NFPES), March 2006.

[9] Reinhardt Karnapke and Jörg Nolte. Copra – a communication processing architecture for
wireless sensor networks. In Euro-Par 2006 Parallel Processing. Springer, pp. 951–960,
2006.

[10] Marcin Brzozowski, Reinhardt Karnapke, and Jörg Nolte. Impact – a family of cross-layer
transmission protocols for wireless sensor networks. In The First International Workshop
on Research Challenges in Next Generation Networks for First Responders and Critical
Infrastructures (NetCri 07), in Conjunction with 26th IEEE IPCCC, 2007.

[11] Stephan Mank, Reinhardt Karnapke, and Jörg Nolte. An adaptive tdma based mac protocol
for mobile wireless sensor networks, best paper award. In International Conference on
Sensor Technologies and Applications, 2007.

“aswin120” — 2009/2/23 — 10:40 — page 22 — #22

22 S. Mank et al.

[12] Turau, Renner, and Venzke. The heathland experiment: Results and experiences. In Pro-
ceedings of the REALWSN’05 Workshop on Real-World Wireless Sensor Networks., June
2005.

[13] Jochen Schiller, Achim Liers, Hartmut Ritter, Rolf Winter, and Thiemo Voigt. Scatterweb –
low power sensor nodes and energy aware routing. In Proceedings of the 38th Hawaii
International Conference on System Sciences, 2005.

[14] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-Efficient Mac Protocol for
Wireless Sensor Networks, pp. 1567–1576, 2002.

[15] Tijs van Dam and Koen Langendoen. An adaptive energy-efficient mac protocol for wire-
less sensor networks. In SenSys ’03: Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, ACM Press, New York, NY, USA, pp. 171–180,
2003.

[16] Gang Lu, Bhaskar Krishnamachari, and Cauligi S. Raghavendra. An adaptive energy-
efficient and low-latency mac for data gathering in sensor networks. In Int. Workshop
on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), 2004.

[17] P.J.M. Havinga S. Chatterjea, L.F.W. van Hoesel. Ai-lmac: An adaptive, information-centric
and lightweight mac protocol for wireless sensor networks.

[18] Costas Busch, Malik Magdon-ismail, Fikret Sivrikaya, and Blent Yener. Contention-free
mac protocols for wireless sensor networks. In DISC, pp. 245–259, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

