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Abstract

Event driven programming is widely used in sensor net-

works because of the high resource efficiency and the ease

of synchronization in such systems. Also, the applica-

tion logic itself can often be expressed naturally with an

event handling system. However, handling of long run-

ning tasks is a severe problem, because most systems im-

ply non-preemptive run-to-completion semantics of tasks.

Therefore, a long running task must be split in several parts

to prevent it from blocking other ones. In this paper we

present a preemptive stack sharing approach which pre-

serves the benefits of event driven programming, while solv-

ing the long running task problem.

1 Introduction

Sensor networks are an important research topic and cur-

rently crossing the border to be used by non experts. Be-

cause of the severe resource constraints in energy and mem-

ory, first operating systems like TinyOS [9] were tailored to

a minimum of functionality, but also to a minimum of pro-

gramming convenience. With the expieriences made with

these systems, it became clear that event driven program-

ming is a good idea because of the inherent efficiency and

because it solves many problems of threaded systems like

the precedence problem [16].

However, there are also drawbacks. In event driven sys-

tems tasks cannot perform blocking wait operations like

threads and long running tasks might delay the execution of

other, probably more urgent tasks. While the former prob-

lem has been addressed by approaches like Protothreads [7],

the latter is still an open problem in the area of wireless

sensor networks. However, in the context of real time sys-

tems Baker has proposed a solution that is based on preemp-

tive scheduling using a single stack only [1]. The prerequi-

sites for this approach are both run-to-completion seman-

tics for the tasks and a priority based scheduling scheme.

We have adopted Baker’s approach in the REFLEX [18] sys-

tem to tackle the problem of long running tasks, while the

problem of blocking tasks can be solved with concepts like

protothreads, which are conceptually orthogonal to our ap-

proach.

The reminder of the paper is structured as follows. Sec-

tion 2 provides a short overview of the evolution of sensor

network operating systems. Section 3 introduces REFLEX

and discusses the implementation of preemptive scheduling

schemes in single threaded systems. In section 4 different

aspects of this approach are evaluated in terms of memory

consumption and runtime overhead. Finally we provide a

conclusion in section 5.

2 Related Work

There is a long history of publications on the advantages

or disadvantages of the event driven or the thread driven

design of systems. Lauer and Needham have stated that

both methologies are duals [14], but each has advantages

over the other in special contexts. In the sensor network

community event driven programming is widely used.

There are several reasons for that, the most important

is maybe the inherent efficiency [16] and the ease of

synchronization [17]. Last but not least sensor networks

are working reactively and therefore it is natural to work by

means of events.

The most widely used operating system for sensor net-

work nodes seems to be TinyOS [9], including a number of

variations and extensions like TinyGALS [4]. One of the

restrictions of the system is that it is not preemptive. This is

problematic for complex tasks, which block others and lead

to timing problems in real world applications [13].

There have been several proposals of mechanisms to in-

tegrate threads into TinyOS. In [8] the authors run TinyOS

on top of the threaded Mantis operating system [2]. The

blocking tasks are executed by the Mantis scheduler and

the non-blocking ones by the TinyOS scheduler. Unfortu-
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nately, the solution has several drawbacks. Each application

contains two runtime systems, this wastes memory. Further-

more, the source of an event must be aware of the type of the

receiver (blocking or non-blocking task) and use the match-

ing event post mechanism. Last but not least the application

must be carefully synchronized by the user.

In [5] the authors present an approach which allows

multiple blocking tasks in TinyOS. The concept allows

also to mark a task as non interruptable. One drawback is

the problem that the stack for each blocking task has to be

allocated manually, which is a non trivial problem. The

authors also mention that all the synchronization has to be

taken care of by the programmer too.

Contiki [6] is also an event driven system, which can be

used for sensor network applications. A major contribution

are the so called Protothreads [7], that allow the program-

mer to write blocking code sequentially like in threaded

systems. This is achieved by macros which store the state

of the task and returns to the system. The next time the task

is invoked, the execution continues at the stored location.

Thus protothreads help dealing with writing state machine

code. But the handling of long running tasks is not adressed

by Protothreads.

There are also some approaches of threaded operating

systems for nodes in the sensor network class like AVRx

[10], FreeRTOS [11], Mantis [2] or RETOS [3]. They all

have in common the drawbacks of threaded programming,

like stack allocation and manual synchronization. Further-

more, except for Mantis, they do not provide suitable power

management facilities. RETOS is proposed to solve the

problem of long running tasks by so called event aware

thread scheduling. But as mentioned already, the benefits

of events are dropped in the system. Moreover, the kernel

already consumes more than 20KB of memory.

3 Motivation

A typical application for a sensor network is habitat

monitoring as described in [15]. Consider an example,

where sample values are taken by each node every minute.

Because the lifetime of the network should be maximised

and transmitting values requires a lot of energy, the sampled

values are stored inside each node. Every night, the nodes

aggregate and compress the sampled values and transmit the

compressed information to a base station. This transmis-

sion involves a routing layer for multihop forwarding and

a TDMA based medium access control for collision avoid-

ance (figure 1).

There are multiple timing problems arising from this

scenario. The sampling needs to be done with a constant

rate. A timer should be used, which initiates sampling every
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Figure 1. Network part of a typical sensor net-
work application

minute. Each day at midnight, the compression is started.

As there are 1440 values to aggregate and prepocess, this

task easily needs several ten-thousand CPU cycles. There-

fore, the compression can seriously affect timing of other

tasks in the system, if tasks are non-preemptive.

In the application the MAC component is critical. In a

dense network, a TDMA based MAC should be used be-

cause a contention based one would lead to a lousy through-

put. In a TDMA based MAC each node acquires a slot in

which it may transmit. This may be done a priori or on de-

mand. Either way, the node is assigned a time slot. When

that slot arrives, the node must transmit waiting messages

at once. It can not wait for the compression to finish. More-

over, there may be incoming messages that have to be pro-

cessed while the compression is still running. The MAC

layer needs to read information about used slots from the

incoming packets and may have to synchronize the clock.

The routing needs to forward packets and to repair broken

routes.

All these problems arise because of the long running

compressing task. Of course this problem could be solved

with a tailor-made compression stage, which splits the com-

pression in several shorter runs. This has two drawbacks.

First the runtime overhead is increased by unnecessary

scheduling operations. Second the granularity of splitting

would have to be adapted every time the behaviour of the

application was changed, this reduces the re-usability of the

component.

Our approach allows the usage of a general purpose com-

pression stage, configured with a low priority. The routing

and MAC stages would receive a higher priority, allowing

them to interrupt the compression when nessesary.



4 Concept Discussion

We want to integrate long running tasks into an event

driven system without using multiple threads. As operat-

ing system base we use REFLEX, whose event model is ex-

plained below. Afterwards we discuss the implementation

of preemptive scheduling schemes with a single stack.

4.1 The Event Model of REFLEX

REFLEX (Real-time Event FLow EXecutive) is an ob-

ject oriented operating system for deeply embedded control

systems and sensor nodes. Applications are programmed

according to the so called event flow model. In that model

the schedulable entities are activities, that are triggered

when events are posted to associated event buffers. Trig-

gered activities are then invoked by the scheduler accord-

ing to the chosen scheduling strategy. All activities have

run-to-completion semantics like in other event driven sys-

tems. However, since activities are objects (instances of

C++ classes) rather than functions, they can easily pre-

serve important state information across multiple activa-

tions without the need for a private stack.

Events can be associated with data but also pure events

are allowed. They are raised either by interrupt handlers

or other activities. The initial source of any activity in the

system is always an interrupt. Figure 2 shows a sense and

send application for Reflex.

Usually several activities and interrupt handlers are com-

bined to form functional components, such as device drivers

or network protocol engines. The communication between

the components is always asynchronous, while inside the

components the activities and handlers can share state in-

formation. This concept is similar to TinyGALS (Globally

Asynchronous Locally Synchronous) [4]. The event buffers

needed at the inputs of the components can be of any type:

event counters (for dataless events), queues, fifos or simple

value buffers are already supplied. Since all buffers count

the posted events, the related activities can be scheduled ex-

actly once for each post.

Note, that the access to buffers is atomic for readers and

writers. Most applications are therefore implicitly synchro-

nized [12]. Furthermore, the base model makes no assump-

tion about the applied scheduling scheme. Details of the

scheduling schemes are hidden in the Activity base class

that is chosen at system configuration time. The choice of

a given scheme is transparent for the inner implementation

of the components. The reusability of software components

is therefore significantly eased and, thus, applications can

often be composed of prefabricated bricks.

The overall scheduling framework was already presented

in [18]. So far we implemented FCFS- (First Come First

Served), FP- (Fixed Priority), EDF- (Earliest Deadline
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Figure 2. Event Flow Scheme of REFLEX

First) and TT-scheduling (Time Triggered). The FP- and

EDF-scheduler exist as preemptive and non-preemptive ver-

sions.

4.2 Preemptive Stack Sharing

Baker proposed in [1] the concept of preemptive stack

sharing for run-to-completion tasks in real time systems.

The key idea was that a task only consumes stack space if it

is running, because it returns to the system after execution.

If even a LIFO style scheduling policy is used, the tasks can

share a single stack. LIFO means in this context that the last

started task finishes first. Baker noted also that the number

of priority levels determines the stacking depth. This is an

important feature for severely memory constrained systems.

REFLEX uses stack sharing for preemptive priority based

scheduling. There is an order of disruptions where an ac-

tivity is able to interrupt another. The interrupted activity

cannot interrupt the interrupting activity again. On top of

the stack is always the activity with the highest priority at a

time. This is the LIFO principle mentioned by Baker. Fig-

ure 3 shows a snapshot of a running REFLEX application

with the mapping of scheduled activities (ReadyList) to the

related stack frames.

The running activity can be interrupted either by an in-

terrupt or by a software scheduling request. If a scheduled

activity is of a higher priority than the running one, the run-

ning activity is interrupted and the scheduled one is started.

If the scheduled activity has a priority lower than or equal to

that of the running one, it is only inserted into the ready list.

To activate these objects when they are in the front of the

ready list, a schedule frame is needed for each started activ-

ity. Since an activity cannot be running twice at a time and

the count of activities is typically low in the applications, it

is possible to determine an upper bound for stack memory
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consumption. Furthermore stack space is only required by

already started activities.

Figure 3 shows also where the schedule frames are lo-

cated on the stack. Those frames are created by the first

interrupt in a row or by a scheduling request. In such a

scheduling frame the call frame for the dispatch method

of the scheduler is stored. If scheduling was initiated by

an interrupt handler, volatile registers are also stored in the

scheduling frame.

Figure 4 compares the stack usage in multi threaded and

single threaded systems. In the single threaded approach

only one stack needs to be allocated, and redundant allo-

cations e.g. for interrupt handling frames can be avoided.

Furthermore, the overall stack depth depends heavily on the

applied number of priority levels. In most cases only a few

will be needed, thus the overall stack consumption is signif-

icantly lower than in threaded systems.
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Figure 4. Stack consumption in multi- and
single-threaded systems

For non-preemptive systems the same single-stack ap-

proach is used. But in this case only one task occupies the

stack at a time and there is only one schedule frame at the

bottom.

The single-stack approach saves much RAM, since
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Figure 5. Example application which uses
packet compression

stacks do not need to be preallocated for activities. They

only occupy stack space during execution.

5 Evaluation

There are several aspects of a system, which are usually

affected when introducing preemption. In this section we

evaluate the effects of stack sharing to event driven process-

ing. We also compare the results with those of the threaded

solutions.

5.1 Building Applications

One of the predestined fields of application for preemp-

tive stack sharing is compression and aggregation of net-

work packets. In figure 5 an example application is shown.

It is based on a network stack, which aggregates and com-

presses packets before these are given to the medium access

(MAC) layer. The application and network activities typi-

cally have a short runtime, while compression and aggrega-

tion take a long time. Note that especially in the network

component activities exist which must meet real time con-

straints, e.g. a time based medium access mechanism.

In our experiments we evaluated several implementa-

tions of the compression module, e.g. run length encod-

ing (RLE), Lev Zimpel encoding by Welch (LZW) and

Huffman encoding. These greatly differ in their complex-

ity and therefore in their runtime. Nevertheless the en-

coding code is unaware of its environment and the appli-

cation code is unaware of the currently used compression

scheme. The only place in the code where the informa-

tion is needed is the global configuration, which is the

NodeConfiguration C++ object in REFLEX. Listing

1 shows the NodeConfiguration implementation for

the Huffman encoding version.

The top level sensor node application configuration

is a class, whose member variables are the compo-

nents. These are connected in the constructor of the



NodeConfiguration, where also the minimum prior-

ity is assigned to the long running compression component.

Listing 1. ”Top Level Application Configura-
tion”

c l a s s N o d e C o n f i g u r a t i o n {
p u b l i c :

N o d e C o n f i g u r a t i o n ( )

{
/ / s e t c o n n e c t i o n s t o ne twork

app . lowerOut . connec tTo ( agg . u p p e r I n ) ;

agg . lowerOut . connec tTo ( henc . u p p e r I n ) ;

henc . lowerOut . connec tTo ( n e t . u p p e r I n ) ;

/ / s e t c o n n e c t i o n s from ne twork

n e t . upperOut . connec tTo ( henc . l o w e r I n ) ;

henc . upperOut . connec tTo ( agg . l o w e r I n ) ;

agg . upperOut . connec tTo ( app . l o w e r I n ) ;

/ / s e t p r i o r i t i e s

henc . s e t P r i o r i t y ( MIN PRIORITY ) ;

}

A p p l i c a t i o n app ;

P a c k e t A g g r e g a t o r agg ;

HuffmanEncoder henc ;

Network n e t ;

} ;

All other activities get a standard priority which is in the

middle of all possible priorities. Note that it is trivial to use

a non-preemptive scheduling scheme without any modifica-

tions to the components, only the NodeConfiguration

needs to be updated. This is for example a good option for

RLE encoding, because its runtime is much shorter than that

of Huffmann encoding. With a simpler scheduling scheme

the system runtime is reduced and therefore power con-

sumption is lower.

5.2 Concurrency

One could argue that in the proposed scheme concur-

rency of long running activities is limited. Activities cannot

run fully interleaved like in threaded systems, but due to the

run-to-completion semantics this is not needed.

Suppose a traditional threaded system, which has to ex-

ecute two long running processes. Since the processes fea-

ture an infinite loop in that they operate on available data,

the system allocates each process a timeslice and would

then preempt it at the end of the slot. In event driven sys-

tems activities resume after processing a data set. Therefore

interleaving is not needed, the long running activity which

Table 1. Memory Consumption of Schedul-
ing Schemes in Reflex on Texas Instruments
MSP430 in Bytes

System Activity

Rom RAM RAM

FCFS 2214 78 7

Time Triggered 2124 80 7+usedSlots*6

FP - non-preemptive 2252 78 8

FP - preemptive, 1 list 2380 78 8

FP - preemptive, 2 lists 2512 80 8

EDF - non-preemptive 2310 78 16

EDF - preemptive, 1 list 2428 78 16

EDF - preemptive, 2 lists 2568 80 16

has the tightest deadline of all long running activities in an

application is given the highest priority among them. This

activity can now only be preempted by short running ac-

tivities. A positive side effect is, that unnecessary context

switches are avoided implicitly.

5.3 Memory Consumption

Preemption is not for free in terms of memory consump-

tion. However, table 1 shows that the memory overhead

is nearly negligible in REFLEX. The table shows the code

size, and the RAM consumption of the base system for the

provided scheduling schemes of REFLEX. Additionally, the

corresponding RAM overhead per activity is shown.

The overall system size (including scheduling, interrupt

handling and power management) is even for the most com-

plex earliest deadline first (EDF) implementation below

3KB. This is a comparable memory consumption to that

of TinyOS and comparable to Contiki’s memory footprint.

Therefore REFLEX is well suited for use in sensor networks.

Interestingly, preemptive schemes have no significant

impact with respect to RAM consumption per activity. The

overhead is caused by the scheduling principle (Fixed Pri-

ority (FP) or Earliest Deadline First), if it is implemented

preemptively does not matter.

5.4 Runtime Overhead

The runtime overhead for the preemptive scheduling

scheme is not negligible like the memory overhead. Table 2

shows the ticks needed for the scheduling of an activity in

different schemes on a Freescale HC(S)12. The microcon-

troller uses a CISC architecture. We used this platform for

some real time applications.

The non-preemptive scheduler versions only sort the

activities into their ready-list. Therefore these are faster



Table 2. Clock ticks needed for scheduling of
an activity on Freescale HC(S)12

FCFS 48

Time Triggered 11

FP - non-preemptive 89

FP - preemptive, 1 list 213

FP - preemptive, 2 lists 346

EDF - non-preemptive 247

EDF - preemptive, 1 list 445

EDF - preemptive, 2 lists 571

than the preemptive ones. The overhead of the preemptive

schemes is mainly caused by initializing and calling a dis-

patch routine at the end of scheduling, i.e. the instantiation

of the schedule frames on the stack. The most complex ver-

sions of FP and EDF scheduling (2 lists versions) guarantee

constant interrupt blocking times.

Additionally, the values for the other implemented non-

preemptive scheduling schemes are shown. These are faster

because there is no expensive sorting of activities. For TT-

scheduling the schedule is done a priori.

Overall the runtime overhead cannot be neglected since

the typical runtime of a task is relatively short. We mea-

sured activity runtimes from 70 to 30000 ticks in our appli-

cations so far. Thus the scheduling overhead is significantly

higher than in PDAs, PCs or Highend Servers and must be

considered when choosing a scheduling scheme.

Nevertheless, the time a high priority activity is blocked

by lower priority activities can be significantly lowered with

preemptive scheduling. It is even trivial to switch between

preemptive and non-preemptive scheduling since activity

code is not affected. This makes it possible to choose the

best scheduling scheme at at system configuration.

5.5 Synchronization

The possibility of implicit synchronization is one of the

strengths of event driven programming. In the event flow

model an application is implicitely synchronized by the

atomic but non blocking access to the event flow buffers.

Therefore the communication between components is al-

ready synchronized even in the case of preemption.

Inside a component the preemptive operation could lead

to synchronization problems. This can be solved by han-

dling a component as a monitor. The interrupts for a com-

ponent and higher priority activities of this component can

be locked, when an activity of the component is executed.

Note, that this form of locking affects only the scope of a

single component and does not raise inter component de-

pendencies. Thus also the violation of the monitor seman-

tics of a component can be accepted if this is needed for

performance reasons. Due to the synchronization scope the

component programmer knows all the code, which affects

synchronization and is able to synchronize the component

by hand.

Precedence constraints are also a synchronization prob-

lem in threaded systems. The scheduler cannot decide, if

a thread runs into a blocking condition immediately after

it is started. In our event driven system an activity is only

executed, when its inputs are valid. This behaviour is not

affected by preemption.

5.6 Energy Consumption

An event driven system is only active, when an event oc-

curs. Since all activities are triggered by events, the system

can switch to a sleep mode if no activity is pending for ex-

ecution. With the presented approach this scheme is not vi-

olated because long running tasks have run-to-completion

semantics like all other tasks. Thus the stack sharing so-

lution allows to implement an implicit power management

scheme.

6 Conclusion

This paper introduced the stack sharing mechanism as

solution to one of the remaining problems with event driven

programming, namely handling long running tasks. The

presented approach is different compared to multi threaded

approaches, since it keeps all the benefits of event driven

programming. It introduces no precedence problems or

similar to scheduling. Furthermore, the approach is more

lightweight than a thread based system due to the use of

only one stack.

In the future we will do some comparisons with other

schemes by implementing applications on the same plat-

tform. This will yield a quantitative comparison in means

of runtime and memory consumption.
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