
CsharpSimpleModule – writing OMNeT++ Modules with C#
and Mono∗

Andreas Lagemann
BTU Cottbus

Distributed Systems
ae@informatik.tu-cottbus.de

Jörg Nolte
BTU Cottbus

Distributed Systems
jon@informatik.tu-cottbus.de

ABSTRACT
Simulation normally serves one of two purposes. The first
one is evaluation of certain algorithms. The second one is
development and test of applications with infrastructural
requirements which exceed those commonly available (e.g.
distributed applications for wireless networks). In the latter
case it is highly desirable that the code used for simulation
can be easily adopted to real hardware with minor modi-
fications. The .NET framework is – like Java – platform
independent insofar as it only depends on a virtual machine
implementation for each device it is meant to run on. There-
fore for some application fields it is attractive to be able to
write plain C# code which can then be run with a simulator
like OMNeT++.

This paper introduces CsharpSimpleModule, an extension
to OMNeT++, which – like its companion JSimpleModule
does for Java – allows you to write OMNeT++ simula-
tion modules in C# and mix them freely with plain OM-
NeT++ modules, thus allowing you to build upon existing
OMNeT++ frameworks (e.g INET or MobilityFramework).
Besides giving a short introduction to the usage of Csharp-
SimpleModule its general architecture will be illustrated and
selected implementation issues will be discussed.

Categories and Subject Descriptors
I.6.5 [Computing Methodologies]: Simulation and Mod-
elling—Model Development ; D.1.5 [Software]: Program-
ming Techniques—Object Oriented Programming

1. INTRODUCTION
Developing applications for wireless distributed systems is

a tedious error prone process. Testing applications in real
networks with hundreds of nodes is often prohibitively ex-

∗This work was partly supported by the DFG (german
research foundation) within the project “Basissoftware für
selbstorganisierende Infrastrukturen für vernetzte mobile
Systeme” (SPP1140).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2008 March 3, 2008, Marseille, France
Copyright 2008 ACM 978-963-9799-20-2 ...$5.00.

pensive and time consuming. Therefore the need for sim-
ulation arises. One common approach is to implement the
algorithms in question in a way specific to the simulator
used and then reimplement these algorithms for field tests
on real hardware. This approach has two essential draw-
backs. The first one is clearly the amount of time which is
wasted in doing the same thing twice. The second drawback
is that reimplementation always contains the risk of intro-
ducing errors or inconsistencies into the code. This is highly
undesirable especially since debugging on non standard end
devices can become a very tedious task.

OMNeT++ [11] is an object oriented discrete event sim-
ulator with a strong focus on network simulation. It has
become quite popular in the last years and the user commu-
nity is still growing. OMNeT++ can be roughly compared
with NS2 [3] and OPNET [2].

This paper introduces CsharpSimpleModule, an extension
to OMNeT++, which allows you to write simulation mod-
ules in C#. With .NET [10] being available on a lot of
devices1 it is besides Java a good choice for developing
distributed applications that shall be widely deployed to
a great number of different devices. For applications like
that CsharpSimpleModule can be used to greatly ease de-
velopment by enabling OMNeT++ as a tool for testing and
debugging. The authors unfold how you can enable an ex-
isting .NET application written in C# to run in OMNeT++
with only minor changes to the code. Additionally some de-
sign issues on how you can make your application code in-
dependent from the actual platform (i.e. OMNeT++ vs.
real hardware) will be addressed. After that the overall
software architecture of CsharpSimpleModule will be pre-
sented. Then some basic techniques which were necessary
to create CsharpSimpleModule are briefly introduced be-
fore discussing some implementation issues that might help
those who want to extend CsharpSimpleModule or accom-
plish something similar for another language than C# or
Java. Finally related work will be presented and options for
the future of CsharpSimpleModule will be discussed.

2. SOFTWARE ARCHITECTURE
The main objective of CsharpSimpleModule’s design is

the integration of a C++ framework and runtime envi-
ronment into the .NET platform, such that .NET appli-
cations(currently only C# is supported as programming
lanuguage) have access to the framework on the one hand,

1A stripped version of the full .NET framework (the .NET
Compact Framework) supports running .NET applications
on devices with sparse resources (e.g. PDAs)

Figure 1: Software architecture of CsharpSimple-
Module

and the runtime has means of controlling certain .NET ob-
jects. Thus there are two main tasks to be solved. The first
task is to make the framework’s API accessible from within
C# code. For that purpose wrapper code was generated
using SWIG (see section 4.1.1). The wrapper code is two
tiered. All framework functionality (including the public
methods of all classes which shall be accessible from within
C# programs) is wrapped with corresponding C-style func-
tions which are compiled into a library, that can then be
used by special C# functions that access the correspond-
ing native functions. The second layer consists of wrapper
classes which mainly map method calls to a corresponding
function, which in turn call the C-style functions of the first
layer. The mechanism allowing for this call is denoted P/IN-
VOKE (platform invoke). It uses metadata to locate the
exported unmanaged functions and marshal its parameters
at runtime (see [5], [6] and [9]). The application code only
needs to access the wrapper classes without bothering with
P/INVOKE. Figure 1 illustrates the layered approach with
the P/INVOKE mechanism as a tie between them.

The second task, i.e. providing means of control of some
C# objects for the OMNeT++ runtime, is solved by intro-
ducing a special cSimpleModule called CsharpSimpleMod-

ule. This module is responsible to start the mono runtime
and load the appropriate assemblies which were defined via
the module’s parameters. Using the reflective mechanisms of
the mono API it creates an object of the corresponding ap-
plication module which must be derived from the C# coun-
terpart to CsharpSimpleModule which is a C# class with
the same name. This class is not a proper wrapper class
for its C++ counterpart, because that would lead to infi-
nite recursion, but there are certain methods on the C++
side, which can be accessed from the C# side and the other
way round. Note that for every CsharpSimpleModule cre-
ated there exists exactly one instance of the C++ and one
instance of the C# class. These two objects must be linked
very closely to avoid inconsistent behaviour. How this close
linkage is technically achieved will be described in detail in
section 4.2.

3. USING CSHARPSIMPLEMODULE
CsharpSimpleModule allows you to write simulation mod-

ules for OMNeT++ with C#. It is based on the mono
runtime environment (see section 4.1.2) which is an open

implementation of the .NET framework specified by Mi-
crosoft and uses the Simplified Wrapper Interface Generator
(SWIG) (see section 4.1.1) to generate C# wrapper classes
that present the OMNeT++ API to the .NET developer.

Before describing the usage of CsharpSimpleModule in de-
tail, we will first recall the elements of a OMNeT++ model:

Every model consists of modules. There are two types
of modules. The simple modules are basic building blocks.
They are the active components of the model, programmed
in C++ and represented by the cSimpleModule class, which
serves as a base for the implementing class. Simple modules
can be combined into compound modules. Every module
(simple as well as compound) can define gates. Modules in-
side a compound module can be connected via those gates.
Connections between gates are simplex. Therefore there are
input and output gates. Every input gate of the compound
module as well as every output gate of a submodule can serve
as an input. Similarly an output gate of the compound mod-
ule and an input gate of a simple module can serve as an
output. Note that every gate can only be used as endpoint
of one connection. Direct connections between submodules
contained in different compound modules are not allowed.
Events are represented as messages in OMNeT++. A sepa-
rate event class is not provided. A message is an instance of
cMessage or any derived type. They are sent from one mod-
ule to another; therefore the module where the event will oc-
cur is called the message destination. Parameters add more
flexibility to the usage of modules and facilitate the reusabil-
ity of modules. Each module can define an arbitrary number
of parameters.

Basically the package provides an OMNeT++ module
called CsharpSimpleModule (which is a cSimpleModule). A
simulation is run by instances of CsharpSimpleModule which
work as a proxy module for the C# modules. It has parame-
ters allowing the definition of the class name, the namespace
of the module and the assembly2 where it resides. To set up
a run with C# code you simply need to insert CsharpSim-

pleModules into a topology description where appropriate.
To illustrate the usage of CsharpSimpleModule consider

the following simple example application. The model con-
sists of two modules, named “tic” and “toc”. The modules
will send one message back and forth between them where
”tic“ will be responsible for creating the message and send-
ing it the first time. Since both modules do essentially the
same thing, it is sufficient to implement one single Csharp-

SimpleModule. We will call it Txc. Listing 1 shows the C#
code implementing the Txc module. In the initialize()

method the module with the name “tic” creates a HelloMes-

sage which will be sent back and forth between the two
modules. The handleMessage() method receives the Hel-

loMessage (see below for an explanation why the cast has
to be done this way), reads and prints the counter of the
message and sends it back. The finish() method merely
prints a message to the environment stating that it has been
called.
HelloMessage is implemented in C#. It is not derived

from cMessage directly, because cMessage on the C# side
is a wrapper class. Wrapper objects for a cMessage are only
valid until the message is sent to another module. When the

2Assembly is the .NET term for a partially compiled code
library consisting of byte code. An assembly can either rep-
resent an executable or a sole library (which is what we need
for our purpose)

1 c lass Txc : CsharpSimpleModule {
2
3 protected override void i n i t i a l i z e () {
4 ev . p r i n t l n (” i n i t i a l i z e o f ”
5 +getFul lPath ()) ;
6 i f (getFullName () . Equals (” t i c ”)) {
7 cMessage msg =
8 new HelloMessage (”msg”) ;
9 send (msg , ”out ”) ;

10 }
11 }
12
13 protected override void handleMessage (
14 cMessage msg) {
15 ev . p r i n t l n (msg . getName ()
16 +” ar r i v ed ”) ;
17
18 HelloMessage hel loMsg =
19 HelloMessage . ca s t (msg) ;
20 ev . p r i n t l n (”counter read ”
21 + helloMsg . getTimesRead ()
22 + ” times ”) ;
23
24 send (msg , ”out ”) ;
25 }
26
27 protected override void f i n i s h () {
28 ev . p r i n t l n (” f i n i s h o f ”
29 +getFul lPath ()) ;
30 }
31 } ;

Listing 1: A small example CsharpSimpleModule

send() method is called on the C# side, the corresponding
C++ message object is retrieved from the wrapper object
and passed to the send() method on the C++ side. When
the message arrives at the other module, it is re-wrapped
with a newly created instance of the C# wrapper class. One
design principle has been to allow CsharpSimpleModule to
be used with an unaltered version of OMNeT++. Therefore
the C++ side object contains no reference to its C# coun-
terpart. In order to allow for messages fully implemented in
C# a class named CsharpMessage was introduced, which is
the base class of our example HelloMessage. A detailed de-
scription of the implementation of CsharpMessage is given
in section 4.2.

OMNeT++ introduces a special language called NED to
describe the topology of a simulation model. NED facilitates
the modular description of a network. That is, a network de-
scription can consist of simple modules, compound modules
and channels. Channels serve as an abstraction for commu-
nication paths, and allow definition of delay, data rate and
the error rate of that path. The purpose of simple and com-
pound modules was explained in above. Their corresponding
NED representatives are denoted by the terms SimpleMod-

ule and Module respectively. As stated in section 2 every
module can define parameters and gates. Parameters are de-
fined after the keyword parameters: gates go after gates:.
The type of a gate (input or output) is identified by pre-
ceding in: or out: respectively. Gates can either by spec-
ified individually or as vectors. The latter is denoted by
appending [] to the gate identifier. Compound modules ad-
ditionally allow the definition of submodules (each submod-
ule must be preceded by submodule:) and the connections
(preceded by connections: between them. Connections are
denoted by gate1 -> gate2 meaning that there exists a con-
nection between gate1 and gate2 where gate1 is the start
point and gate2 is the endpoint.

Listing 2 shows the NED file corresponding to our exam-
ple. The CsharpSimpleModule module provides three pa-
rameters to control which C# class will be loaded. Here
the class Txc in the namespace OmnetDemo is used. The
mono runtime can find the precompiled code in the assem-

1 module Net1
2 submodules :
3 t i c : CsharpSimpleModule ;
4 parameters :
5 assemblyName = ”CsharpOmnetDemo” ,
6 moduleNamespace = ”OmnetDemo” ,
7 moduleName = ”Txc ”;
8 display : ” i=misc/node , blue ”;
9 toc : CsharpSimpleModule ;

10 parameters :
11 assemblyName = ”CsharpOmnetDemo” ,
12 moduleNamespace = ”OmnetDemo” ,
13 moduleName = ”Txc ”;
14 display : ” i=misc/node , ye l low ”;
15 connect ions :
16 t i c . out++ −−> toc . in++;
17 t i c . in++ <−− toc . out++;
18 endmodule
19
20 network net1 : Net1
21 endnetwork

Listing 2: A small example NED file

bly named CsharpOmnetDemo. To add some flexibility to
CsharpSimpleModule, it has two gate vectors for incoming
and outgoing connections respectively. With this gate vec-
tors you can add new gates as you desire by using the post in-
crement operator like in lines 16 and 17 in listing 2. Because
inheriting from simple modules is not being supported cur-
rently3, you cannot add your own parameters or additional
gates. If you need your own parameters, you can declare
them in the parent module of CsharpSimpleModule and ac-
cess them via that parent module from your code. The re-
striction that no additional gates can be defined should also
not pose any greater problem, because the use of gate vec-
tors allows for dynamic gate creation.

There are some specialties to be considered when imple-
menting simple modules in C#. Virtually the whole sim-
ulation API can be used. However all C# side classes are
just wrapper classes containing no state information other
than a pointer to the underlying C++ peer object. When a
wrapper object is newly created from within a C# program
the corresponding C++-object is created via a call of the
appropriate constructor on the C++ side. Every invocation
of a method from the wrapper object is redirected to a call
to the C++ object. Also if you send a cMessage via send(),
the wrapper function retrieves the pointer to the cMessage

stored in the wrapper object and passes it to the method
call of the underlying C++ object. After sending a cMes-

sage the corresponding wrapper object should be considered
invalid and must not be used anymore, since the underly-
ing cMessage (on the C++ side) has then been deleted by
the OMNeT++ simulation kernel or other modules. Simi-
lar, if methods return a reference to an object, the return
value of the C++ method call is wrapped in the appropri-
ate C# wrapper object which is returned as a result of the
method call.

As a direct consequence you cannot compare two objects
directly with the equals() method of the object class, be-
cause the identity of the wrapper object does not correspond
to the wrapped object’s identity, i.e. the same object can
(and will most probably) be wrapped by different wrap-
per objects. To solve this, each wrapper object provides a
method named sameAs() which compares the pointers to the
C++ object for equality rather than comparing the wrapper
objects themselves.

Another implication is that a returned object reference

3this is promoted to be a new feature in OMNeT++ 4.0

will always be wrapped by an object of the declared return
type rather than an object of the actual type of the original
object. This is an issue if the return type of the given method
is more general than the actual type. To access methods of
the actual type the object has to be re-wrapped. This can
be done by the cast() method, which every wrapper object
provides. The method behaves like a dynamic_cast(); it re-
turns null if the conversion could not be performed4. Again
the originally returned object should be considered invalid
after casting and not be touched again.

Last but not least due to the highly dynamic nature of
simulations the standard memory management approach of
SWIG (see 4.1.1) is not used. The C# wrapper classes never
delete the underlying C++ object. They have to be explic-
itly deleted by using the Dispose() method. Messages no
longer needed should be disposed of, for example. After call-
ing Dispose() the wrapper object naturally should be con-
sidered invalid. This is underlined by the Dispose() method
setting the reference pointer to null.

3.1 Bringing the Real World to OMNeT++
The following example serves the purpose of illustrating

how appropriate application design can lead to code which
can be easily adapted to the use with OMNeT++ as well as
concrete devices. Thus the OMNeT++ simulator (in con-
junction with CsharpSimpleModule if applications are writ-
ten with C#) can serve as a valuable development tool bring-
ing great ease to debugging and testing distributed applica-
tions5.

In distributed applications the participating nodes need
some means of communication usually described as“the net-
work”. Access to this network is customarily provided via
a well defined interface which offers some abstractions for
data sent between nodes (often called messages) and some
addressing scheme to distinguish nodes. This interface is in-
troduced to decouple the application logic from the technical
details of communication. So by regarding OMNeT++ as a
certain kind of network one can easily hide all OMNeT++
dependent code behind that interface. Applications which
are built upon that interface can then be run on any plat-
form which provides a network implementation.

To illustrate this point further, consider the (simplified)
application design shown in figure 2. The application (repre-
sented by the class Application) uses the interface Network

to communicate with applications on other nodes being to-
tally indifferent to the way the interface functionality is im-
plemented. The class UDPNetForDotNetCF implements the
Network interface for the .NET compact framework using
UDP/IP to transmit messages over the network. To simu-
late the same application with OMNeT++, you only have to
provide an OMNeT++ module which implements the Net-

work interface and replace the UDPNetForDotNetCF with that
module (which besides implementing the interface also has
to inherit from CsharpSimpleModule as described above).
The resulting design should look similar to that in figure 3.
This seems to be simple enough; however there are some
pitfalls which should be noticed.

The most significant problem lies in the semantic of net-
work service primitives (like send or receive). In many com-

4actually it is implemented using dynamic_cast()
5although the focus of this paper lies on distributed appli-
cations, the principles shown can be easily adapted to other
kinds of applications suitable for OMNeT++ as well

Figure 2: Class diagram for distributed application
in .NET CF framework

munication frameworks (e.g. the UDP implementation of
the .NET framework) the default behaviour of send and re-
ceive operations is synchronous, meaning that they block
the calling entity until the operation was carried out suc-
cessfully or a non maskable error has occurred. With OM-
NeT++ such a behaviour can only be achieved by using
the activity() mechanism which leads to modules being
implemented as coroutines [8] each with its own stack and
thread of control. Besides being strongly discouraged by
the author of OMNeT++, since it leads to poorly scalable
simulation models, this feature is not supported by Csharp-
SimpleModule. So if you want to write applications which
shall run with OMNeT++ as well as with real devices you
are strongly encouraged to apply an event driven program-
ming style. Otherwise it will become very difficult to avoid
the use of synchronous primitives, which will make it hard
if not impossible to port your code to OMNeT++.

Another problem lies in providing timeout facilities. Most
real distributed applications need some means of measuring
how long a certain operation takes and to specify a maxi-
mum time for that operation in order to detect communi-
cation failures. In real systems this is usually accomplished
using some clock device, which generates interrupts in a cer-
tain time interval. An interrupt handler can inform reg-
istered entities about timer expiration. Another not very
precise method, which additionally is somewhat prodigal of
resources, is to setup an extra thread which sleeps some
amount of time and informs registered entities each time it
awakens. Neither threads (see discussion above) nor inter-
rupts as such are available for CsharpSimpleModule. But
OMNeT++ does provide a mechanism which is quite sim-
ilar to a timer interrupt but more flexible and more easy
to use: the self message. A self message is a plain cMes-

sage which is sent via the scheduleSelfMessage method of
cModule. With the help of self messages it is possible to add
functionality similar to a timer to your module. Note that
with OMNeT++ it is possible to define a separate module
at which other modules can register to receive notifications
of a timeout event. Such a module would probably be very
similar to the NotificationBoard from the INET frame-
work [12]. With CsharpSimpleModule such a solution is cur-
rently not possible, because the support for direct method
calls to CsharpSimpleModules is not implemented yet. It
will probably be supported in a future release, however, since

Figure 3: Class diagram for distributed application
with OMNeT++

1 message IPHeader {
2 parameter :
3 IPAddress source ;
4 IPAddress dest ;
5 }

Listing 3: Example IP header

the authors regard it as a crucial element for developing well
designed component based simulation models.

3.2 Integration with non C# modules
Since there are numerous frameworks out there for OM-

NeT++ you certainly want to use some of them for projects
with CsharpSimpleModule as well. There are several ways to
use your CsharpSimpleModule models together with existing
OMNeT++ modules implemented in C++. In the most sim-
ple case the model you want to use does not specify special
messages but simply operates with cMessages. In that case
you simply connect your CsharpSimpleModule’s output gate
with that module’s input gate and call the send method of
your module passing a respective cMessage. However, many
modules expect a certain message type to be passed to their
input gates. To create an instance of such a message with-
out the need to wrap the corresponding C++ classes you can
use a generic interface for the manipulation of C++ classes
provided by OMNeT++. If for instance you want to use the
message defined in listing 3, you can retrieve an instance of
it and access it like shown in listing 4.

The Simkernel.createOne() method is a generic factory
method which can create an instance of any object which
has been registered with Register_Class(). You can ac-
cess members of that object with the getField() and set-

Field() resp. the getArrayField() and setArrayField()

methods. The set and get methods are using the reflection
information which is generated by OMNeT++. Since they
rely on string comparison their use has some performance
penalties; but wrapping the needed classes with SWIG is
more laborious by far.

Sometimes, however, it will be most appropriate to wrap
the respective classes yourself. That is the case for example,
if you want to avoid the usage of reflective mechanisms or the

1 cMessage pk = cMessage . ca s t (
2 Simkernel . createOne (
3 ”IPHeader ”)) ;
4 pk . s e tF i e l d (”source ” , ”1 ”) ;
5 pk . s e tF i e l d (”de s t i na t i on ” , ”2 ”) ;

Listing 4: Usage of createOne and access methods

1 c lass Foo {
2 public :
3 int bar (int i) ;
4 int i ;
5 } ;

Listing 5: A small example C++ class

number of C++ objects you need to access becomes quite
large. How wrapping with SWIG generally works is detailed
in section 4.1.1.

4. IMPLEMENTATION ISSUES
This section introduces certain aspects of the implementa-

tion which are regarded crucial to successfully meet Csharp-
SimpleModules requirements. After presenting two basic
techniques used to implement CsharpSimpleModule, po-
tential problems concerning memory management are pre-
sented. After that the solution for providing a kind of cross-
language-polymorphism is explained.

4.1 Basic Techniques
The implementation of CsharpSimpleModule is mainly

based on two basic techniques. The wrapper generator
SWIG greatly eases the implementation of C# wrapper code
for C++ libraries. The mono runtime provides means to
control the execution of C# programs from within an arbi-
trary C++ program.

4.1.1 Generating Wrapper Code with SWIG
SWIG is an interface compiler which was basically de-

signed to integrate the power of (existing) C/C++ libraries
with the flexibility offered by scripting languages. From 1996
it steadily evolved to offer support for a huge amount of
scripting languages and has also supported Java and C#
for some years. It works by parsing the declarations from a
C/C++ header file and generating appropriate wrappers for
the given target language. The original C++ code, which
is accessed through the wrapper code, need not be touched,
which is one of the most important aspects of SWIG gener-
ated code.

Basically you need to create an interface file. In the most
simple case this file consists of import statements for some
C++ header files containing the interfaces that shall be
wrapped. This simple method will suffice for small appli-
cations with rather trivial usage patterns. However SWIG
allows for more complex mechanisms to solve more demand-
ing tasks. For a deeper introduction to SWIG see [4].

Given a simple class like shown in listing 5, SWIG will gen-
erate a proxy class in the target language (C# in our case).
This class is solely a wrapper class of low level functions,
which in turn call the methods of the C++ class through
some means supported by the target language (P/INVOKE
(see section 2) in the case of C#). The resulting proxy class
will roughly look like depicted in listing 6.

1 public c lass Foo : ID i sposab l e {
2 public Foo () :
3 this (examplePINVOKE . new Foo () , true) {
4 }
5
6 ˜Foo () {
7 Dispose () ;
8 }
9

10 public int bar (int i) {
11 int r e t = examplePINVOKE . Foo bar (swigCPtr , i) ;
12 return r e t ;
13 }
14
15 public int i {
16 s e t {
17 examplePINVOKE . F o o i s e t (swigCPtr , value) ;
18 }
19 get {
20 int r e t = examplePINVOKE . Foo i g e t (swigCPtr) ;
21 return r e t ;
22 }
23 }
24
25 }

Listing 6: C# proxy generated by SWIG

The concept of proxy objects keeping references to na-
tive objects raises many memory management issues, which
are addressed by SWIG by adding some API for ownership
control to the generated proxy classes. Each proxy object
contains a reference to the corresponding native object as
well as a flag indicating whether it is currently the owner
of the object, i.e. if it is responsible for deleting it. Thus
the native object is only deleted if at the time when the
proxy object is destroyed, the ownership flag is set. We will
discuss memory management issues related to OMNeT++
wrapping in more detail in section 4.3. Code for memory
management and ownership tracking has been omitted in
listing 6 for clarity and simplicity. The Dispose() method
(also omitted) is called by the destructor. It is responsi-
ble for calling the native destructor and releasing .NET side
references.

Most importantly you can configure almost everything of
the wrapper code generated to your specific needs. While
for simple tasks the procedure described above is fully suf-
ficient and easily applied, it is possible to adjust SWIGs
generated code in such a way that you are able to accom-
plish more complex tasks, while leveraging the automatic
code generation done by SWIG, which saves a lot of time
when implementing interfaces for native libraries.

4.1.2 Embedding the Mono Runtime with C++
The mono project is an open development initiative spon-

sored by Novell to develop an open source UNIX version of
the Microsoft .NET development platform. It implements
various technologies which were developed by Microsoft and
have then been submitted to the ECMA6 for standardiza-
tion. Currently it provides three main components:

• A common language interface (CLI) [1] virtual ma-
chine that contains a class loader, just in time compiler
and a garbage collecting runtime.

• An API implementation of the standard .NET API as
well as most of Microsoft’s API and a mono specific
API.

6Ecma International is an industry association founded in
1961 and dedicated to the standardization of Information
and Communication Technology (ICT) and Consumer Elec-
tronics (CE).

1 public c lass Base {
2 public void myOwnMethod () ;
3 public virtual void overr idableMethod () ;
4 }
5
6 public c lass Derived : Base {
7 public new void myOwnMethod () ;
8 public override void overr idableMethod () ;
9 }

Listing 7: A simple C# object hierarchy

1 MonoDomain∗ domain =
2 mon o j i t i n i t v e r s i o n (”Example ” , ” 0 . 1 . 0 ”) ;
3 MonoAssembly∗ assembly =
4 mono assembly load wi th par t i a l name (”example

. d l l ”) ;
5
6 MonoImage∗ image = mono assembly get image (

assembly) ;
7 MonoKlass∗ ba s e c l a s s =
8 mono class from name (image , ”Base ”) ;
9 MonoKlass∗ de r i v ed c l a s s =

10 mono class from name (image , ”Derived ”) ;
11 MonoObject∗ der ivedob j =
12 mono object new (domain , d e r i v ed c l a s s) ;
13 mono run t ime ob j e c t i n i t (der ivedob j) ;
14
15 MonoMethod∗ m = NULL;
16 gpo inte r i t e r = NULL;
17
18 MonoMethod∗ myOwnMethod Base = NULL;
19 while ((m = mono c las s get methods (basec l a s s , &

i t e r))) {
20 const char∗ name = mono method get name (m) ;
21 i f (strcmp (name , ”myOwnMethod”) == 0) {
22 myOwnMethod Base = m;
23 }
24 }
25
26 MonoMethod∗ myOwnMethod Derived = NULL;
27 while ((m = mono c las s get methods (de r i v edc l a s s ,

&i t e r))) {
28 const char∗ name = mono method get name (m) ;
29 i f (strcmp (name , ”myOwnMethod”) == 0) {
30 myOwnMethod Derived = m;
31 }
32 }
33
34 MonoMethod∗ overr idableMethod = NULL;
35 while ((m = mono c las s get methods (basec l a s s , &

i t e r))) {
36 const char∗ name = mono method get name (m) ;
37 i f (strcmp (name , ”overr idableMethod ”) == 0) {
38 overr idableMethod =
39 mono ob j e c t g e t v i r tua l method (der ivedobj ,m

) ;
40 }
41 }
42
43 MonoObject∗ except ion = NULL;
44 void∗∗ args = NULL;
45 MonoObject∗ r e s u l t =
46 mono runtime invoke (overridableMethod ,
47 der ivedobj , args ,& except ion) ;

Listing 8: Using the embedding API of mono

• A compiler suite for C# which will be supplemented
by compilers for other CLI languages in the future.

The runtime comes with a set of API methods, which al-
low the developer to start the runtime from within a C/C++
program and to access the full functionality like loading as-
semblies, instantiating classes, calling methods on classes
and instrumenting the garbage collector. This API allows
instantiation of the runtime from within OMNeT++. To il-
lustrate the use of the mono embedding API consider the
following example:

In listing 7 two classes are defined: the class Base and the
class Derived where Derived is derived from Base. Let us
assume that the two classes are compiled into an assembly
named “example.dll”. Listing 8 shows C/C++ code which
accomplishes the following tasks in the given order.

Initializing the runtime and loading an assembly is each
easily achieved with a single function call (lines 1-4). Re-
trieving the type information (MonoClass) is also easily at-

tained (6-10). Creating an object involves two steps. First
the space for the given object has to be allocated, and then
the object has to be initialized by calling the standard con-
structor7 (11-12). To get a handle for a certain method,
one has to iterate through all methods of the given ob-
ject and compare them to the name of the desired method.
If the name is ambiguous, you can also query the num-
ber of arguments. If that is still not sufficient for dis-
ambiguation, the argument types have to be considered.
The example shows only the case where the method name
is sufficient to distinguish it from other methods (17-41).
Note that the first method retrieved will always call the
method defined in class Base and the second one always
the method defined in Derived when invoked on an object
of type Derived. If you have virtual methods and want
to achieve the usual semantics for calling a virtual method
(i.e the most specialized version of the method in a given
object hierarchy is called) you have to use the function
mono_object_get_virtual_method() (see line 39). The ac-
tual invocation of the method is performed via a single func-
tion call (43-47).

It expects the method handle, the object on which the
method call shall take place as well as a list of parameters
and a pointer to a MonoObject pointer which will hold an
exception object if an exception has been triggered by the
call.

The mono embedding API provides a lot of more func-
tions, which let you control almost every aspect regarding
the execution of .NET programs. Listing all of them here
would lead too far and is out of the focus of this paper. The
reader should have gotten a general picture of how embed-
ding the mono runtime can be achieved and should now be
able to comprehend the more detailed description of some
implementation aspects given below. For more information
see [7].

4.2 Cross-Language Polymorphism
A logical object, which consists of two objects each written

in a different programming language, is denoted by the term
bilingual object in the context of this paper. CsharpSimple-
Module and CsharpMessage (see section 3) are two examples
for such an object. The object implemented in one language
will be designated the peer of the other object. The term
cross-language polymorphism denotes a property of bilingual
objects. This property holds if the object can be extended in
one programming language and the correct type – according
to the well-known rules of polymorphism – can be retrieved
from a reference to the peer object.

To illustrate the implementation of bilingual objects which
provide the property of cross-language polymorphism we
picked CsharpMessage as an example; the implementation of
CsharpSimpleModule is analogous in this respect. To fulfill
the requirements of cross-language polymorphism, the C++
side object must hold a reference to its C# peer object.
This reference must be retrievable from the C# side, when
for instance a HelloMessage is retrieved via handleMes-

sage(). As described in section 3, when the message is
passed to the C# side method, a wrapper object of type
cMessage is created. At this point the original C# peer has
to be retrieved. For this purpose CsharpMessage provides a
method named swigCsharpPeerOf(), which is implemented

7One can call non standard constructors as well. It has been
omitted for brevity

on the C++ side. It accepts a pointer to a cPolymorphic

object. Using dynamic_cast() it determines if the object
is of the correct type. If so it calls the method swigC-

sharpPeer() which returns a pointer to the peer object.
Otherwise null is returned. For convenience CsharpMessage

provides a method named cast(). This method accepts a
reference to a cPolymorphic wrapper object. That object
is passed to swigCsharpPeerOf(). The formal return type
of swigCsharpPeerOf() is MonoObject* on the C++ side
which resolves to object on the C# side. This object is
transferred into a CsharpMessage via a static cast.

In order to retrieve the peer object as described above, it
must somehow be stored in the C++ side peer first. Pro-
viding a method on the C++ side, which stores the refer-
ence passed as a MonoObject* and accessing it via a wrapper
method, is the first solution that comes to mind. However,
it does not work. This approach uses P/INVOKE (see sec-
tion 2) and therefore involves parameter marshalling. Cur-
rently there is no support for marshalling C# objects as
MonoObject pointers. To implement a routine, which per-
forms that task would rely on implementation details of a
particular mono version. Since that details are most likely
subject to change with later mono versions, depending on
them should be avoided.

In the .NET framework a delegate denotes a type-safe
function pointer. When bound to a managed method, it
can be resolved to a C-style function pointer. The auto-
matic P/INVOKE marshalling does exactly that. The func-
tion pointer can be used to call that method from within
unmanaged code. If the return type of the method is ob-

ject it is resolved to a MonoObject* when called via the
function pointer.

Knowing this, the given problem can be solved as follows:
A method getReference() is introduced to the C# side
CsharpMessage. This method is then bound to a delegate.
At object creation time the delegate is passed to the C++
object by calling the method setCsharpPeerCallback().
After storing the function pointer it is directly called to
retrieve and store the reference to the peer object. Addi-
tionally a handle of the peer object for the garbage collector
is added to avoid the collection of the peer object when there
are no more references on the managed side.

4.3 Memory Management
The tight coupling of the two corresponding objects of

type CsharpMessage and CsharpSimpleModule has some im-
plications on how object duplication must be implemented.
Another issue regarding memory management is that of au-
tomatically freeing memory allocated in unmanaged mem-
ory. Although such mechanisms can add some convenience
for the user when implemented correctly, the dynamics
present in discrete simulations strongly prohibit such tech-
niques. Tracking ownership (which essentially includes the
right to delete the objects owned) becomes cumbersome and
error prone, at least if there are two objects to be tracked
simultaneously, one being subject to garbage collection.
Therefore the deletion of no longer needed objects of type
CsharpMessage is left to the user. The class CsharpMessage
implements the IDisposable interface which provides the
Dispose() method. A call to this method checks if it has a
valid (non null) reference to a C++ object and if so deletes
it. To indicate that the object is not valid any longer it sets
the pointer to the unmanaged object to null.

When copying CsharpMessages, a new C++ object of
type CsharpMessage has to be created (a copy is not needed,
because all data is kept in the C# object) and the C#
side object must be cloned. This can be achieved with
mono_object_clone(), which basically does a memcopy() of
the given object. After that the object has to be registered
with the garbage collector. The registration yields a handle.
That handle represents a reference to the object. As long
as the handle exists, the object will not be fetched by the
garbage collector. Note that until now the pointer to the
unmanaged peer object points to the same C++ object as
the original object, since we did a simple memcopy(). There-
fore that pointer has to be updated to point to the newly
created object. This procedure is implemented in the copy
constructor of CsharpMessage naturally. This way the im-
plementation of the dup() function for the C++ side only
has to create a new object using the copy constructor.

5. RELATED AND FUTURE WORK
The implementation of CsharpSimpleModule is greatly in-

spired by JSimpleModule [13]. The SWIG interface files of
JSimpleModule could be reused with only some minor adap-
tations, mostly at those sections, where Java code was ex-
plicitly stated in the interface file. Since the Java and the
.NET platform are very similar, especially in terms of their
interface to native libraries, most concepts could be adopted
in a straight forward fashion. Although already being in de-
velopment when JSimpleModule was released, the design of
CsharpSimpleModule was greatly influenced by it. The au-
thor of JSimpleModule being also the author of OMNeT++,
its design provided a deeper insight in the inner workings of
OMNeT++, and therefore the implementation of Csharp-
SimpleModule could benefit from that.

As stated in section 3.1, CsharpSimpleModule lacks sup-
port for direct method calls to other modules. To be able
to call the methods of other modules directly, you have to
register that call with the simulation kernel. Until now
the corresponding part of the API of OMNeT++ has not
been wrapped. The mechanism cannot be transferred to
the C# world directly because the helper class uses a con-
structor/destructor mechanism which makes use of a C++
feature. Namely that objects allocated in automatic mem-
ory (i.e. “on the stack”) are automatically destroyed when
the scope they were declared in is closed. C# does not pro-
vide automatic memory, so some other technique has to be
applied to realize this in C#. As stated above, support for
direct method calls will be added in the near future, because
they are regarded as an important feature.

Both frameworks are missing support for the activity()-
feature, which allows implementing modules as cooperative
threads (based on a coroutine concept [8]), which allows syn-
chronous sending and receiving of messages. The support
for that feature is missing for a good reason: apart from
its great performance implications and the less structured
code it produces, its implementation will be very intricate.
It would involve adaptation of the coroutine implementa-
tion of OMNeT++ . So either the mono runtime would
have to be embedded into OMNeT++ coroutines, where it
would execute and instrument the C# code in the activ-

ity() method of CsharpSimpleModule, or a coroutine im-
plementation for .NET would have to be developed, which
could work together with the OMNeT++ framework seam-
lessly.

6. CONCLUSION
This paper presented CsharpSimpleModule. It has been

shown how to use it in existing projects and how to adapt
real world applications to CsharpSimpleModule in order to
simulate them with OMNeT++. Basic techniques used for
the implementation of CsharpSimpleModule were presented.
The overall software design was explained. Implementation
details have been discussed. On the one hand this can serve
as kind of tutorial introduction to CsharpSimpleModule for
developers, on the other hand it provides enough conceptual
and general discussion to serve as a guideline to implement-
ing something similar for languages other than Java or C#.

7. ACKNOWLEDGEMENTS
The author would like to thank Andras Varga for support-

ing the deployment and development of CsharpSimpleMod-
ule and for providing JSimpleModule [13] in the first place.
Special thanks go out to Grzegorz Sobanski and Lukasz Pi-
atkowski being the first external users of CsharpSimpleMod-
ule and providing some essential bug fixes and new features
like the opportunity of using a debugger and profiler tools
with CsharpSimpleModule. A very special thank you to
Sören Höckner and Tobias Senner who had to use Csharp-
SimpleModule in very early development stages and pro-
vided valuable feedback to improve it.

8. REFERENCES
[1] ISO/IEC 23271:2006. http://standards.iso.org/

ittf/PubliclyAvailableStandards/index.html.

[2] Opnet Technologies, Inc. http://www.opnet.com/, 11
2007.

[3] S. Bajaj, et. al. Improving Simulation for Network
Research. Technical Report 99-702, 1999.

[4] D. Beazley. Swig-1.3 Development Documentation.
http://www.swig.org/Doc1.3/index.html.

[5] J. Clark. Calling Win32 dlls in C# with P/Invoke.
http://msdn.microsoft.com/msdnmag/

issues/03/07/NET, July 2003.

[6] J. Clark. P/Invoke Revisited.
http://msdn.microsoft.com/msdnmag/

issues/04/10/NET/, October 2004.

[7] M. de Icaza and P. Molaro. Embedding Mono.
http://www.mono-project.com/Embedding_Mono.

[8] M. Mcllroy. Coroutines. Technical report, Bell
Laboratories, Murray Hill, N.J., 1968.

[9] J. Pryor and H. M. Bey. Interop with Native Libraries.
http://www.mono-project.com/Interop_with\

_Native_Libraries, August 2005.

[10] T. L. Thai and H. Lam. .NET Framework Essentials.
O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2001.

[11] A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proceedings of the European Simulation
Multiconference (ESM’2001), Prague, Czech Republic,
June 2001. IEEE.

[12] A. Varga. INET Framework.
http://www.omnetpp.org/doc/INET/

neddoc/index.html, 10 2006.

[13] A. Varga. JSimpleModule. http://www.omnetpp.org/
pmwiki/index.php?n=Main.JSimpleModule, 1 2007.

