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= if no event is pending the power manager iterates through the table starting at the

lightest mode, first non zero value defines the deepest posible sleep mode

= Not necessary to evaluate the complete machine state like in TinyOS
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= allow dividing the execution of an application

m programmer is responsible for defining and
changing modes, e.g. timer driven

= each manageable object is part of at least

= groups independently activated and deactivated

m objects in multiple groups are only deactivated
when all of their groups are deactivated
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