Implicit Sleep Mode Determination In
Power Management of Event-driven
Deeply Embedded Systems

i)gemann, Jorg Nolte
ous, Germany

BIU

Brandenburgische Technische Universitat Cottbus

Realtime Event FLow EXecutive

real time clock

rserial interface

b start
sending

A) component
(%

= Reflex Eventflow Model = very portable

activity

\
1§ J

sleep ¥ontrol application
, O) ,

N

change start analyse process
mode measurement
I

nout = fully event driven operation

output
value instruction

A~ , _<» interrupt
I ad converter —» event chanel

bl | simplemented in C++
start connection
read value

converter . .
O interrupt routine

s component based applications

m|lOow ressource consumption

system view

m every instance of a component has a variable that specifies the deepest posible sleep
mode that could be used when it is active

= Implicit synchronization

= power manager contains sleep mode table with counters for every available sleep mode EnergyManageAbleObject

+ enable()

= component activation leads to incrementation of corresponding counter in the table + disable()

deepestAllowedSleepMode

= if no event is pending the power manager iterates through the table starting at the

lightest mode, first non zero value defines the deepest posible sleep mode

= Not necessary to evaluate the complete machine state like in TinyOS

REFLEX

= implicit energy management

m buffering and filtering event channels

= scheduling framework (FCFS, FP, EDF,TT)

sleepModeTable

0

<€—powerDown()

0

D,

0—1

)

— [pm?2

<€—powerDown()

)
)
0,
L

P |pm4

example

start update
measurement sleep mode table

modes

start sending

sleep controll read value analyse value

program
phase

pnC mode sleep mode table

interrupt real time clodk

into differend phases

tx interrupt wait

groups

active

tx interrupt . wait

: : |
interrupt real time clock
|

D change

o sleep phase tx interrupt active

one group

wait/

tx interrupt

active

disable serial interface
1

sleep

——— e o —— — —— — — — — — — e —— e o o e m e e - —— = — = e e = = e — — — — — — — —

= allow dividing the execution of an application

m programmer is responsible for defining and
changing modes, e.g. timer driven

= each manageable object is part of at least

= groups independently activated and deactivated

m objects in multiple groups are only deactivated
when all of their groups are deactivated

user view\

| ' ' ' = modes utilize different parts of hard and software

/

experimental setup & results

Tmote sky @ 1Mhz, 2.2V - running TinyOS 2.2 or REFLEX
simple time triggered send application

oscilloscope

power consumption in mW

power supply unit

shunt board

| |
TinyOS power management
Reflex power management

TMoteSky

timeins

tbus.de

