
An existing complete House Control System based on the REFLEX Operating

System: Implementation and Experiences over a Period of 4 Years

Karsten Walther, Reinhardt Karnapke, Joerg Nolte

Brandenburg University of Technology

Cottbus, Germany

{kwalther, karnapke, jon}@informatik.tu-cottbus.de

Abstract

Today, even small residential buildings have a number

of complex electrical devices that advocate the usage of

automated control systems. But currently available sys-

tems are either hard to handle or expensive. This pa-

per describes an automated house control system that has

been in use for the last 4 years. It has been built using

only freely available, inexpensive hardware and the open

source operating system REFLEX.

1 Introduction

Factory and building automation become more and

more important. Even for small buildings the number of

devices that have to be controlled and the complexity of

their interaction increases. As the number of available de-

vices that can be used increases, not only the number of

different control applications increases, but also different

possibilities to implement these arise.

In this paper we present an existing house control ap-

plication that has been in use for the last 4 years. In im-

plementing this system, only standard, of the shelf hard-

ware has been used. This reduces the total cost signifi-

cantly, compared to existing complete solutions that can

be bought. The control logic has been implemented us-

ing our own operating system REFLEX [5, 8]. This way,

our control application is not only cheaper, but anyone in-

terested is also able to customize the system without too

much effort, because REFLEX is open source software.

This paper is structured as follows: Section 2 briefly

describes the operating system we used, while section 3

shows the controlled elements and the hardware used to

control them. Section 4 reports on some of the experi-

ences we made and the lessons we learned. We finish with

conclusion and future work in section 5.

2 The Reflex operating system

REFLEX (Real-time Event FLow EXecutive) is an ob-

ject oriented operating system for deeply embedded con-

trol systems and sensor nodes. Applications are pro-

grammed according to the so called event flow model.

In that model the schedulable entities are activities, that

are triggered when events are posted to associated event

buffers. Triggered activities are then invoked by the

scheduler according to the chosen scheduling strategy.

Events can be associated with data but also dataless sig-

nals are allowed. They are raised either by interrupt han-

dlers or other activities. The initial source of any activity

in the system is always an interrupt. Figure 1 shows an

example of an event flow graph.

...

interrupt handler

activity

modul

event buffer

modul output

interrupt

event channel

association

Application

Converter

PWM Controller

handle edge

evaluate

trigger

convert

capture

Figure 1. Event Flow Example for PWM Tem-

perature Sensing

In the example the trigger activity of the applica-

tion component signals the PWM-Controller (Pulse Width

Modulation) to capture a value. The capture activity

starts capturing. On signal edges the PWM module gen-

erates an interrupt. When the duty cycle of the signal is

determined, this value is propagated as a raw value to a

conversion component. This component transforms the

raw value to a temperature, which is propagated to the

application component. Finally, the evaluate activity

evaluates the temperature and reacts accordingly.

It can be seen in the example, that components are con-

tainers for activities and interrupt handlers which provide

a standardized interface. Typically components represent

device drivers or processing stages. The communication

between the components is always asynchronous, while

inside the components the activities and handlers can



share state information. This concept is similar to Tiny-

GALS (Globally Asynchronous Locally Synchronous)

[2].

The event buffers at the inputs of the components are

needed for asynchronous communication. REFLEX al-

ready supplies standard buffers such as event counters (for

signals), queues, fifos or simple value buffers. The access

to the event buffers is always atomic for readers and writ-

ers. Most applications are therefore implicitly synchro-

nized [5]. Furthermore all buffers count the posted events,

the related activities are scheduled exactly once for each

post. Thus the application code can rely on valid data at

execution time.

The event flow model makes no assumption about the

applied scheduling scheme. Details of the scheduling

schemes are hidden in the system part of an Activity

object. Therefore the choice of a given scheme is trans-

parent for the inner implementation of the activities. The

reusability of software components is therefore signifi-

cantly eased and applications can often be composed of

prefabricated bricks.

All activities have run-to-completion semantics like in

other event driven systems. However, since activities

are objects (instances of C++ classes) rather than func-

tions, they can easily preserve important state informa-

tion across multiple activations without the need for a pri-

vate stack. So it is possible to implement a wide range

of scheduling algorithms for the single stacked REFLEX

system. The overall scheduling framework was already

presented in [8]. So far we implemented FCFS- (First

Come First Served), FP- (Fixed Priority), EDF- (Earli-

est Deadline First) and TT-scheduling (Time Triggered).

The FP- and EDF-scheduler exist as preemptive and non-

preemptive versions. Note that the single stack approach

significantly lowers the memory requirements of an ap-

plication, especially if a preemptive scheduling scheme is

used.

3 The House Control System

There are two main parts in the house control system,

the heating control and the yard light/alarm system com-

ponents. The heating system consists of an oil burner,

coal-burning kiln, sun tracking solar panel, room heaters,

two warm water reservoirs, various pumps and temper-

ature sensors. The yard light/alarm system consists of

Reed-switches at the doors and gates, lamps, a light sensor

and a siren.

Both subsystems work with the time of the day, which

a DCF77-Clock component gets from an external battery

buffered radio-clock module. There is also a standard out-

put and the obligatory watchdog driver. All in all there

are nine machine driver components, five of them are in-

terrupt driven. Furthermore, the system has 13 machine

independent components. Overall the system monitors 24

sensors, controls 16 actuators and communicates with 6

external devices.

3.1 The Heating Control

The hot water needed for showers, dish washing etc. is

stored in 2 water reservoirs installed in the house, which

can hold a maximum of 860 liters total. It is generated

by 3 different sources: A solar panel, a wood burning kiln

and an oil burning kiln.

Figure 2. The moveable solarpanel

The solar panel of type Phönix Solar [6] used as pri-

mary heating system has a size of 3 square meters (figure

2). As the sun moves along the horizon, the amount of

energy generated by a fixed solar panel would vary much,

depending on the angle of impact. Therefore, the solar

panel is attached to its supporting pole in a way that keeps

it moveable. The position of the panel is changed each

hour, according to the relative position of the sun. The

best position for each hour has been determined a priory,

because there is no substantial change in the position of

the sun at a certain time of day between one day and the

other.

Moving the solar panel must always be possible to pro-

duce the best heating results. The motor that moves the

panel has its own independent power supply of 24 watts

at 12 volts. End switches have been placed at the end of

the range of the solar panel, to prevent it from turning to

far and cutting its own cable. These are necessary because

of the inherent inaccuracy of the motor. This inaccuracy

could be reduced at additional cost, but using the touch

sensors to correct the position is much easier and cheaper.

The hot water needed by the heating system is pro-

duced by two kilns, one burning wood (VEB Niederkirch-

ner Berlin, figure 3, left side) and one burning oil (Hansa,

figure 3, right side). In contrast to common systems where

the heating constantly supplies hot water even if none is

used, a usage oriented control system similar to the ba-

jorath [1] principle has been implemented. Using a heat

sensor, the temperature of the water flowing back is mea-

sured to determine the amount of energy absorbed inside

the house. The usage oriented control system reduces the

number of starts for the oil burner. Reducing the number

of starts saves much energy, because in the start phase the

efficiency of the burner is at its lowest.

2



Figure 3. The two Kilns, burning wood (left)

and oil (right)

While both of the kilns supply heating, their features

are quite different and therefore their usage varies. The

oil burner is completely controlled by the house control

system. It can deliver hot water which is them pumped

through the heating system almost immediately. But the

cost of oil is high.

On the other hand, the wood burning kiln can only be

monitored, it has to be fired up manually. But the costs

for the wood are almost nonexistent, as the owners of the

house have access to a forest in which they can cut as

much wood as they need.

Therefore, the two kilns have been connected in a row,

first the wood burning one, then the oil burner. A heat sen-

sor measures the temperature of the water when it leaves

the wood burning kiln and enters the oil burner. If it is al-

ready hot enough, there is no need to burn additional oil.

Figure 4. The frost protected doghouse

One of the more unconventional elements of this house

control is the doghouse. As the temperatures lower signifi-

cantly in the winter, the dog should still not freeze. There-

fore, the doghouse is protected against frost by an electric

heater (figure 4) combined with a temperature sensor.

3.2 The Yard Light/Alarm System

The layout of the courtyard is depicted in figure 5. As

already described, the two kilns are connected in a row,

which can be seen in the upper middle of the figure. Pre-

viously, the building on top has been a stable, but nowa-

days it houses the kilns, storage for wood and oil, garage,

and laundry. The building on the right is an aviary where

quails and parakeets are raised. The residential house is

located on the left side, and the lower part of the figure

shows another shed where bikes, lawn mower etc. are

stored.

1

2

7

a

9

84

5 6

3

p

o

nb
c d e f

h

g

i

kl

m

r

j

q

1: oil burner

2: wood kiln

3: solar collector
4: heater

5-6: water reservoire

7-a: pumps

b-i: doors & gates

m: light sensor

n-p: light
q: siren

r: doghouse with heater

Figure 5. The layout of the house and court-

yard

The middle of the figure shows the places where the

lights (n-p) and the light sensor are affixed. When it is

dark outside and one of the doors is opened, the light is

turned on. Two of the lamps remain on for 20 seconds

even after all doors are closed, to enable walking from

one end of the courtyard to the other with light. The other

(p) is turned off immediately.

The doors are also monitored for the alarm system.

Most of the time, they are only being opened at certain

times, in this case between 06.00 and 22.00 o’ clock. This

alarm system serves a dual purpose. First of all, it an-

nounces the unauthorized opening of doors after a certain

time. Moreover, it also serves as a remainder for the in-

habitants, to close all doors. If one of the doors, e.g. the

one on the backside of the shed, is left open, this is not vis-

ible from the residential house. If it is still open at 22.00

o’ clock, the sirens reminds the owners to close it.

The whole system is event-based, meaning that no

polling of devices is necessary. Rather, there is a finite

state machine behind the implementation, which only re-

acts on events.

3.3 The Main Control Unit and other Hardware

The main control unit consists of 6 elements. The

power for sensors and control relays is provided by a

3



power supply from Egston [3], which delivers 12 watts

with 5 volts or 12 volts.

Figure 6. A Philips PC8574 I/O Expander

Digital inputs and outputs are connected via 4 Philips

PC8574 I/O Expander [7] (figure 6), 2 of them for out-

puts and 2 for inputs. The outputs are used to control the

light on the yard, as well as the electrical heating in the

doghouse and the motor which adjusts the position of the

solar panel. The inputs receive data from the door con-

tacts, the light sensor and the end switches of the solar

panel.

Figure 7. The main control unit

The circuit board in use is an Elektronikladen CardD64

Freescale HC(S)12 with 4KB Ram and 64KBRom, run-

ning with 8MHz. It can be seen on figure 7 in the upper

center.

There is a number of additional hardware that is needed

to keep the system running. To keep the oil burner and

all of the pumps going, 16 Load switches based on Triac

220V/4A are used (figure 8). These have the additional

advantage that they can be manually controlled. If an error

occurrs, they can easily be deactivated.

The temperature sensors that are used to determine

the heat levels at the kilns and in the house are of type

Figure 8. The Triac 220V/4A Loadswitches

SMT160. They generate a PWM signal with a frequency

that fluctuates between 1 and 8 KHz. They are connected

to the system using a Maxim 16x1Multiplexer.

As both the heating system as well as the light/alarm

system are sensitive to the time of the day, a Conrad

DCF77 radio clock is used to deliver the current time. It

is battery buffered and connected to the microcontroller

which emulates a parallel port. This emulation necessi-

tates the usage of a priority based scheduling algorithm, as

the parallel port needs a guaranteed response time of 0.5

milliseconds. The internal clocks are synchronized with

the DCF77 every hour or after each reset.

The light/alarm system uses a siren and a light sensor

from Conrad electronics. There are also various pumps at

the kilns, in the heating circuit, for warm water, for oil and

to circulate between the two water reservoirs.

The whole control unit is connected to a PC for moni-

toring and reprogramming using a RS232 connection.

3.4 Software Details

The whole software of the system is shown in fig-

ure 9. The dark grey components are hardware dependent

drivers, while the light grey components are hardware in-

dependent. One of the most complex components is the

DCF77 clock, because it has to emulate a parallel port.

This single component contributes 1.7 kbyte to the code

size. Another, even larger though simpler component that

can be seen is the one that converts pwm signals to tem-

perature values. While it is not complicated in itself, it

needs floating point arithmetics, which contribute another

4 kbytes of library code to the system.

The whole system consists of approximately 800 lines

of code. The total memory consumption is about 23 kbyte

for code and 2 kbyte for data on the used HC(S)12 micro-

controller. Realizing such a complex application with so

few lines of code and only so little memory consumption

was only possible because we used the REFLEX operat-

ing system as basis. The event flow principle removes the

need for explicit synchronization, which eases program-

ming a lot. Also, the event driven nature of REFLEX re-

moved the necessity for polling algorithms.

4



Digital Outputs
Solar Panel 

Control

I2C Controller

Alarm System

Serial Interface

Light Control

Timer

Digital Inputs

Doghouse 
Heating

Port HPort KModulus Counter
PWM Capture 

Timer

Port BPort A

Power Outputs

Heating Control

Raw Value 
Converter

Sample Control DCF77-Clock

System Clock

Output Channel

Figure 9. The house control as event flow diagram for REFLEX

4 Experiences

At the beginning of the 4 years, there was still an anal-

ogous board (figure 10) included in the control unit. It was

connected to heat sensitive resistors, which were used to

measure the temperature. But this setup proved to be inef-

ficient soon, because the measured values were too inac-

curate. Nowadays, the resistors have been replaced with

digital temperature sensors.

Figure 10. The analogous board used with
the resistors

When the light control was first implemented, all three

lamps stayed on for 20 seconds after the last door had been

closed. This did not cost much more power, but had an

interesting psychological effect. The owners of the house

were not always convinced that the light control worked,

they waited at the door until all three lights had turned off.

For this reason, one of the lights was chosen as a kind of

indicator. Now only two of the lights stay on, and the third

is turned off immediately, reassuring the owners that the

system is still working properly.

This problem existed for many of the aspects of a house

control. Wherever direct interaction between humans and

the system takes place, some sort of feedback must be sup-

plied.

 0

 1 Heating Circuit Pump

 0

 1

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Oil Burner

 10

 20

 30

 40

 50

 60

 70

 80

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Room
Return

Wood Kiln
Oil Kiln

Figure 11. A Plot of the Temperature Lev-

els in the Heating System for one Day in
November 2007

Figure 11 shows an example of the heating system for

a day in November last year. Until 6 in the morning no

heating is needed. The upper curve denotes the tempera-

ture of the water after passing the oil burner. At night, it

constantly cools down, until the system starts the burner

at 6 am. Then the temperature of the water rises. Conse-

quently, the temperature of the water flowing back from

the house (curve below that of the oil burner) increases,

too. As the heaters inside the house start to drain the

warmth from the water to keep the house warm, the tem-

perature of the back flow decreases again, leading to more

oil burned.

5



At 13.30 one of the inhabitants went to the wood burn-

ing kiln and tried to fire it up. As can be seen on the figure,

something went wrong and the temperature at the wood

burning kiln increased only from 10 to 20 degree. Nor-

mally, it takes the wood burning kiln about 2-3 hours to

burn a complete load. At around 16.00 one of the inhab-

itants went to refill it, and realized that it had not burnt

properly. This time, firing it up worked and the temper-

ature at the wood burner increased to around 65 degrees

Celsius. As the oil burner was firing away at the same

time, this lead to a peak in the water temperature of nearly

80 degree Celsius. Anytime the wood burning kiln reaches

a temperature of 40 degree or higher, the oil burner is

turned off, which was also the case here. But as it was

already hot, it took some time to cool down.

Over the whole day, the temperature in the house varies

only slightly. The set-point temperature for the house was

21 degrees during the day and 18 degrees at night. As can

be seen the temperature is constantly above this desired

value, if only a little. One more thing becomes evident

when looking at the chart. Firing up the wood burner again

at around 20.00 would not have been necessary, as even

without it the set-point would have been kept.

At the beginning of the 4 years, the software needed to

be changed nearly on a weekly basis, until all parameters

were tuned. After that, the system was stopped from time

to time to add features, e.g. code that eased monitoring

and debugging. The monitoring software was especially

important, because it was used to prove to the customers

that the system was not malfunctioning as they believed.

Rather, it was working just as they had specified, but the

specification had been false. Moreover, effects like the

useless firing up of the wood burning kiln could only be

made visible with these monitoring tools.

Another feature was to differentiate between individ-

ual doors for the alarm system, as the garage sometimes

needed to be opened before 6 am. Therefore, its timing

had to be modified.

The system ran stable for longer periods of time, and

was often only changed because we introduced a new ver-

sion of our operating system REFLEX (see section 2).

The longest uptime of the system was 7 months. This

uptime would still have increased, as there were no prob-

lems with the system. It did not crash. Rather, nature took

its course. In summer 2007, just as these 7 month of up-

time were reached, the system was destroyed by lightning

that killed all electrical devices in the house.

5 Conclusion and Future Work

We have presented an existing house control applica-

tion consisting of 24 sensors and 16 actuators which com-

municates with 6 external devices and has been in use for

4 years. This application has been realized using stan-

dard of the shelf hardware and a HC(S)12 microprocessor

as main control unit, which makes using such a solution

much less expensive than a conventional, PC-based ap-

proach. A PC or Laptop can be attached for monitoring

and reprogramming, but there is no need for a permanent

connection.

The house control has been realized using the open

source operating system REFLEX, which made using the

HC(S)12 microcontroller possible in the first place be-

cause of its small memory footprint. It also eased the pro-

gramming a lot, because of its event driven nature and the

inherent synchronization from the event flow principle.

Even though object oriented programming has eased

development of the house control application signifi-

cantly, for complex systems a high level modeling ap-

proach is desirable. Therefore, a commercial SDL tool

has been adapted to a REFLEX runtime platform [4].

In the future, the connection between microcontroller

and PC will be migrated from RS232 to Ethernet. Also,

it could be possible to receive better results from the solar

panel if it was affixed not only movable on one axis, but

on two. The reason for this is that in winter the sun does

not rise as high as in summer, therefore the angle of im-

pact is different. It could be useful to change the vertical

alignment during the year.

The most precious part of the system at the moment is

the DCF77 clock, because it was the only available battery

buffered radio clock that could be read via parallel port. It

is also single point of failure, because both subsystems

rely on the clock. In the future, it would be good to have

a solution that does not depend on this special device.

A feature request from the users is to somehow inte-

grate the weather forecast into the system. At the moment,

when the temperature of the water in the storage falls be-

low a certain threshold, the oil burner is started to keep

the water warm. This may happen in the morning of a

sunny day, as the system does not know anything about the

weather. If it did, the oil burner could stay turned off, be-

cause the water would be heated by the solar panel within

the next few hours, thus saving more of the expensive oil.

References

[1] R. Bajorath. http://www.bajorath.de.
[2] E. Cheong, J. Liebman, J. Liu, and F. Zhao. Tinygals: A

programming model for event-driven embedded systems. In

SAC, pages 698–704, 2003.
[3] Egston. http://www.egston.com/en/index.php.
[4] M. Jersak, K. Richter, R. Henia, R. Ernst, and F. Slomka.

Transformation of sdl specifications for system-level timing

analysis. In CODES ’02: Proceedings of the tenth inter-

national symposium on Hardware/software codesign, pages

121–126, New York, NY, USA, 2002. ACM Press.
[5] K.Walther and J.Nolte. Event-flow and synchronization

in single threaded systems. In First GI/ITG Workshop on

Non-Functional Properties of Embedded Systems (NFPES),

2006.
[6] S. Panel. http://www.phoenixsolar.com.
[7] Philips. http://www.nxp.com/acrobat/datasheets/pcf8574 4.pdf.
[8] K. Walther and J. Nolte. A flexible scheduling framework

for deeply embedded systems. In In Proc. of 4th IEEE In-

ternational Symposium on Embedded Computing, 2007.

6


