
Controlling Sensors and Actuators collectively using the
COCOS-Framework

Maik Krüger, Reinhardt Karnapke, Jörg Nolte
Distributed Systems/Operating Systems group, BTU Cottbus

Cottbus, Germany
maik-krueger@gmx.de,{karnapke, jon}@informatik.tu-cottbus.de

ABSTRACT
Cocos (COordinated COmmunicating Sensors)1 is a lean
middleware platform for wireless sensor and actuator net-
works. The major programming abstractions of Cocos are
distributed sensor spaces, which enable the collective con-
trolling of sensors or actuators on remote nodes. Thus, Co-
cos brings high-level data-parallel programming concepts
such as global reductions into the world of small networked
systems. In this paper we discuss the design rationale of
Cocos as well as its in-network processing and aggregation
capabilities.

Categories and Subject Descriptors
D [1]: Concurrent Programming

General Terms
Design, Performance, Reliability

Keywords
Wireless Sensor Networks, Collective Operations, Overlay
Networks

1. INTRODUCTION
Future sensor networks will be typically composed of tiny

computers with some sensing as well as wireless communica-
tion capabilities. These networks can be fairly large, ranging
from a few dozens up to myriads [1] of nodes. Swarms of
small robots might patrol chemical plants to detect poten-
tial problems and react on environmental hazards e.g. by
collectively applying suitable chemical agents to neutralize
spilled acid.

The nature of sensor networks being collections of com-
putational nodes of the same kind strongly implies a data-
parallel programming approach. The sensor network then

1The Cocos Project is supported by the German Research
Foundation (DFG) in the SPP 1140.

Copyright is held by the author/owner(s).
SANET’07, September 10, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-735-3/07/0009.

appears to the programmer as a collection of language level
objects that can be grouped according to some application
specific criteria such as the location of specific nodes, differ-
ent actuators attached to them or even dynamic criteria like
specific sensor readings. In Cocos, all objects in such a user
defined group can be addressed collectively and thus often
recurring tasks on the same group of sensors or actuators
can easily be expressed and implemented efficiently.

2. SENSOR SPACES
All sensor nodes are represented by language level ob-

jects that are instances of arbitrary C++-classes. Usually,
only nodes that detected a local phenomenon are of interest.
Therefore, an effective way to address only these nodes when
performing a distributed and parallel analysis of sensor read-
ings is needed. For instance, when the average temperature
of all nodes within a certain area should be determined, we
would like to group those nodes together, perform parallel
aggregations (global reductions) of all temperature readings
periodically and transmit the aggregated result to the out-
side. Cocos provides sensor spaces as a basic programming
abstraction to support such computational patterns. First,
all nodes that detected the requested phenomenon (in this
case a temperature above a given threshold) will join a sensor
space. Any node may now act as an evaluator and perform
parallel method calls on all objects within that distributed
space. Provided the detected phenomena are at least stable
for a short period of time, we can construct suitable overlay
networks that effectively reach all nodes of interest. The
same holds for nodes that are grouped together according
to criteria such as geographic location (e.g. all nodes in a
defined distance around a certain location) or according to
functionality (e.g. the group of all nodes carrying a temper-
ature sensor).

However, the situation changes drastically, when either
the sensor nodes are mobile, or both the wireless network as
well as the detected phenomena are not stable over time. In
those cases it is not possible to maintain overlay networks
effectively and suitable flooding techniques have to be ap-
plied instead. Cocos reflects these differences by providing
different categories of sensor spaces. The AnchoredSpace,
RobustAnchoredSpace and ConnectedSpace are based on
tree topologies, while the ATBFloodingSpace was designed
for (mobile) networks networks which often change their log-
ical topology. In the latter case all group operations are dis-
tributed by (limited) flooding. Consequently, the chance for
a node to receive all messages in a dense network is high.



3. IMPLEMENTATION ASPECTS
Cocos is essentially composed of three layers (figure 1).

Our implementation for this feasibility study is based on the
operating system Reflex [4], which takes care of scheduling
and event handling, but the concepts of Cocos are indepen-
dent of the underlying operating system.

Architecture

coordination spaces 

sensor net control

communication protocols

CHIPS

COPRA

REFLEX

COCOS

APPLICATION

remote objects

scheduling & event handling

Figure 1: COCOS architecture

The lowest part of Cocos is Copra (COmmunication
PRocessing Architecture) [2], where different communica-
tion tasks, e.g. medium access control, are implemented in
so called Protocol Processing Stages. These can be com-
bined to form Protocol Processing Engines which represent
entire network stacks.

The second part, Chips (Convenient High-level Invocation
Protocol Suite), enables the usage of remote method calls
and uses the communication protocols provided by Copra.
This way, the remote calls can be routed through the whole
network.

Cocos (COordination and COoperation Spaces) supplies
a high level group abstraction for application programmers
in wireless sensor networks. Using Cocos, the sensor net-
work can be programmed as a whole, or some part of it. This
is realized by extending the communication layers from Co-
pra and the remote calls of Chips to commands for logically
connected groups of nodes that reside within a distributed
object space. An object space summarizes chosen sensor
nodes, so that it is easy to join nodes which have special sen-
sors or actuators or which measured values of interest. Once
an object space is created group operations on all nodes in
this space can be executed. These operations can include
the reading of sensor values and their aggregation as well as
controlling actuators, e.g. starting fire extinguishers collec-
tively in fire areas.

At the moment there are three group operations imple-
mented. The method apply() is an asynchronous one way
group operation, which invokes a method on all group mem-
bers. The aggregate()-method is a synchronous group op-
eration which returns a value that is received by aggregat-
ing all values with a specified aggregating operation. The
participating nodes block until they return their aggregated
values. The algorithm which is used in the aggregation can
be specified, by defining a class which is inherited from the
abstract class Aggregator. The third method is a a deferred
synchronous version of aggregate(), which can be used for
longer operations, when blocking is not wanted.

4. RELATED WORK
Abstract regions [5] offer a tuple-space like communica-

tion abstraction. An abstract region consists of neighboring
sensor nodes, which are a certain number of hops or meters
distant from an anchor node around which this region is cen-
tered. Like Cocos, abstract regions are designed as parallel
programs. There are three major differences between ab-
stract regions and Cocos. First, the membership of a node
in one of Cocos’s spaces can change at any time, while the
membership in an abstract region is static. Second, Co-
cos offers control over e.g. actuators additionally to the
in-network processing capabilities. Finally Cocos is based
on C++ templates resulting in a high-level programming
abstraction without the need for a special purpose program-
ming language.

The major difference between Regiment [3] and Cocos
is that the former is based on a new functional program-
ming language while Cocos is completely implemented in
C++ which enables the usage of existing tools and saves the
application programmers the need to learn a new language.
Furthermore, as mentioned above, Cocos offers possibilities
to control actuators, which Regiment does not.

5. CONCLUSION
The different spaces of Cocos enable convenient collec-

tive control over groups of sensors and actuators. They also
offer in-network processing of values by aggregating them
with user specified aggregation functions. We have shown
that the usage of remote method invocation mechanisms and
sensor spaces is feasible and useful by evaluation in a real
sensor network, using enhanced RCX robots (figure 2).

Figure 2: A modified RCX robot

6. REFERENCES
[1] I. Chatzigiannakis, S. Nikoletseas, and P. G. Spirakis. Efficient

and robust protocols for local detection and propagation in
smart dust networks. Mob. Netw. Appl., 10(1-2):133–149, 2005.

[2] R. Karnapke and J. Nolte. Copra - a communication processing
architecture for wireless sensor networks. In Euro-Par 2006
Parallel Processing, pages 951–960. Springer, 2006.

[3] R. Newton and M. Welsh. Region streams: Functional
macroprogramming for sensor networks. In Proceedings of the
First Workshop on Data Management for Sensor
Networks(DMSN 2004), Toronto, Canada, Aug 2004.

[4] K. Walther and J. Nolte. A flexible scheduling framework for
deeply embedded systems. In In Proc. of 4th IEEE
International Symposium on Embedded Computing, 2007.

[5] M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. In NSDI, pages 29–42, 2004.


