
An adaptive TDMA based MAC Protocol for
Mobile Wireless Sensor Networks

Stephan Mank
Distributed Systems
Operating Systems

BTU Cottbus
Cottbus, Germany

Email: smank@informatik.tu-cottbus.de

Reinhardt Karnapke
Distributed Systems
Operating Systems

BTU Cottbus
Cottbus, Germany

Email: karnapke@informatik.tu-cottbus.de

Joerg Nolte
Distributed Systems
Operating Systems

BTU Cottbus
Cottbus, Germany

Email: jon@informatik.tu-cottbus.de

Abstract— Radio transceivers for wireless sensor networks are
typically cheap devices offering low bandwidth communication
only. When physical events in the real world trigger spontaneous
communication in many nodes the single communication channel
is under heavy load and many messages are lost due to collisions.
CSMA/CA schemes are well suited to spontaneous communica-
tion, but do not provide a high channel utilization under heavy
load. TDMA protocols have some conceptual advantage here,
but in the case of mobile sensor nodes they need to be adaptive
and establish TDMA schedules on demand. MLMAC is a novel
TDMA based MAC protocol that can react on changing radio
neighborhoods in mobile networks. In this paper we introduce
the MLMAC protocol and present the results of real experiments
with a group of mobile sensor nodes based on RCX robots.

I. INTRODUCTION

Sensor networks are collections of small sensor nodes
with wireless neighborhood broadcast facilities. Since sensor
networks shall be deployed in large scales (possibly thousands
of nodes [1], [2]), the overall cost dictates the use of cheap and
simple radio transceivers for communication. These lack most
of the common capabilities of WLAN or bluetooth networks.
Even typical tasks like medium access control or the address-
ing of individual nodes in the direct radio neighborhood are
left entirely to software layers [4]. In this paper we present
Mobile LMAC (MLMAC), a novel TDMA MAC protocol for
mobile wireless sensor networks. It is a modification of the
lightweight medium access protocol (LMAC) [10] which has
been adopted for our RCX robots and for a different scenario
where all nodes are mobile. Therefore, finding a slot is more
difficult and must be repeated under some conditions as nodes
can enter or leave a radio neighborhood at any time. As far
as we know, no previous implementation of LMAC has been
used on real hardware.

This paper is structured as follows: Section II describes our
MAC protocol while section IV describes the setup of our
experiments and their results. We finish with related work in
section V and a conclusion in section VI.

II. MOBILE LMAC (MLMAC)

A. LMAC

In [10] L.F.W. van Hoesel and P.J.M. Havinga introduced
LMAC (lightweight medium access control), which is based

TABLE I
THE CONTROL MESSAGE USED IN LMAC

Description Size (bytes)
Identification 2

Current Slot Number 1
Occupied Slots 4

Distance to Gateway 1
Collision in Slot 1
Destination ID 2

Data Size (bytes) 1
Total 12

on a TDMA scheme. Time is divided into frames and slots.
Each node reserves a slot in which it can send, this slot
reoccurs every frame. Every Slot is used to send a control
message followed by data payload. Table I shows the contents
of a LMAC control message. Its total size amounts to 12
Bytes. It contains the identity of the sender and its slot
number followed by the most important field Occupied
Slots, which represents a Bitmask of Slots. An unused slot is
represented by a 0 while a 1 represents an occupied one. Thus
it is possible for every node to determine unoccupied slots by
combining the control messages of its neighbors. This is done
by performing a simple OR operation on the fields Occupied
Slots of all received control messages. The distance to
the Gateway is also transmitted, along with information of
overheard collisions. Finally, the ID of the destination and the
size of the data unit are given. The initialization of nodes is
started by the gateway, which defines its own slot and is used
for synchronization. After one frame, all direct neighbors of
the gateway know its slot and choose their own ones. This
information is transmitted to their neighbors who synchronize
on these messages. After each frame, a new set of nodes
with a higher hop distance from the gateway are synchronized
until every node knows its slot. These slots only need to be
locally unique, as the nodes only compete with others up to 2
hops distant. To conserve node energy, a node’s transceiver is
turned off for the remainder of the current slot when it is not
addressed in the control message. As slots are computed only
once in LMAC, this protocol is not suitable for mobile sensor



TABLE II
THE CONTROL MESSAGE USED IN MOBILE LMAC (MLMAC)

Description Size (bytes)
Identification 1

Slot number and Status 1
Occupied Slots 1-2

Identity of the Synchronization 1
Age of Synchronization 1

Total 5-6

networks, where nodes can enter and leave other nodes’ radio
neighborhood at any time.

B. Differences and Similarities between LMAC and MLMAC

The main differences between LMAC and MLMAC is
their intended scenario. While LMAC assumes a static sensor
network where communication takes place between nodes
and the gateway, in our scenario, all nodes are mobile and
communicate among each other. There may be one or many
gateways or maybe there is none. MLMAC does not depend
on a gateway to start the synchronization, instead, it is fully
dynamic.

The choice of scenario has a number of consequences for
the developed MAC protocol. First, there may not be a gateway
to start the synchronization (see next section II-B.1). Second,
the chosen slots are not fixed in time. Due to mobility, it
may become necessary for a node to choose a new slot
when it enters a different radio neighborhood (see II-B.2).
Third, MLMAC needs to differentiate between bidirectional
and unidirectional links (see section II-C).

1) Slot Synchronization: The node that wants to send a
packet first starts the synchronization. This removed the neces-
sity to use the field Distance to Gateway for synchro-
nization. Even when it is not used for synchronization, the field
Distance to Gateway could be used to support routing
decisions in stationary sensor networks. In mobile sensor
networks however, this distance could not be determined only
once and saved for further use, as the mobility of nodes will
lead to a change in topology after a certain time. This time
depends on the range of the transceivers and on the speed of
the nodes of course, but eventually the change in topology will
take place. The field Distance to Gateway is removed
from the header of MLMAC. The fields Destination ID
and Collision in Slot were not used either, because
of the used hardware. There was no way to shut down the
transceivers and the radio module used a built in checksum to
discard faulty packets. Thus, collisions could not be detected
directly and this part of LMAC was not implemented. As this
decision is based solely on the used radio modules, it could be
revoked in the future, when a different platform is used (see
section VI).

MLMACs control message format is shown in table II.
This control message is quite different from the one used
in LMAC. Due to our small sensor network, we reduced the
field containing the identity of the sender to one Byte. Slot

number and Status contains 5 Bit for the senders slot
and 3 Bit for its status. The field Occupied Slots is used
exactly as in LMAC, only its size is reduced.

Fig. 1. Occupied slots as seen by each node

The field Occupied Slots in the control message of a
node contains the used slots of all its neighbors and itself.
In the case of node 4 for example the slots 3, 4, 5, 6 and 8
would be marked as used, which results in a representation as
00111101. Note that in this example the third bit from the left
represents the third slot. Figure 1 shows how slots are chosen
with a simple example containing only eight nodes. In this
example you can see that node 2 is not synchronized yet. It
receives the control messages from its neighbors and combines
them. 10000100 (from node 1) — 00111000 (from node 3) —
00111101 (from node 4) = 10111101 (seen on node 2).

This means that node 2 can choose between slots 2 and
7. If it chooses slot 2, its control message would contain
the Bitmask 11110000 in the field Occupied Slots, as
node 2 receives messages from nodes 1,3, and 4 and adds its
own choice. If it chooses slot number 7 the field Occupied
Slots would contain the Bitmask 10110010. Note that this
method solves the hidden station problem. The number of
slots can be chosen between 3 and 16 in our implementation,
thus the size of Occupied Slots varies between 1 and
2 Byte. If more slots per frame are needed, the size of the
field Occupied Slots grows. Thus far, the choice of slots
is done in the same way as in LMAC, except for the fact
that the synchronization started by a node rather than by the
gateway.

2) Slot changes: The second difference is the fact that
MLMAC stays adaptive even after slots are chosen. The last
two fields of a control message are needed, because every
node can start synchronization. Due to this fact, it is possible
that two distant nodes start a synchronization separately, as
both of of them assume that they are the first to send. Their
neighbors would synchronize with them and increase the Age
of Synchronization by one before retransmitting. In
this case, two different synchronizations would be flooding
the net and meet somewhere in between the two starter nodes.
At this point, nodes would realize that some of their neigh-
bors use a different synchronization by comparing the field
Identity of the Synchronization. Now the field



Age of Synchronization is compared. If the received
value is equal to or higher than the local value saved in a
node, this node becomes unsynchronized again and tries to
find a new slot.

Due to the mobility of nodes, a node X may leave the
radio range of node Y. Both nodes then realize that they do
not receive any more control messages from each other and
remove the other one from the neighbor list. When X moves
into the radio range of another node Z which knows a different
node W which uses the same slot as X, the control messages of
X and W collide at Z. Therefore, Z does not receive any more
control messages in that slot and marks it as unused. Nodes
X and W receive the control message from Z and realize that
there must have been a collision of control messages. After
this, they give up their current slot and try to find a different
one.

C. Handling of unidirectional links

To determine whether a link is unidirectional or bidirec-
tional, a neighbor list is used. In this list a counter is stored
for every neighbor. When a node X receives a control message
from node Y which does not contain the slot of node X, X
increments the counter for Y in its neighbor list. If the received
control message contains X’s slot, the counter is decreased.
The range of the counter is 0 - N where N can be configured
freely. Then, a threshold can be set, from which on the link
will be counted as (partially) unidirectional. The need for this
will become apparent when the state machine of MLMAC is
discussed in section II-D

D. The finite state machine of MLMAC

MLMACs state machine is shown in figure 2. The rectangles
represent states, the arrows transitions between them. The text
on the arrows describes the necessary event for that transition
and the action that is taken separated by a slash.

Initially, all nodes begin in the Wait-state. When they want
to send a message without having received a control message
yet, they change into th Starter-state. When only one node
switches to starter, this is a stable state and the node remains
there. If another node switched to the Starter-state earlier,
this node gains knowledge of that fact after some time and
switches to the Sleep-state from which it will return into the
Wait-state after a certain time.

If a node received a control message from another node
in Starter- or Ready-state while in the Wait-state it
synchronizes its local time with that of the originator of the
control message and switches into the Unsync-state. After
waiting one frame to overhear all transmitted control messages
and calculate used slots, it chooses its own one and transitions
into the Sync-state. The next time, that node’s slot is active, it
starts to transmit its own control messages in every frame and
changes to state Slotverify. This state is used to verify that
no other node has chosen the same slot during the last frame.
This would be indicated by a collision of control messages in
this slot and lead to a change into the Sleep-state.

As said before, the used hardware does not enable us to
detect collisions directly. Rather, a node X that transmitted
a control message can determine if a collision occurred by
listening to its neighbors’ control messages. If no collision
occurred, the neighboring nodes have added X’s slot to the
field Occupied Slots in their control messages. Otherwise
they did not. When X receives control messages containing
its slot, it knows that no collision occurred because no other
node has chosen the same slot. Therefore, it switches into the
Ready-state.

Like the Starter-state, this is a stable state as long as no
collision occurs. If a collision occurs, there must have been a
mistake in the process of choosing slots, and the node returns
into the Sleep- and finally into the Wait-state to start over
again.

Note that MLMAC also distinguishes between collisions
on unidirectional and bidirectional links. If a collision on a
unidirectional link occurred on a node in Slotverify- or
Ready-state, this node stays in the same state.

III. IMPLEMENTATION

A. Hardware

For our implementation we used modified Lego RCX
robots [6]. These robots feature a Renesas H8/300 micro-

Fig. 3. A modified RCX Robot

controller, which is a 16 Bit processor with a frequency of 16
MHz. The RCXs have three input channels and three output
channels on top and an infrared module in the front. The
Robots have been additionally equipped with an radio module
of type ER400TRS [3] which we use instead of the included
infrared module (IR) to enable broadcast protocols (see figure
3). The ER400TRS has a range of up to 250 meters which we
reduced to about one meter, operates in the Pan-European 433
to 434MHz frequency band and uses a 3.6V power supply.
The over the air data rate is 19200 Baud. To enable usage of
the ER400TRS, an external connector to the serial port has
been attached which allows us to connect either the IR or the
radio module. It may seem that the choice of radio module was
not the best, but when sensor nodes are designed, the chosen
hardware is not always the best, either. Rather, it is normally
the cheapest hardware that is chosen.

B. Software

The authors of [11], [12] introduced Reflex, a novel event
driven operating system for deeply embedded systems. We



Fig. 2. The finite state machine used in MLMAC

decided to use this operating system for 2 reasons. First, the
resource constraints of wireless sensor networks are not much
different from those of deeply embedded systems. Second,
reflex was already ported for the H8/300 processor family
when we started our work on the MLMAC. Therefore, we
were able to concentrate on the features of MLMAC, without
having to worry about the underlying platform.

On top of Reflex, the authors of [5] implemented Copra, a
configurable communication framework. Its layered structure
supplies an easy way of switching between different imple-
mentations for a single layer, which we used in our tests to
switch between MLMAC and the simple probabilistic collision
avoidance MAC we used for comparison.

IV. EXPERIMENTS

We decided to experiment with a real sensor network right
from the start for two reasons. First, as far as we know, LMAC
has only been simulated. Second, we have observed drastic
changes in link quality even in stationary sensor networks, as
the authors of [9] have. As knowledge of these changes is vital
for a MAC protocol, but we have not seen a realistic simulation
model thereof, we think it is necessary to experiment with

real sensor nodes. For the same reason we did not simulate
MLMAC but went to the real nodes right away.

In our experiments, we compared MLMAC to a competition
based protocol, a simple collision avoidance protocol. As
MLMAC is a TDMA based protocol, it should avoid collisions
completely after a start period. A collision avoidance protocol
on the other hand allows collisions but should produce a better
throughput, as nodes do not have to wait for their turn to send.
Thus, latency should be smaller.

In CSMA/CA the channel is sensed before transmission,
and if it is occupied the transmission is delayed for a random
time. This reduces the probability of collisions. Due to the
transceivers we used, the implemented MAC could not be a
real CSMA/CA. The radio modules use an inbuilt checksum
and only packets that were received flawlessly are handed to
the software. The radio modules only deliver whole packets,
thus it is not possible to really listen to the medium. Therefore
the channel is always assumed to be busy, and a random time
is waited before transmission of a packet. In this paper, the
resulting protocol is called CA-MAC.



A. Static single-hop Experiments

In the static single-hop experiments all robots were within
direct radio range. The two MAC protocols were evaluated
using 3, 5, and 9 robots. Every node wanted to transmit 50
Packets with a size of 49 Byte to all other nodes. Node 1
started the transmission and every other node followed suit
as soon as it received an initial packet. The number of slots
was configured in MLMAC to match the number of nodes in
the experiments. As every slot had a length of 0.17 seconds,
this resulted in frame lengths of 1.53 seconds (for 9 nodes),
0.85 seconds (5 nodes) and 0.51 seconds (3 nodes). The CA-
MAC sent at random intervals, but over the whole length of
the experiment it transmitted the same number of packets as
were sent in the MLMAC experiments.

Fig. 4. Average of received packets in the static experiment

Figure 4 shows the results of the static experiments. The
experiments with 3 and 5 nodes were repeated three times,
the ones with 9 nodes two times. The numbers shown on the
figure are the averaged results. As you can see the MLMAC
always received all packets after the initialization phase was
over. When using only three nodes, MLMAC even received all
packets during initialization. Only during initialization with 5
or 9 nodes a few packets were dropped. The CA-MAC does
not need to initialize, therefore no distinction is made. Due
to the nature of the collision avoidance, the collision rate was
high, though. Between a third and half of the packets were
lost. This confirms that MLMAC fulfills all requirements for
this scenario.

B. Static multi-hop line Experiments

In preparation for the mobile experiments we continued
with two different experiments with a line topology. For these
experiments all 9 robots were arranged in a row with nodes
1 and 9 at the ends. To find proper distances between nodes,
one node transmitted packets periodically and the next node
was moved until it was unable to receive those packets. Then,
it was placed a step nearer to the transmitting node. The
experiments were performed outdoors, on a concrete road. In
the first experiments, node 1 transmitted 50 packets and node
9 counted how many arrived. Each node in between counted
how many were forwarded and how many were dropped. The
packets were sent in time intervals equaling the length of one,

three and five slots of MLMAC in three different experiments.
In the second line experiment node 1 started transmitting 50
packets and once the first packet reached node 9, it started to
transmit 50 packets, too. For the MLMAC, this was only done
with sending intervals of 3 or 5 slots, as it is impossible to
transmit 2 packets every slot without using some further means
like e.g. aggregation. The packets were forwarded using a
simple duplicate suppression algorithm. When a node receives
a message it remembers the originator (node 1 or 9) and
the sequence number of that packet. When a packet with
the same or a lower sequence number was received, it was
discarded, if its number was higher it was retransmitted. All
experiments were conducted with MLMAC and with the CA-
MAC and repeated 9 times for each of them. Again, the CA-
MAC sent at random intervals, but over the whole length of
the experiment these intervals evened out to those used in the
MLMAC experiments.

Fig. 5. forwarded Packets for each node. Packets originate at node 1 and
stop at node 9

Figure 5 shows some results from the first experiments.
If each node would only be able to receive messages from
its direct neighbors, all graphs should have been steadily
decreasing or stayed at the same level as a packet that was
lost at e.g. node 3 could never be received at the following
nodes 4 to 9. Instead the figure shows that e.g. when using
the CA-MAC with a transmission interval of roughly 5 slots
node 3 received only 8 messages while its neighbors received
19 (node 2) and 28 (node 4). This reveals a strong variation
in radio range of the sending nodes. In a few cases, node 9
even received packets from node 1 directly. The overall low
throughput can be explained by the same fact because the
number of slots per frame was set to low for the MLMAC,
as we assumed that 3 or at most 4 slots would be enough.
For the CA-MAC the variation in radio range produced more
collisions as more nodes were able to disturb each other. Still,
the results of MLMAC are much better than those of the CA-
MAC when messages are transmitted every 3 or 5 slots.

Figure 6 shows the number of packets originating at node
1 forwarded by each node in the second experiments, while
figure 7 shows the same for those originating at node 9. The
results are similar to each other and to those of the first line
experiments. A big difference can be seen in the results using



Fig. 6. forwarded Packets for each node. Packets originate at node 1 and
are forwarded to node 9. Node 9 sends to node 1 at the same time.

MLMAC when sending every 3 slots. Obviously, node 1 had
problems finding its slot as 42 messages were lost from node 1
to node 2. Otherwise, they confirm the results obtained earlier.
The radio range is not stable and therefore the number of slots
was too small.

Fig. 7. forwarded Packets for each node. Packets originate at node 9 and
are forwarded to node 1. Node 1 sends to node 9 at the same time.

C. Static multi-hop square Experiments

After we saw the variations in link quality and radio range
in the line experiment, we performed some experiments to
determine the stability of links in time. Therefore, we arranged
nine robots in a square of three times three with a distance of
ten meters between neighbors. This distance was determined
as above. After placement, we tried to build a routing tree and
send messages from various starter nodes. As we assumed that
the node in the middle would be heard by all, we only started
building the trees from the nodes on the corners. The nodes
one, three, four and seven which were on the corners of the
square repeatedly tried to build a routing tree. Once this tree
was established 10 messages were sent. After this, the number
of received messages on each node was determined.

On figure 8 you see two routing trees, which were obtained
in our experiments. On the left side you can see a routing tree
that nearly follows the theory. Direct neighbors of node 1 can
communicate directly, the nodes 8 and 4 that are farthest away
from 1 need a second hop via node 5. Node 6 experienced
some problems and was not able to transmit to node 1 even

Fig. 8. Two RCX routing trees started from node 1 at different points in
time

though it can hear node 1 directly. This is shown as a dashed
lines which represents an unidirectional link which would
normally have been discarded. On the right side you see a
different routing tree obtained from the same starting node a
little time later. Now, all nodes can communicate directly with
node 1 except for nodes 6 and 9 which have no connectivity
at all. While these two routing trees are not optimal, they
somehow still represent the expected layout.

Fig. 9. Two routing trees started from node 4 at different points in time and
one started from node 3

On figure 9 you see the same experiment again, this time
started from node 4. The left side of figure 9 is very much
the same as the right side of figure 8. All nodes communicate
directly with node 4, except for node 7 which does not com-
municate at all and node 1 which is connected through node
9. The middle however, shows a completely different picture.
There are only three nodes which communicate directly with
node 4, the nodes 3,5 and 7. Node 2 is connected via node
3 which is acceptable, even that node 1 uses node 3 to reach
node 4 is no problem. The problem is, that node 8, which
should be a direct neighbor of node 4 needs three hops to
connect. This was no single effect either - when we started
the protocol from node 3 which can be seen on the right side,
node 1 needed three hops to connect, too. The trees obtained
from node 7 were not much better, either. Some routing trees
we obtained did not even reach half the nodes.

As said before, after building the trees we sent 10 mes-
sages from each source and counted the number of arriving
messages. For these experiments, only the best two routing
trees from each node were used. Note that the ones discussed
before are those best trees, some others were quite disastrous.
The number of received messages varied between 1 and 10
out of 10. In the case of the routing tree shown in Figure 8 on
the left side node 4 received only one message from node 1.
All results for both routing trees can be seen in figure 10, the



italic numbers represent the starter nodes. In the case of the
routing tree shown in figure 9 on the left side, node 8 received
three messages from node 4. This seems strange as the range
of the longest hop is 22,4 meters instead of 28.3 meters but
the number of hops increased from one to three. When node
3 was master and node 1 had a distance of three hops with a
longest hop length of 20 meters eight packets were received
out of ten. The total number of received packets for all three
routing trees is shown in figure 11.

10 10 10
10 10 0
10 10 10

10 3 1
0 10 0

10 10 10

Fig. 10. Number of received messages out of 10 using the routing trees in
figure 8

0 10 10
3 10 10
2 10 10

8 3 10
0 8 0
8 8 8

0 8 10
8 9 10
8 10 10

Fig. 11. Number of received messages out of 10 using the routing trees in
figure 9

Similar effects have been observed in [9]. The authors
describe an outdoor experiment in which they used 24 Scat-
terWeb ESBs [8] in an area of 80 times 140 meters. Every
hour, a routing tree was built, and information sent to a sink.
The experiment ran for three weeks. Often neighboring nodes
did not hear each other while distant nodes did. In some cases
these did not even have line of sight but were blocked by a
building.

We have not yet seen any simulator that could produce such
behavior, and we have not found any model to describe these
effects either. All these results confirmed that we needed to
evaluate MLMAC on a real sensor net in the mobile scenario.

D. Mobile Experiments

In the mobile experiment the RCX robots moved around a
room of 6 times 8 meters containing normal bureau furnishing
with a speed of 6 meters per minute in a nearly random
manner. Initially, they only moved forward but every time they
hit an obstacle, they moved back a pace, turned for a random
time in a random direction and started moving again. As all
nodes started with a different facing, the mobility soon led
to a multi-hop environment. The application was the same
as in the static experiment. 50 Packets of 49 Bytes were
transmitted by each node and node 1 started the experiment.
Due to mechanical failure, we could use only 8 robots, not 9
as in the static experiment. This resulted in a frame length of
1.36 seconds. Also, the Experiment with 3 nodes was ignored,
as there would be no gain from it.

Figure 12 shows the results of the mobile experiments.
Again, after the initialization, MLMAC delivered all packets
flawlessly. During the initialization phase a few packets have
been lost as was expected. The CA-MAC delivered between 18
and 27 percent of the packets. When the results are compared

Fig. 12. Average of received packets in the mobile experiment

TABLE III
PROGRAM CODE SIZES OF A SIMPLE APPLICATION USING MLMAC OR

CA-MAC, INCLUDING OPERATING SYSTEM AND DRIVERS

MAC Protocol text data bss total
MLMAC 14072 456 3522 18050
CA-MAC 10116 402 3376 13888

to the static experiment, it can be seen that mobility can be
a challenge for medium access, the CA-MAC suffers heavily.
MLMAC on the other hand performed nearly the same when
mobility was used.

E. Program Code Size

Table III shows the size of the whole program code of a
simple application that uses MLMAC or CA-MAC on the
RCX robots. Note that this size depends on the architecture in
use as primitive data types and pointers have different sizes on
different platforms. The important part that you can see in the
table is that MLMAC needs only about 4 kilobyte more than
CA-MAC. This is less than a third of the size of CA-MAC.
The overhead in program code size is acceptable for the gain in
performance as shown earlier. Note also that the size measured
is for our feasibility study implementation and we are positive
that it could be reduced by careful re-implementation.

V. RELATED WORK

The authors of [10] have introduced LMAC, the lightweight
medium access protocol for wireless sensor networks, which
is the basis of this work. While some of their assumptions do
not hold for our scenario, the main idea of representing the
slots used by the neighboring nodes as a Bitmask can be found
in MLMAC, too. One of their features, turning radio modules
off to save energy, is not implemented in the current version
of MLMAC. It could be added without much afford, though,
if different hardware was used.

AI-LMAC is introduced in [7]. It is an enhancement of
LMAC which allows dynamic reallocation of slots, depending
on the network load. The authors assume a routing tree which



leads to a sink and optimize the slot usage along the branches
of this tree. This is realized by the usage of so called Data
Distribution Tables, which are used to determine the network
load which results after a query from the sink. With this
information, slots can be reserved according to the presumed
needs. This approach does not fit into our scenario however,
as we do not want to use a single sink. Rather, all nodes
communicate among each other. Another difference is that
MLMAC allows free choice of routing protocol.

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced Mobile LMAC, a novel
TDMA protocol for mobile wireless sensor nodes. Mobile
LMAC is based on the LMAC protocol but in our scheme
each node can spontaneously establish a TDMA schedule
on demand or join/leave existing schedules while nodes are
moving. Thus a high channel throughput can be achieved for
mobile sensor nodes even in heavy load situations. We have
shown the feasibility of our protocol by means of experiments
with a real mobile sensor network based on modified RCX
robots. Furthermore, we compared the results with similar
experiments using a simple collision avoidance MAC. The
latter is reasonably well suited for sporadic communication
between mobile nodes and does not require the exchange of
additional protocol data. However, in the case of high load
the Mobile LMAC achieved a far better result. In the future
we will derive simulation models from our experiments and
investigate the effectiveness of Mobile LMAC in large multi
hop settings. We also plan to port MLMAC to the ScatterWeb
Embedded Sensor Board (ESB) [8], which we can mount on
top of the RCX robots (see figure 13). This way, the RCX
robots will only be the platform for mobility and the radio
module of the ESB can be used to experiment with power
savings as in LMAC.

Fig. 13. An RCX with an mounted ESB

REFERENCES

[1] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis. Smart dust protocols
for local detection and propagation. In POMC ’02: Proceedings of the
second ACM international workshop on Principles of mobile computing,
pages 9–16, New York, NY, USA, 2002. ACM Press.

[2] I. Chatzigiannakis, S. Nikoletseas, and P. G. Spirakis. Efficient and
robust protocols for local detection and propagation in smart dust
networks. Mob. Netw. Appl., 10(1-2):133–149, 2005.

[3] circuit design inc. low power radio solutions.
www.lprs.co.uk/main/product.info.php?productid=154.

[4] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges:
mobile networking for ”smart dust”. In MobiCom ’99: Proceedings of
the 5th annual ACM/IEEE international conference on Mobile comput-
ing and networking, pages 271–278, New York, NY, USA, 1999. ACM
Press.

[5] R. Karnapke and J. Nolte. Copra - a communication processing
architecture for wireless sensor networks. In Euro-Par 2006 Parallel
Processing, pages 951–960. Springer, 2006.

[6] H. Patterson-McNeill and C. L. Binkerd. Resources for using lego
mindstorms. In Proceedings of the seventh annual consortium for
computing in small colleges central plains conference on The journal
of computing in small colleges, pages 48–55, , USA, 2001. Consortium
for Computing Sciences in Colleges.

[7] P. H. S. Chatterjea, L.F.W. van Hoesel. Ai-lmac: An adaptive,
information-centric and lightweight mac protocol for wireless sensor
networks.

[8] J. Schiller, A. Liers, H. Ritter, R. Winter, and T. Voigt. Scatterweb -
low power sensor nodes and energy aware routing. In Proceedings of
the 38th Hawaii International Conference on System Sciences, 2005.

[9] Turau, Renner, and Venzke. The heathland experiment: Results and
experiences. In Proceedings of the REALWSN’05 Workshop on Real-
World Wireless Sensor Networks., Jun 2005.

[10] L. van Hoesel and P. Havinga. A lightweight medium access protocol
(lmac) for wireless sensor networks: Reducing preamble transmissions
and transceiver state switches. In INSS, Japan, Jun 2004.

[11] K. Walther, R. Hemmerling, and J. Nolte. Generic trigger variables and
event flow wrappers in reflex. In ECOOP - Workshop on Programming
Languages and Operating Systems, Jun 2004.

[12] K. Walther and J. Nolte. Event-flow and synchronization in single
threaded systems. In Proceedings of First GI/ITG Workshop on Non-
Functional Properties of Embedded Systems (NFPES), Mar 2006.


