
In-network Processing and Collective Operations using the
COCOS-Framework

Maik Krüger, Reinhardt Karnapke, Jörg Nolte
BTU Cottbus

Distributed Systems/Operating Systems group
maik-krueger@gmx.de,{karnapke, jon}@informatik.tu-cottbus.de

Abstract

COCOS (COordinated COmmunicating Sensors)1 is a
lean middleware platform for wireless sensor networks.
The major programming abstractions of COCOS are dis-
tributed sensor spaces. All objects in such a space can be
collectively addressed. This way, high-level data-parallel
programming concepts such as global reductions are pos-
sible. This paper introduces the spaces of COCOS and
describes their usage.

1. Introduction

In the near future we will be surrounded by sensor net-
works to monitor the environment, bodily functions of hu-
mans or animals as well as technical systems such as cars,
helicopters or planes [1]. Sensor networks will be typi-
cally composed of tiny computers with some sensing as
well as wireless communication capabilities. These net-
works can be fairly large, ranging from a few dozens up
to myriads [3] of nodes as visions of smart dust and paint
already suggested. Swarms of small robots might patrol
chemical plants to detect potential problems and react on
environmental hazards e.g. by collectively applying suit-
able chemical agents to neutralize spilled acid.

Given the rather complex tasks we expect sensor net-
works to perform in the future the programming of such
networks is a major challenge. Even though realistic sen-
sor networks are currently limited to a couple of hundreds
nodes at most, it is simply impossible to analyze all data
outside the network due to severe bandwidth limitations.
Therefore programming such networks remains a tedious
task that requires parallel and distributed in-network pro-
cessing with severely resource constrained computers and
low-end error prone wireless networks.

The nature of sensor networks being collections of
computational nodes of the same kind strongly implies
a data-parallel programming approach. The sensor net-
work then appears to the programmer as a collection of

1The COCOS Project is supported by the German Research Founda-
tion (DFG) in the SPP 1140.

language level objects that can be grouped according to
some application specific criteria such as the location of
specific sensor objects or even specific sensor readings. In
COCOS, all objects in such a user defined group can be ad-
dressed collectively and thus often recurring tasks on the
same group of sensors or actuators can easily be expressed
and implemented efficiently. Furthermore, the implemen-
tation of application specific shared data spaces that e.g.
cache or replicate sensor readings to alleviate the energy
consuming communication overhead is also possible with
reasonable programming effort. Therefore, a general pur-
pose data-parallel programming platform has strong ben-
efits for both application and system programmers.

This paper is structured as follows: First we discuss the
rationale of COCOS and introduce the concept of sensor
spaces for parallel programming in wireless sensor net-
works. Section 3 describes the architecture of COCOS and
some essential implementation details. Section 4 provides
the results of our experiments with radio equipped Lego
RCX robots while section 5 discusses related work. We
finish with a conclusion and future work in section 6.

2. Sensor Spaces

Generally, each sensor node just provides a single pixel
(a local sensor reading) of the whole picture. The detec-
tion of complex phenomena such as the edge of a fire re-
quires at least some regional and sometimes global anal-
ysis of sensor data in space and time. Usually, only those
nodes that detected a local phenomenon are of interest
and an effective way to address only these nodes when
performing a distributed and parallel analysis of sensor
readings is needed. For instance, when the average tem-
perature of all nodes with a temperature reading above
a certain threshold should be determined, we would like
to group those nodes together, perform parallel aggrega-
tions (global reductions) of all temperature readings peri-
odically and transmit the aggregated result to the outside.
COCOS provides sensor spaces as a basic programming
abstraction to support such computational patterns. First,
all nodes that detected the requested phenomenon simply
join a sensor space, in this example it would contain only
hot nodes. Any node may now act as an evaluator and

perform parallel method calls on all objects within that
distributed space. Thus, the space essentially acts as a dis-
tributed container for objects that can now be addressed in
a data-parallel fashion. All sensor nodes are represented
by language level objects that are instances of arbitrary
C++-classes. Furthermore each real sensor node might
register the same sensor object in multiple sensor spaces,
where each space reflects a certain scope of interest.

Provided the detected phenomena are rather stable over
time, we can construct suitable overlay networks that ef-
fectively reach all nodes of interest. The same holds of
course for nodes that are grouped together according to
static criteria such as geographic location (e.g. all nodes in
a defined distance around a certain location) or according
to functionality (e.g. the group of all regional managers).

However, the situation changes drastically, when either
the sensor nodes are mobile, or both the wireless network
as well as the detected phenomena are not stable over
time. In those cases it is not possible to maintain over-
lay networks effectively and suitable flooding techniques
have to be applied instead. COCOS reflects these differ-
ences by providing two categories of sensor spaces.

The AnchoredSpace, the ConnectedSpace as
well as the RobustAnchoredSpace follow a topology
based approach while the ATBFloodingSpace relies
entirely on dynamic flooding techniques.

2.1. The AnchoredSpace
The AnchoredSpace(AS) is the simplest space im-

plemented. It has an anchor or root node from which all
group operations are distributed. When the AS is initiated
the root node creates a tree based object space within a
specified number of hops around itself. Once a routing
tree has been created all messages are distributed along
this tree. The AS is designed for static networks and ex-
pects that a node which is reached at the time of initial-
ization can be reached at any time later on same way. If
the AS does not meet robustness criteria for a certain ap-
plication, a transport layer can be used to supplement it,
or another space like the RobustAnchoredSpace can
be chosen.

Figure 1 shows the construction of the routing tree for
an AS for five nodes. The graphics are taken from a simu-
lation run with 5 nodes and using a collision free TDMA
MAC. In (a) only the layout is shown and the node num-
bers are given. In (b) node 1 starts to build an AS with a
distribution range of 2 hops. All direct neighbors (2,3,4)
receive the message and accept node 1 as their parent,
which is shown by the thin lines in (c). As the number
of hops is bigger than 1, node 2 redistributes the message
as seen in (d). Nodes 1,4 and 5 receive the message, but
1 and 4 ignore it as 1 is the anchor and 4 already has a
parent. Node 5 accepts node 2 as parent in (e). In (f) and
(g) nodes 3 and 4 retransmit the message, but no new node
hears them. Node 5 does not retransmit the message, be-
cause the maximum hop count was reached. Now every
node knows its parent but the parents do not know their

Figure 1. Building an AnchoredSpace

children yet, which is necessary for the AS to work prop-
erly. The next pictures show how the nodes inform their
parents of their existence. Node 5 informs node 2 in (h)
and is connected in (i). The nodes 2 (j, k), 3 (l, m) and 4
(n, o) follow, until the tree is finished in (o). Now mes-
sages can be routed from the anchor to all group members
and back.

For the aggregation of values it is necessary to use a
timeout, as messages might have been lost. The calcula-
tion of the timeouts is done in the following way. First
the time needed for the communication between neigh-
boring nodes is determined. Equation 1 shows that this
MaxReplyT imeout depends only on the MAC layer.
The Frame size is the time which passes between a node’s
turn to send and the time, when it can send again. We
chose to multiply this by 3 to account for the fact that both
nodes may have to wait until their turn to send arrives.

MaxReplyT imeout = 3 ∗ Framesize(MAC) (1)

When the time for neighborhood communication is
known, the global timeout used at the Anchor can be de-
termined. Equation 2 shows that the timeout for single
hop communication has to be multiplied by the highest
possible tree depth. This value is known, as the AS is
propagated over a maximum number of hops.

GlobalT imeout =
MaxTreeDepth ∗MaxReplyT imeout (2)

Now that the global timeout is known, every node
needs to know its local timeout, namely how much time
it has to send return values to its parent after receiving the
message. This time is the global timeout minus the time,
the message needed to get to this node and the time the
message needs to get back. The time needed to reach this
node is the depth of this node times half the communica-
tion single hop, as is the time needed to send an answer
back. Therefore, the depth of the tree has to be multiplied
with MaxReplyT imeout (equation 3).

LocalT imeout =
GlobalT imeout− TreeDepth ∗MaxReplyT imeout (3)

Once the local timeout has passed, the node transmits
the aggregated results to its parent, regardless of any still
missing messages.

2.2. The ConnectedSpace
The ConnectedSpace(CS) is similar to the AS.

The difference between these two spaces is that the mes-
sage building the CS is propagated as long as the space
reaches a node which wants to be a group member within
a certain number of hops. The number of hops is specified
at initialization. Once a routing tree is created all mes-
sages are distributed along this topology. Figure 2 shows
a CSwith a hop distance between members of 2. The node
a little above and to the left from the center started build-
ing the CS. All its direct neighbors received the message.
The node to the right wants to be a group member and
thus does not decrement the hop count. Its right neighbor
does not want to be a member so it decrements the counter
and rebroadcasts the message. The next node wants to be
a member and resets the hop counter. This continues un-
til all messages are discarded because their hop counter
reached 0. The nodes in the middle received the messages
but do not participate as none of them wanted to be a mem-
ber. The nodes in the lower right would like to join the
group but can not because they are more than 2 hops from
the last group member.

Figure 2. Building an ConnectedSpace

The timeouts for the CS are calculated like those for
the AS shown in equations 1, 2 and 3. The only difference
is that the tree depth has to be guessed.

2.3. The RobustAnchoredSpace
As its name suggests, the RobustAnchored-

Space(RAS) is an extension of the AS. In the construc-
tion phase, nodes that received a message try to inform
their parent of their existence. If the parent does not send
an acknowledgement in a certain time, the message is sent
again. When the parent acknowledges a child, it transmits
a bit position to this child. The parent notes the position
in a bit field. When results of a collective operation are
collected, a parent node ticks off the received answers.
If it did not receive as many answers as it has children
it transmits a message containing the remaining bit field.
All children check their bit position in that bit field and
retransmit their results if necessary. This way, the parent
node can collectively address all children, whose answers
it did not receive. Those children whose bit position is not
enclosed in the bit field simply ignore the message. The
size of the bit field is defined at compile time and deter-
mines the number of children a node can have at most.
When nodes try to connect to a parent that already has
that number of children, their requests are turned down.
One problem that arises when repetitions are used is that
the order of messages can be affected. If the first of two
messages has to be repeated three times, but the second
one is sent and received without problems, the second can
arrive at the destination first. To avoid this problem, the
RAS allows only one collective operation at a time. Be-
cause of the repetitions the timeout for the RAS has to be
calculated differently from the one of the AS.

The global timeout is calculated as shown in equation
4. The difference to the AS can be seen in the factor 2
times MaxSendReply which represents the time needed
if all transmissions need the maximum number of retries.

GlobalT imeout =
MaxTreeDepth ∗MaxReplyT imeout ∗

2 ∗MaxSendReply (4)

The local timeout equals the global timeout minus the
time the message needed to reach this node and the time
for the way back. These are shown separately in equation
5, and calculated in the following equations.

LocalT imeout = GlobalT imeout

−TimeToThisNode− TimeForWayBack (5)

The time the message needed to reach the current node
is shown in equation 6. It is the sum of the time that would
be needed if no errors occurred and the time needed for all
retransmission that occurred.

TimeToThisNode =
MaxReplyT imeout/2 ∗ TreeDepth

+MaxReplyT imeout ∗ TotalRetries (6)

Equation 7 shows the time reserved to transmit the
message back to the anchor. It consists of the time that
would be needed if no error occurred and the time it could
take to send the highest possible number of retries.

TimeForWayBack =
MaxReplyT imeout/2 ∗ TreeDepth +

MaxReplyT imeout ∗ TreeDepth ∗MaxSendReply (7)

2.4. The ATBFloodingSpace
The ATBFloodingSpace(ATB) is designed for

mobile networks or static networks which change their
logical topology, it does not have an anchor or root node,
like the other spaces do. Furthermore it does not have a
static topology. Therefore, no topology has to be updated
and new group members can join or leave the group at
any time. Every node in the space can start a group opera-
tion at every time. All group operations are distributed by
flooding the message in the whole space or over a constant
amount of hops around the sender. A modification which
allows the distribution of operations as it is done by the CS
is of course possible. The ATB does not send any explicit
or implicit confirmation at message distribution, this is not
necessary because the flooding of messages ensures that a
message can reach each node in multiple ways. Conse-
quently, the chance for a node to receive all messages in
a dense network is high. Duplicate suppression ensures
at-most-once semantics. When results are collected, the
messages are sent directly (over one hop) back to the orig-
inator. Here it could be possible that messages are lost.
Hence, a transport layer could again be useful.

The timeouts for the ATB are similar to those for the
CS. The depth of the routing tree has to be guessed like
in the CS, but the information whether a node is a leaf
is missing. This means that an additional time has to be
waited, in which leafs can detect that they are leafs by
not receiving any messages from children. This time is
represented in equation 8 by the last term which equals
two times the time for a local communication.

GlobalT imeout =
MaxTreeDepth ∗MaxReplyT imeout

+2 ∗MaxReplyT imeout (8)

3. Implementation Aspects

COCOS is essentially based on a layered architecture
with three layers (figure 3). REFLEX [6], the operating
system we used can also be seen below COPRA, it takes
care of scheduling and event handling.

In COPRA [5] (COmmunication PRocessing Architec-
ture) different communication tasks, e.g. medium access
control, are implemented in so called Protocol Processing
Stages (PPSs). These PPSs can be combined to form Pro-

Architecture

coordination spaces

sensor net control

communication protocols

CHIPS

COPRA

REFLEX

COCOS

APPLICATION

remote objects

scheduling & event handling

Figure 3. COCOS architecture

tocol Processing Engines (PPEs) which represent entire
network stacks.

CHIPS (Convenient High-level Invocation Protocol
Suite) enables the usage of remote method calls and uses
the communication protocols provided by COPRA. This
way, the remote calls can potentially be routed trough the
whole network.

COCOS (COordination and COoperation Spaces) sup-
plies a high level of abstraction for application program-
mers in wireless sensor networks. Using COCOS, the sen-
sor network can be programmed as a whole, or some part
of it. This is realized by extending the communication lay-
ers from COPRA and the remote calls of CHIPS to com-
mands for logically connected groups of sensor nodes.
COCOS offers an object space, where it is easy to create,
use and delete object groups. An object group or object
space summarizes chosen sensor nodes, so that is easy to
join nodes which have special sensors or special measured
values. Once an object space is created group operations
on all nodes in this space can be executed. These oper-
ations can include the reading of sensor values and their
aggregation as well as controlling actuators, e.g. starting a
fire extinguishers in burning areas when a fire is detected.

At the moment there are three group operations im-
plemented, the methods apply(), aggregate() and
an asynchronous version of aggregate() which uses
resynchronization. The method apply() is an asyn-
chronous one way group operation, which invokes a
method on all group members. The aggregate()-
method is a synchronous group operation which returns
a value that is received by aggregating all values with
a specified aggregating operation. The algorithm which
is used in the aggregation can be specified, by defin-
ing a class which is inherited from the abstract class
Aggregator. The following example shows how to use
the group operations.

class Robot {
2 public:

// turn left for ms milliseconds
4 void turnLeft(int ms);

6 // return the current temperature
int getTemp();

8 };

10 //creates a local Robot object

Robot myRobot;
12

//declares a Robot group
14 AnchoredSpace<Robot> robots;

16 SumAggregator<int> aggregator;

18 int main() {

20 // connect myRobot with group robots
robots.join(&myRobot);

22

// creates a 3 hop wide Robot group
24 // of type AnchoredSpace, the anchor is

node 5
robots.init(NodeID(5), 3);

26

// execute the method turnLeft(3)
28 // asynchronous on all group members

robots.apply(m2f(&Robot::turnLeft, 3));
30

// execute the method getTemp()
32 // synchronous on all group members

// and aggregate the return values
34 robots.aggregate(m2f(&Robot::getTemp),

aggregator);
int temp = aggregator.getValue()/

aggregator.getParticipants();
36 }

Lines 1-8 show the class Robot which represents a
mobile sensor node with a temperature sensor. It supplies
the methods turnLeft() and getTemp(). In lines 10-
16 the needed objects of type Robot, AnchoredSpace
and SumAggregator can be seen. The SumAggregator
is used to collect return values and sum them up. The
main program can be seen in lines 18-36. At first the
local Robot object joins the group (line 21). Then the
AS is spread within 3 hops from node 5 (line 25). Once
this spreading is complete, group operations can be car-
ried out. This is done in line 29, where all robots are
turned for 3 milliseconds. In this line, a method called
m2f() is used. This method converts an arbitrary method
call with its actual parameter(s) into a function object (so
called functor). This functor is then propagated across the
object space. Line 34 shows a synchronous call, where
the calling robot is blocked until all participants have an-
swered or a timeout occurs. The result is saved in the
SumAggregator, from which it can be read at any time
later. This is done in line 35, where a second value is also
obtained from the aggregator. This value is the number
of participants, which could be used to evaluate the valid-
ity of the first value. The number of participants could be
recorded for every group operation, and if it falls below a
certain threshold, the operation could be repeated. It could
also be used as an indicator for quality of service.

There are also some local operations implemented
which can be used with an object group. As you have
seen in the example you have to call the join()-method
to connect an object to a group and you can call remove()

to disconnect. The method reset() resets the local group
object, this means a local connected object is disconnected
and all local group topology information is removed. That
implicates that the local node and all nodes in the sub-
tree do not receive group operations any more. Because
reset() is only a local operation, it has to be called on
all nodes in the group to reset the topology. After this, the
init()-method of the space can be used to create a new
group topology.

4. Experiments

This section describes the experiments we made. As
the simulations delivered perfect results, they are not de-
scribed here. Only the much more interesting results of
the real experiments are discussed. All our experiments
were conducted on modified RCX robots, which have
been additionally equipped with a radio module of type
ER400TRS which we use instead of the included infrared
module (IR) to enable broadcast protocols.

In all our experiments every node wanted to be a group
member. The first experiments on the RCX robots were
made in a single hop environment. 9 nodes were gathered
together, each within at most 30 centimeters of all others.
These Experiments delivered the same results as the sim-
ulations. Once the TDMA MAC had found its slots and
no more messages were buffered all messages were re-
ceived correctly. This led to nearly perfect results, as only
the messages that were lost by the MAC had negative in-
fluence on the results. Once the single hop environment
worked, we moved on to a multi hop environment.

For the multi hop environment the 9 nodes were ar-
ranged in a square of 3 times 3. The distance between
nodes was 10 meters, figure 4 shows their layout. An

7 8 4
9 5 6
1 2 3

Figure 4. Layout of nodes

experimental run consisted of three parts. First, a rout-
ing tree was built. Then 10 asynchronous group opera-
tions were carried out and the number of processed op-
erations on every node was noted (not shown here). Fi-
nally 10 synchronous aggregations took place. The num-
ber of local processed aggregations was noted, as was the
result of the aggregations. These experimental runs were
started from each corner and with 3 different spaces, the
ConnectedSpace was ignored as its difference to the
AS can only be seen in larger networks. As expected, the
results differed quit a lot, depending on the space in use.
For this reason, the results are shown separately for each
space.

4.1. The ATBFloodingSpace
Figure 5 shows the number of locally conducted ag-

gregations. Node 6 did not participate at all and node 9

10 02 09
01 09 0
07 09 09

10 10 10
0 10 0

10 10 10

02 10 10
0 10 0
10 05 10

01 08 01
09 09 0
03 09 10

Figure 5. Number of local aggregations,
ATBFloodingSpace. The starter nodes are
shown in italic.

participated only in the run started from node 3 (shown
on the lower right) which was the first one made. The re-
turn value of each node was its identity, the aggregation
was done as summation of all values. This means that a
perfect run would result in a return value of 45 (sum of
1-9). As Nodes 6 and 9 did not participate due to hard-
ware problems, a value of 30 would be good. Figure 6
shows the results of the 10 aggregation started from node
4 as example, the values in the first line are the result ob-
tained within the calculated time, the second line was ob-
tained after the timeout was already long past. Node 4
was chosen, because all participating nodes received all
10 aggregation messages. The message losses in the other
runs can be explained with link breakages due to changing
signal strength and with problems of the MAC-layer.

1 2 3 4 5 6 7 8 9 10
a 30 20 04 27 04 04 17 22 15 30
b 30 20 28 27 28 28 22 22 15 30

Figure 6. Results of the aggregation ob-
tained by node 4: a) within the timeout, b)
thereafter

The results of the aggregations shown in figure 6 can
be interpreted as follows. In 4 out of 10 aggregations the
upper value which was obtained within the time limit cal-
culated is smaller than the one obtained later. This means
that the timeout on the starting node 4 was to small, be-
cause results still arrived after the timeout. The values on
the lower row deliver interesting insights, too. Please re-
member that a value of 30 as was reached in aggregation 1
and 10 is optimal. In aggregations 3, 5 and 6 node 2 failed
to deliver its result, in aggregation 4 this was the case for
node 3 or for nodes 1 and 2. These are the nodes that are
farthest away from node 4 and were probably connected
trough multiple hops. This shows that the problem with
the timeouts exists on intermediate nodes, too. Once the
timeout on a intermediate node arrives, the results gath-
ered until that moment are sent back to the originator and
the aggregation object is destroyed. Results that arrive
later are ignored by the intermediate nodes and can not
arrive at the originator of the aggregation.

4.2. The AnchoredSpace
The AS builds a routing tree first, which is then used in

all following group operations. This building of the tree is
crucial for the rest of the experimental run, as bad connec-
tions can have a strong negative influence on the overall
performance. If a link is used during the construction that
breaks soon after, the whole subtree can be lost. Figure 7
shows such a bad example. Node 8 is a physical neighbor
of node 4 which started the run but it is connected via 3
hops. The reasons for this can be as follows: The recep-
tion of node 8 was bad when node 4 started building the
tree so it missed the message from node 4. That it is not
connected to node 5 instead can be for the same reason, or
it can be the TDMA MAC’s fault. If nodes 3 and 1 were
able to send before node 5, node 8 received the message
from node 1 first.

Figure 7. Topology of an AS initiated by
node 4. The arrows point at parents

Nodes 3 and 7 are 20 meters from node 4 but still they
are connected to it. This longer distance means that the
links will break more often. In figure 8 one of the big
problems of this multi hop environment can be seen. Node
3 received only 7 aggregations. Consequently, it was only
able to forward these. While node 1 received all 7, node 8
received only 5. The number of received aggregations can
only decrease on each hop, leading to bad responsiveness
of the nodes that are connected over too many hops.

10 5 10
0 10 0
7 7 7

Figure 8. Local aggregations

The results of the aggregation were such as could be
expected. In nearly all aggregations only node 5 was able
to answer in time. Another problem that has not yet been
addressed is that the parent node returns its value when it
thinks that all children have answered. In this experiment,
the message telling node 4 that node 3 is its child has been
lost. Thus, node 4 only waits for 1 child which is node
5 before returning its value. This means that within the
timeout no value higher than 9 could be reached. But even
after the timeout node 3 was not able to answer except for
cases 3 and 6(figure 9). In case 3 all values arrived after
the timeout, in case 6 only node 8 is missing.

1 2 3 4 5 6 7 8 9 10
a 9 4 9 9 9 9 9 9 9 9
b 9 9 30 9 9 22 9 9 9 9

Figure 9. Results of the 10 aggregations: a)
within the timeout, b) thereafter

These results tells us two things, the first is that the
timeouts are too small for multi hop. The Second is that
the AS should only be used in networks with links that
are stable for longer periods of time or in single hop envi-
ronments. As these are the scenarios it was designed for,
the experiments confirm its suspected inhibitions in other
scenarios.

4.3. The RobustAnchoredSpace
The RAS addresses the problem of lossy links by using

a simple retransmission protocol. Nodes that have sent
their return value wait for the parent to acknowledge it.
If no acknowledgement is received within a certain time,
the value is sent again up to x times. X is configurable and
was set to 3 in our experiments. For comparability reasons
the results are shown for the run from node 4.

Figure 10. Topology of a RAS started from
node 4. The arrows point at parents

Figure 10 shows the topology the RAS created. Node
7 was not able to connect, even though all messages were
retransmitted 3 times. However, even nodes 6 and 9 par-
ticipated this time. Node 9 did so in all our experiments
with the RAS, node 6 in half of them. This shows a ro-
bustness gain already, as these did not participate in any
of the experiments with the AS.

0 10 10
7 9 10
6 8 10

Figure 11. Local aggregations

The number of local aggregations can be seen on figure
11. This time, node 9 received more messages and thus
was able to forward more. Nodes 2 and 5 worked slightly
worse than before.

Figure 12 shows the results of the 10 aggregations.
None of them reached the optimal value but nearly all of
them are better than the results from the AS. Still, even

1 2 3 4 5 6 7 8 9 10
a 12 4 28 19 21 12 19 12 4 9
b 12 23 28 22 21 19 22 28 28 26

Figure 12. Results of the 10 aggregations:
a) within the timeout, b) thereafter

with the longer timeouts due to the retransmission win-
dow, the results returned after the timeout has long passed
are much better than those within the time limit. This
shows again that the global timeouts are too short. Also,
the timeout for retransmissions is another crucial factor,
which has to be tuned. When messages are buffered in the
MAC layer and all retransmissions occur before even the
first message is sent, the retransmissions have gained us
nothing.

4.4. Summary
All spaces discussed here have a common problem:

The cross-layer issue of timeouts with the MAC layer. If
a MAC was used that could guarantee delivery times, the
timeout would work much better. The problem is located
in equation 1. The timeout for 1 hop is the only part of
the equations that depends on the MAC, and we chose to
set it to 3 times the frame size of the MAC. As the experi-
ments have shown, that was to small for this scenario, and
needs to be fine tuned in the future. Apart from that each
space has its own strengths and weaknesses. Therefore it
is not possible to say which of the spaces is the best, rather
this question depends on the application. The factors af-
fecting the choice of space are link stability, whether op-
erations occur sporadic, in bursts or often and the targeted
platform. If there is not enough memory available for the
RAS it can not be used, even if it would otherwise be the
perfect choice. Also, the number of sent messages can be
a factor, as can be the frequency of topology changes. The
selection of an CS is independent from these factors, as it
is only application specific.

frequency of operations
seldom in bursts often

stable links ATB AS AS
unstable links ATB ATB RAS

Figure 13. Choice of space

Figure 13 shows an example of different choices for
two of the factors described above. If the operations occur
only seldom the ATB is recommended. For burst behavior
in a stable environment the AS can be used while the ATB
should be used for unstable links. If the operations occur
often, the ATBs flooding would represent to high a net-
work overhead. Instead, an AS or an RAS would be used.
They would build their routing trees only once. For node
mobility only the ATB works properly, there is no need to
distinguish between operation frequency or link stability.
If only asynchronous operations are used in any scenario

there is no need to build a routing tree and the ATB should
be used.

5. Related Work

Abstract regions [7, 8] offer a tuple-space like commu-
nication abstraction. An abstract region consists of neigh-
boring sensor nodes, which are a certain number of hops
or meters distant from an anchor node around which this
region is centered. Like COCOS, abstract regions are de-
signed as parallel programs. There are 3 big differences
between abstract regions and COCOS. First, the member-
ship of a node in one of COCOS’s spaces can be deter-
mined by any factor, even the current sensor value. Thus,
it is highly dynamic and can change at any time while the
membership in an abstract region is static. Second, CO-
COS offers control over actuators or any other item on the
sensor nodes additionally to the in-network aggregation
which is provided by abstract regions. The last difference
is the operating system used for the implementation. CO-
COS uses REFLEX as basis, which is an event driven oper-
ating system implemented in C++. This enables the usage
of standard tools for both REFLEX and COCOS.

In wireless sensor networks, in-network aggregation is
often realized by routing protocols, e.g. Directed Diffu-
sion [4] and Rumor Routing [2]. There are two differences
between these approaches and ours. First, their approach
works on the network layer while our approach realizes a
middleware that can be used in combination with any rout-
ing protocol. The second difference is that our approach
is not restricted to the aggregation of values but rather en-
ables the concurrent control of sensors and actuators on
all nodes.

6. Conclusion & Future Work

The different spaces of COCOS enable distributed con-
trol over sensors and actuators. They also offer in-network
processing of values by aggregating them with any given
aggregation function. We have shown that the usage of
remote method invocation mechanisms and sensor spaces
is feasible and useful. When using the sensor spaces, ap-
plication programmers need less time to program a sensor
network, as they can program it as a whole rather than in-
dividual nodes. With the abstractions offered by COCOS
it is easy to introduce QoS into in-network aggregation, as
the number of participating nodes can be counted as seen
in the example in chapter 3. Paradigms like publisher/sub-
scriber can also be realized with minimal effort. One con-
clusion that can be taken from the experiments is that most
simulations do not come close enough to the real world.
In the simulations, a logical topology as seen in figure 7
where a physical adjacent node is connected over 3 hops
never occurred. This convinces us that real experiments
are absolutely necessary.

In the future more work on the timeouts is clearly
needed as finding the correct timeouts is vital for the

spaces to function properly. This is non trivial as cross-
layer issues with the MAC and possibly with other lay-
ers as well have to be considered. There is also po-
tential for more spaces. The AnchoredSpace and
ConnectedSpace have shown two problems which are
the building of the routing tree and the return of the
values. The RobustAnchoredSpace and the ATB-
FloodingSpace each address one of these problems,
but a solution to both is still missing. If node density is
high enough every node is reached by the ATB but the
return values are sent exactly once to the parent. If the ap-
plication needs a CS but the links are lossy, a retransmis-
sion and transport layer from COPRA can be used at the
moment, but some kind of RobustConnectedSpace
could be useful.

To make the initial routings trees for the AS, CS and
RAS better, children could use a metric to determine their
parent. At the moment, the parent is the node, whose mes-
sage arrived first, if another message arrives later it is sim-
ply discarded. If some value for the link quality could be
obtained, e.g. signal strength, a message received from a
better link could override previous messages.

References

[1] T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George,
S. George, T. He, L. Luo, S. Son, R. Stoleru, J. Stankovic,
and A. Wood. Envirotrack: Towards an environmental com-
puting paradigm for distributed sensor networks. In Proc.
of 24th International Conference on Distributed Computing
Systems (ICDCS), march 2004.

[2] D. Braginsky and D. Estrin. Rumor routing algorithm for
sensor networks. In WSNA ’02: Proceedings of the 1st
ACM international workshop on Wireless sensor networks
and applications, pages 22–31, New York, NY, USA, 2002.
ACM Press.

[3] I. Chatzigiannakis, S. Nikoletseas, and P. G. Spirakis. Effi-
cient and robust protocols for local detection and propaga-
tion in smart dust networks. Mob. Netw. Appl., 10(1-2):133–
149, 2005.

[4] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva. Directed diffusion for wireless sensor network-
ing. IEEE/ACM Trans. Netw., 11(1):2–16, 2003.

[5] R. Karnapke and J. Nolte. Copra - a communication pro-
cessing architecture for wireless sensor networks. In Euro-
Par 2006 Parallel Processing, pages 951–960. Springer,
2006.

[6] K. Walther and J. Nolte. Event-flow and synchronization
in single threaded systems. In Proceedings of First GI/ITG
Workshop on Non-Functional Properties of Embedded Sys-
tems (NFPES), Mar 2006.

[7] M. Welsh. Exposing resource tradeoffs in region-based
communication abstractions for sensor networks. In Pro-
ceedings of the 2nd ACM Workshop on Hot Topics in Net-
works (HotNets-II), 2003.

[8] M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. In NSDI, pages 29–42, 2004.

