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Summary 

As elastic-plastic fatigue analyses are still time consuming the simplified elastic-plastic analysis (e.g. 
ASME Section III, NB 3228.5, the French RCC-M code, paragraphs B 3234.3, B 3234.5 and B3234.6 
and the German KTA rule 3201.2, paragraph 7.8.4) is often applied. Besides linearly elastic analyses 
and factorial plasticity correction (Ke-factors) direct methods are an option. In fact, calculation effort 
and accuracy of results are growing in the following graded scheme: a) linearly elastic analysis along 
with Ke correction, b) direct methods for the determination of stabilized elastic-plastic strain ranges 
and c) incremental elastic-plastic methods for the determination of stabilized elastic-plastic strain 
ranges. 
The paper concentrates on option b) by substantiating the practical applicability of the simplified theory 
of plastic zones STPZ (based on Zarka’s method) and – for comparison – the established Twice Yield 
Method. Application relevant aspects are particularly addressed. Furthermore, the applicability of the 
STPZ for arbitrary load time histories in connection with an appropriate cycle counting method is 
discussed. 
Note, that the STPZ is applicable both for the determination of (fatigue relevant) elastic-plastic strain 
ranges and (ratcheting relevant) locally accumulated strains. This paper concentrates on the 
performance of the method in terms of the determination of elastic-plastic strain ranges and fatigue 
usage factors. The additional performance in terms of locally accumulated strains and ratcheting will 
be discussed in a future publication. 
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1. Introduction  

Incremental elastic-plastic code conforming fatigue analyses are the most accurate and least 
conservative way of considering the cyclic deformation behavior. The major drawback is time and 
space consuming analyses for complicated 3D structures and complex loading conditions. That’s why 
the simplified elastic-plastic analysis is often the method of choice. It relies on elastic finite element 
analyses and the application of an appropriate correction procedure for plasticity effects. 
Nevertheless, the standard correction proposed by the codes is known to be overly conservative in 
many design situations. In this context, the application of direct methods, such as the STPZ and the 
established Twice Yield method, appear to be interesting alternatives. This paper covers both the 
theoretical fundamentals of the STPZ and Twice Yield methods with emphasis on thermal cyclic 
loading conditions as well as practical application examples. 
 

2. Fundamentals of the simplified theory of plastic zones (STPZ) 

An alternative to simplify the calculation of elastic-plastic stress and strain ranges is the Simplified 
Theory of Plastic Zones (STPZ) as described in more detail in the following section. 
 

2.1 General Outline 

The STPZ aims at capturing the elastic-plastic stress and strain ranges due to cyclic loading between 
two states of loading in the condition of plastic shakedown. The material is assumed to exhibit 
piecewise linear kinematic hardening. At present, the theory is worked out for a bi-linear or tri-linear 
stress-strain curve. A von Mises yield surface is adopted along with an associated flow rule. Small 
deformation and additivity of elastic and plastic strains are assumed. Yield stress may depend on 
temperature, but the elastic properties and the elastic-plastic tangent moduli must not. 

In this theory the state of plastic shakedown is addressed directly, i.e. without going through the entire 
load history step by step. The basic idea of the present simplification goes back to Zarka’s method 
[e.g. 1,2,3]. A transformed internal variable (TIV) is introduced in this context. Its value can be 
estimated in the state of plastic shakedown by local consideration. Sequentially, the elastic-plastic 
response of the structure can be gained by a series of linear elastic analyses. As a consequence, 
however, the results are only approximations compared to those of an incremental analysis through 
the entire load history, and no information is obtained about the evolution of stress and strain during 
cycling and the number of cycles required to achieve shakedown.  

For illustration purpose monotonic loading with linear kinematic hardening and temperature 
independent yield stress is considered first (section 2.2), before cyclic loading with temperature 
dependent yield stress (section 2.3) and multi-linear kinematic hardening (section 2.4) is addressed. 
  

2.2 Outline for monotonic loading with linear kinematic hardening and temperature independent 
yield stress 

Let ijσ  be the stress tensor, f.el
ijσ  the tensor of stress obtained by a fictitious elastic analysis, ijξ  the 

tensor of the backstress due to linear kinematic hardening, and ijρ  the residual stress. The TIV ijY  

introduced by Zarka is then defined by  

1,2,3ji,;ρσσ '
ij

f.el'
ij

'
ij   

'
ijijijY   (2) 

where ()’ indicates the deviatoric portion of a tensor. Note that '
ijρ  is the deviatoric portion of the 

residual stress. The fictitious elastic stresses are always considered to be known, because they can 
be easily obtained for any state of loading by a linear analysis. 

If yσ  is the uniaxial yield stress, the von Mises yield surface can be considered as a (hyper)circle with 

radius yσ  centered in ijξ  in the deviatoric stress (hyper)space and can be expressed as 

  0f yij
'
ij   (3). 

Reformulation leads to 
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  0Yf yij
el.f'

ij   (4) 

representing a (hyper)circle with radius y  centered in el.f'
ij  in the (hyper)space of the TIV. Active 

yielding requires the equal sign (= 0) in equations (3) and (4), '
ij  and ijY  being on the edge of the 

respective circle, as illustrated in Figure 1. The negative residual stress '
ij  is then outside of the 

circle in the TIV-space. The volume V of a structure can be split up into a portion remaining elastic 
(Ve) and a portion yielding actively (Vp). It should be noted that equation (3) contains two unknown 

tensors  ij
'
ij and  , equation (4) only one  ijY .  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Yield surface in the deviatoric stress space (left) and in the TIV-space (right) 
 

The situation shown in Figure 1 is characterized by a significant amount of directional redistribution of 

stress as visualized by the large angles between ij
el.f'

ij
'
ij and,  . If directional redistribution is not 

that large, a good approximation of ijY  can be obtained by projecting the negative of the residual 

stress to the von Mises circle in the TIV-space: 

















v

y
ij

el.f
ijij ''Y  (5) 

where vσ  is the von Mises effective stress of the stress tensor ijσ : 

ijijv ''
2

3
  (6). 

If directional redistribution is not possible, e.g. in case of uniaxial stresses, this projection provides 
exact results. 

Once ijY  is known (either exactly or approximately), the elastic-plastic strains can be reformulated 

adopting the additivity assumption and Hooke’s law as well as the linear kinematic hardening rule 

pl
ij

el
ij

plel
ij  

 (7) 

kl
1

ijkl
el
ij E    (8) 

t

t
ij

pl
ij EE

EE
C;

C2

3




  (9) 

where ijklE  is the elasticity matrix, E the Young’s modulus and tE  the elastic-plastic tangent 

modulus, Figure 2. 
  
 
 
 

 
 
 

 
Figure 2: Linear kinematic hardening 
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By using an Operator ijklL  to convert a tensor into its deviatoric part and introducing the 

abbreviations 
  

el.f
ij

plel
ij

*
ij  

 (10) 

  ijkl
1

ijkl
1*

ijkl L
C2

3
EE  

 (11) 

ij0,ij Y
C2

3
  (12) 

we get 
 

 













VeinE

VpinE

kl
1

ijkl

0,ijkl
1*

ijkl*
ij  (13). 

 

Equation (13) is a linear relation between the residual stress  ij  and the residual strain *
ij . In case 

of isotropic material, ijklE  consists only of Young’s modulus E  and Poisson’s ratio ν , while *
ijklE  

consists of a modified Young’s modulus *E  and modified Poisson’s ratio *ν : 

t
* EE       ;    

E

E
)5,0(5,0 t*   (14). 

The residual stresses can thus be determined by a linear elastic analysis of the structure with 

homogeneous boundary conditions loaded only by the initial strains 0,ij  in Vp. This is termed 

“modified elastic analysis” (MEA) because the elastic parameters as well as the loading are modified. 
Note that in this step ANSYS® is used for the solution of the linearly elastic boundary value problem 

including the initial strains 0,ij . The level of 0,ij  depends on the level of the real loading while the 

values of *E  and *ν  do not and are known in advance. However, the geometry of Ve and Vp changes 

with the load level. Once the modified elastic analysis is performed, i.e. '
ij  and *

ij  are known, the 

stress can be determined via equation (1) and the elastic-plastic strain from equation (10). This gives 
rise to an iterative procedure, since any initial guess about the geometry of Vp and the residual stress 
field may now be improved. 

Thus we get the following workflow: 

 Step 1: Perform a fictitious elastic analysis  el.f
ij  

 Step 2: Initial estimation of geometry of Vp (all locations of structure where the von Mises 

equivalent stress exceeds the yield stress: y
el.f

v  ) 

 Step 3: In each location within Vp: projection of origin (= initial negative deviatoric residual 

stress) on yield surface in TIV-space  















el.f
v

yel.f
ijij 1'Y    

 Step 4: Modify the elastic parameters in Vp ( E   *E , ν   *ν ), delete all loading, apply 

initial strains, perform MEA  ij  as described above 

 Step 5: Superposition of the fictitious elastic (Step 1) and modified elastic analysis MEA 
results (Step 4)  Step4ij,

f.el
Step1ij,ij ρσσ   

 Step 6: Improved estimation of the geometry of Vp (all locations of structure where the von 

Mises equivalent stress exceeds the yield stress: yv  ) 
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 Step 7: In each location within Vp: projection of negative deviatoric residual stress on the yield 

surface in TIV-space  















v

y
ij

el.f
ijij ''Y  

 Step 8: Introduce the modified elastic parameters in Vp ( *E , *ν ), (re)establish the elastic 

parameters in Ve ( E , ν ), delete all loading, apply initial strains, perform MEA  ij  

 Step 9: Superposition of the fictitious elastic and modified elastic analysis results  ij  

 Repeat from step 6 until differences between two iterations become satisfactorily small. 

At last, the elastic-plastic strain is obtained via 
 

el.f
ij

*
ij

plel
ij    (15). 

Note that the associated stress state ij  is already known from Step 5. 

 

2.3 Cyclic loading with temperature dependent yield stress 

As mentioned above, the STPZ is a direct method to provide an approximation to the elastic-plastic 
strain range between two load cases without performing incremental analyses throughout a load 
histogram. Thus, the two points in time causing the maximum strain range in a structure during a tran-
sient thermomechanical load history must be identified in advance. This can mostly be done with 
sufficient accuracy on the basis of a number of fictitious elastic analyses for many points in time during 
the load history. The loading is then assumed to vary linearly with time between these two extremes, 
named "minimum" and "maximum" state of loading. The corresponding fictitious elastic stress states 

are el.f
min,ij  and el.f

max,ij . 

Once the loading conditions constituting the two extremes of a thermomechanical loading cycle are 
identified, the range of loading is treated in the same way as a monotonic loading, so that, for 
example, 
 

el.f
min,ij

el.f
max,ij

el.f
ij   (16) 

 

is applied instead of el.f
ij  in section 2.2. The range of the TIV according to equation (5) is then 

different to those obtained by the lower and the upper estimates in Zarka's method [1,2,3]. 

A number of analyses showed that the effect of temperature dependent elastic-plastic material 
parameters of a bilinear stress-strain relationship is largely attributed to the temperature dependence 
of the yield stress, rather than to the temperature dependence of Young’s modulus, Poisson’s ratio 
and hardening modulus. This can be accounted for within the framework of the STPZ by substituting 

y  in the previous section by the sum of the two yield stresses according to the temperatures 

associated with the maximum and minimum states of loading, miny,maxy, σσ  . 

Thus, for cyclic loading with temperature dependent yield stress the following modifications are 
introduced in section 2.2 related to a bilinear stress-strain curve: 

el.f
ij   el.f

min,ij
el.f
max,ij   

y    min,ymax,y   

which eventually leads to the elastic-plastic strain range 

pl-el
ij   pl-el

min,ij
pl-el

max,ij   
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2.4 Multi-linear stress-strain curve 

A multi-linear stress-strain curve can be adopted within the framework of Zarka’s method and the 
STPZ based on the idea of overlay models. The basic assumption of overlay models is that a 
structural volume is considered to be made of a number of different volumes (which may be called 
layers) with different material behavior, all occupying the same volume and coupled by the same 
deformations.  

The most widely used overlay model is the Besseling model, where each layer exhibits a linear elastic 
- perfectly plastic behavior. Thus, three layers are required to model a tri-linear stress-strain curve with 
a tangent modulus > 0 in the third segment. In the present framework, each layer can be and must be 
modeled by a linear kinematic hardening material so that only two layers are required for a tri-linear 
stress-strain curve. In each of these layers, the theory as outlined in sections 2.2 and 2.3 for a bilinear 
stress-strain relation applies. In the following, the individual layers are addressed by roman numbers I 
and II, while the states representing the entire second and the third segment of the stress-strain curve, 
i.e. the combined action of two layers, are addressed by Arabic numbers 1 and 2 respectively. The 
first segment of the tri-linear stress-strain curve is thus defined by Young's modulus E, the second by 
the first vertex in y1σ  and the tangent modulus t1E , and the third segment by the second vertex in 

y2σ  and the tangent modulus t2E . The tri-linear segmentation is shown in Figure 3. 

 

y1 

el-pl

 

E 

1 

1 

Et1 

y2 
Et2 1 

 
Figure 3: Tri-linear stress-strain-curve 

In the third segment of the stress-strain curve, both layers are going plastic simultaneously so that 
equation (13) becomes for the individual layers I and II 

layer I: 

  pII0,ijI,kl
1

I
*
ijkl

*
I,ij VinE 


 (17) 

layer II: 

  pIIII0,ijII,kl
1

II
*
ijkl

*
II,ij VinE 


 (18) 

and for the entire material 

  2p02,ijkl
1

2
*
ijkl

*
2,ij VinE 


 (19) 

 

In the modified elasticity matrices      
2

*
ijklII

*
ijklI

*
ijkl E,E,E  the modified elastic parameters are given 

by 

tI
*
I EE   (20) 

I

tI*
I E

E
)5,0(5,0   (21) 

tII
*
II EE   (22) 

II

tII*
II E

E
)5,0(5,0   (23) 
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2t
*
2 EE   (24) 

E

E
)5,0(5,0 2t*

2   (25) 

where IE  and IIE  are the Young’s moduli in layers I and II, and tIE  and tIIE  the tangent moduli 

respectively. 

The six parameters of the bilinear stress-strain curves in the two layers ( IE , tIE , IIE , tIIE , yIσ , yIIσ ) 

can be identified from the five parameters of the tri-linear stress-strain curve ( E , t1E , t2E , y1σ , y2σ ) 

via the field equations (equilibrium and continuity conditions) for an elementary volume of material 
subjected to a uniaxial stress state. However, these conditions are not sufficient to determine the 
parameters uniquely, so that one additional assumption can be chosen freely. In the present frame-
work it is convenient to choose that the modified Poisson’s ratio is identical in both layers: 

*
I

*
II   (26). 

This leads to  

E

E

E

E

E

E 2t

II

tII

I

tI   (27) 

*
2

*
I

*
II   (28) 

and to the following relations for the material parameters in the two layers 

E

E
1

EE

E

E

2

1

2

3
1

E
2t

2t1t

1t
II











 


  (29) 

III EEE   (30) 

I
2t

tI E
E

E
E   (31) 

II
2t

tII E
E

E
E   (32) 

E

EI
1yyI   (33) 

 
E

E
1

E

E
1

E

E

2t

1t

2t

1y2y
II

1yyII



  (34). 

Consequently, we get 

2t

tI*
2,ijkl

*
I,ijkl E

E
EE   (35) 

2t

tII*
2,ijkl

*
II,ijkl E

E
EE   (36). 

Making use of the equilibrium and the continuity conditions in an elementary volume of material for the 
residual stresses and strains 

II,ijI,ij2,ij   (37) 

*
2,ij

*
I,ij

*
II,ij   (38) 

and the initial strains in the two layers with linear kinematic hardening according to equation (12)  
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I,ij
I

tI

tI
I0,ij Y

E

E
1

E

1

2

3








  (39) 

II,ij
II

tII

tII
II0,ij Y

E

E
1

E

1

2

3








  (40) 

we get the initial strain for the third segment of the stress-strain curve: 

 II,ijI,ij
2t

2t
02,ij YY

E

E
1

E

1

2

3







   (41). 

Iij,Y  and IIij,Y  can be found by projecting the negative of the residual stresses Iij,ρ  and IIij,ρ  to 

the von Mises circle in the TIV-space of each of the two layers separately as described in section 2.2. 

The modified elastic analyses can then be performed with the modified elastic parameters 
*
2

*
2,E   

given in equations (24) and (25) and the loading by initial strains 02,ij  given by equation (41). 

2.5 Limits 

The following points explain the limits of the STPZ in the currently available development version: 

 For every identified cycle the whole process of the STPZ has to be carried out. This may lead 
to high computing times. E.g. for a transient with a lot of sub cycles, which are identified by a 
rainflow algorithm [8], the computing time can even be longer than for the incremental elastic-
plastic analysis of one cycle (including the sub cycles). 

 In some cases the results of the STPZ are sensitive to the estimated strain range. This may 
yield overestimated stress ranges. 

 Manageability: A lot of preparation has to be done by hand (e.g. application of the boundary 
conditions to the model). 

2.6 Remarks 

The STPZ is implemented via user subroutines into ANSYS®. 

Many practical applications show that usually two to five modified elastic analyses are sufficient to get 
a close approximation to the elastic-plastic strain range in the state of plastic shakedown of 
thermomechanical cyclic loading problems compared with incremental analyses. 

Within the same framework, assessment of strain accumulation due to a ratcheting mechanism is also 
possible. This feature is not discussed by way of example in this paper. It requires a more detailed 
discussion of the general performance of material models for the simulation of local ratcheting. 
 

3. Twice Yield Method 

Another alternative for the determination of stabilized elastic-plastic strain ranges is the Twice-Yield 
method which is based on work by Kalnins (see [4], [5], [6]) and is a proposed method in the ASME 
Code, Section VIII, Div. 2 [7].  

The basis of the method as described in the ASME Code is the estimation of stress and strain ranges 
of each cycle based on a single elastic-plastic analysis in a quasi-monotonic fashion. Reducing the 
analysis effort to a simple monotonic loading is a key of this simple method. 
The method also requires a simplified approach for any transient temperatures involved within a cycle 
by using a weighted value for transient temperature changes within a cycle, i.e. by the following 
equation: 

0 75 0 25max minT . T . T     (42) 

Stress-strain hysteresis loops of cycled material can be obtained by using the cyclic stabilized stress-
strain curve based on any nonlinear stress-strain law, i.e. based on a Ramberg-Osgood type of 
equation or any type of nonlinear or piecewise linear representation.  
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Starting loading from zero stress and strain, the local stress-strain path will follow the cyclic stress-
strain curve. At the reversal of the loading direction, the path follows a stress-strain curve that is 
doubled both in stress as well as in strain direction (see Figure 4). The doubled stress-strain curve 
(twice-yield curve) is used to create any hysteresis branches according to Masing’s hypothesis (both 
up- and downward branch for any load range) for any subsequent load ranges.1 

The Twice-Yield-Method simplifies this approach and does not take into account any memory rules but 
only the doubled stress-strain curve to obtain stress and strain ranges for each load cycle. Load cycles 
for variable amplitude loading may be counted by methods as described in the ASME code up front 
and stored as load ranges vs. number of occurences. The application of the Twice-Yield method for a 
single load range therefore results in stress and strain ranges of the hysteresis loop but not in 
information on mean strain or (often more important) mean stress.   

The Twice-Yield method was expanded to multiaxial behaviour by using equivalent stress and strain 
quantities based on von Mises formulations for multiaxial stress and multiaxial plastic strain. 
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Figure 4: Masing Behavior for uniaxial loading, shown using a Ramberg-Osgood formulation  

After cycle counting, e.g. using the min-max method as described in the ASME code, a first reversal 
point at time t1 and a second reversal point at time t2 define each hysteresis loop. The first point of the 
stress-strain loop at t1 is taken as a point of reference to calculate ranges of tensor quantities of stress 
and strain for each hysteresis loop. This means for any hanging hysteresis loops the upper point is 
taken as reference point and for standing hysteresis loops the lower point is taken as reference point.  

The starting point of each hysteresis loop defines a reference point involving stress 1( t )
ij and plastic 

strain 1( t )
ijp to calculate the corresponding ranges for the hysteresis loop. Relative stress and plastic 

strain values are then calculated for each hysteresis loop: 

1 2

1 2

( t ) ( t )
ij ij ij

( t ) ( t )
ij ij ijp p p

    

  
 (43) 

For every hysteresis loop separately, the following equations supply an equivalent elastic-plastic 
stress range and an equivalent plastic strain range by using 

                                                 
1  In case of variable amplitude loading, a number of memory rules like the rules described by Clormann and 
Seeger [8] could be applied to design the different stress-strain hysteresis loops. This will not be considered in 
this paper though. 
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The equivalent stress range and the equivalent plastic strain range is then combined to obtain a 
damage relevant equivalent total strain range of a cycle by [5] 

eq
eff peqE


 


     (46). 

Figure 5: Ranges of equivalent quantities for a single load range applied to the structure 

The resulting value of total equivalent strain eff  together with the (uniaxial) strain-life curve will be 

used to calculate either a partial damage value or the cycles to failure. 

The Twice-Yield approach offers some significant advantages. 

 Calculation is much simpler and thus faster than incremental elastic-plastic analyses through 
many load cycles. 

 It requires solving a finite element model only for a single monotonic loading up to the largest 
value of stress differences obtained from the load history. The elastic-plastic stress-strain 
tensors as obtained for this monotonic loading and stored in the results file then can be taken 
to efficiently assess fatigue damage of any loading cycle of arbitrary loading histories. 

 The multiaxial equivalent values for stress and plastic strain are usually two numbers obtained 
by postprocessing a finite element analysis. In case of each single hysteresis loop the 
analysis reduces to store those two values for further processing. 

 No plasticity law capable of cyclic and kinematic hardening is required since the analysis uses 
just a quasi-static solution involving a nonlinear stress strain law based on the stabilized cyclic 
stress-strain curve. For example Ramberg-Osgood format can be used for a monotonic 
incremental plasticity analysis. 

The method though does not capture the following effects: 

 Well-known memory effects from uniaxial strain based fatigue analysis (memory rules to 
correctly obtain the stress-strain cycles of subsequent cyclic variable amplitude loading). 
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 Mean stress levels of each computed stress cycle. In case of transient loading for specific 
repeated load sequences mean stress might not relax and thus be important. 

 Transient effects like non-proportional hardening or any other transient memory effects of the 
material. 

 Multiaxial plasticity effects (i.e. kinematic hardening) occurring especially for non-proportional 
stress response. 

 Non-Masing material behaviour, since Masing behaviour is a prerequisite for the 
simplifications. 

 Ratcheting or shakedown under cyclic loading (except the cyclic hardening or softening which 
is captured in the cyclic material data required for computing) which would require specific 
kinematic hardening rules and suitable plasticity models. 

The described expansion to multiaxial behaviour should be used with caution in case of 
nonproportional loading. Since pressure vessels often face proportional loading, this restriction usually 
might be of less importance but this should be mentioned. 

4. Performance Study by way of examples 

4.1 General Remarks 

The typical examples relevant for thermomechanical power plant applications are considered in the 
following for a discussion of the performance of the STPZ and the Twice Yield method with regard of 
the determination of fatigue relevant strain ranges and fatigue assessment:  

 Nozzle example 1 

 Stepped pipe 

 Disk 

 Nozzle example 2 

The examples (see also [9]) are shown in Figure 6 through Figure 9. A detailed respective study has 
been carried out in [10]. 

4.2 Flow Chart for using the STPZ 

This section describes the necessary steps to apply the STPZ as part of a fatigue analysis. 

- An elastic fatigue analysis according to e.g. ASME NB 3200 [11] is done. From this analysis 
the following information is obtained: 

 Identification of the two load steps which form the stress cycle. 

 The alternating stress amplitude Salt, from which the estimated strain range is calcu-
lated. 

 The average cycle temperature. 

- The stress-strain curve for the specific given average cycle temperature is created by 
interpolating between the given stress-strain curves. 

- From this newly created stress-strain curve the tri-linear stress-strain curve is calculated from 
the estimated strain according to: 







 0.01;

E

S
minε alt

est

 

- All this information is gathered and prepared in order to create an ANSYS® input file for the 
STPZ. 

- Besides the ANSYS® input file, the model database and the structural result file of the elastic 
calculation is needed. 

- According to the STPZ the elastic-plastic strain range is calculated. It is transferred to the 
stress range and in the end the usage factor is calculated. 
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Figure 6: Geometry and thermal loading for nozzle example 1 

4.3 Results 

The results of both the STPZ and the Twice Yield Method in comparison with incremental elastic-
plastic analysis as well as different Ke procedures (see [9] and [11] to [13]) are shown in Figure 10. 

All results are within 30% deviation with respect to the fatigue usage factor in comparison with the 
incremental elastic-plastic results. Regarding the STPZ, all of the results are conservative (with regard 
to the incremental elastic-plastic reference analysis) and deliver a lower usage factor than the 
simplified elastic-plastic analysis according to different applicable design codes. The conclusion is 
drawn from Figure 10 that both the STPZ and the Twice Yield Method outperform all comparable 
design code based plasticity correction methods (Ke factors) by reducing overly conservative results. 
Note that ASME III Ke values (Figure 10) are from NB3200 and not from CC N-779.  

Thus, the STPZ and the Twice Yield Method can be seen as an intermediate between simplified 
elastic-plastic analysis (Ke factors) and incremental elastic-plastic analysis. For practical engineering 
application, a case dependent graded approach as shown in Figure 11 is proposed. 

Note, that the cladding example studied in [9] (as well as one complex 3D nozzle example) has 
consciously been exempted from this comparison. The application of both the simplified elastic-plastic 
analysis (Ke factors) and the STPZ is critical in this case. For the time being, incremental elastic-
plastic analyses are the method of choice in the case of cladding. 
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Figure 7: Geometry and thermal loading for the stepped pipe 

 

5.  Application to arbitrary load time histories 

Both the STPZ and the Twice Yield Method can be applied to arbitrary load time histories. In this case 
e.g. a rainflow algorithm (e.g. [8]) can be used to identify the cycles. For the identified cycles the 
procedures according to section 3 respectively 4.2 are applied afterwards in a straight forward way. 

In general, the counting algorithm respectively the load time history has only an influence on the 
identification of cycles. The STPZ is using this cycle information as essential input. This means that 
the initial cycle may be the result of a design transient, measured transients or arbitrary load 
(temperature) time histories. 
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Figure 8: Geometry and thermal loading for the disk example 

 

 

 

 

Figure 9: Geometry and thermal loading for nozzle example 2 
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Figure 10: Analysis results of different methods compared to 
incremental elastic-plastic reference analyses 
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Figure 11: Staged approach to elastic-plastic analyses 

6. Conclusions 

Low cycle fatigue analyses of power plant components require an appropriate consideration of cyclic 
plasticity for the predominant thermomechanical loading conditions. The applicable design codes such 
as [11] to [13] primarily differentiate between a simplified elastic-plastic (Ke factors, see [9]) and an 
incremental elastic-plastic analysis (i.e. incremental elastic-plastic FEA of one loading cycle based on 
the cyclic stress-strain curve). In the case of thermal cyclic loading conditions typical for power plant 
operation the plasticity correction factors Ke typically show shortcomings by considerably overes-
timating the real elastic-plastic strain ranges and thus the corresponding fatigue usage factors. The 
alternative of an  incremental elastic-plastic analysis is often time consuming and exhaustive for 
complicated geometry and loading conditions. The application of the STPZ as well as the Twice-Yield-
Method offers an intermediate option and a compromise between accuracy, conservatism and 
calculation effort. Thus, the presented methods become a valuable part of the toolbox in a graded and 
case dependent application scheme. The applicability for typical power plant components has been 
shown by way of example in this paper. Note, that a special numerical implementation for the STPZ is 
required. The method is not part of standard distributions of finite element software. The theoretical 
basis of this implementation is explained in the first part of the paper. Furthermore, the fundamentals 
of the Twice Yield method and its performance by way of example in comparison to the incremental 
elastic-plastic analysis and the STPZ were shown. The application of this method does not require a 
special numerical implementation and the procedure is an integrated part of ASME Code, Section VIII, 
Division 2 [7]. Since the results obtained for a limited number of test cases led usage factors close to 
the values obtained using an incremental plasticity model, further validation is recommended though. 
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