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Introduction 

These examples were developed to offer an insight into the practical application of the 

simplified theory of plastic zones (STPZ). The content is based on the first four chapters of 

the book ‘Simplified Theory of Plastic Zones’ by H. Hübel [1], also published in German [2]. 

In fact, an ANSYS user-subroutine programmed in FORTRAN already exists allowing the 

application of the STPZ for complex structures. Various material properties like temperature-

dependent material and multilinear kinematic hardening can be considered. 

The examples used here to demonstrate the STPZ are very elementary. Thus, certain 

simplifications can be made reducing the algorithm to the principal functions. The examples 

consist of a maximum of two elements with homogenous stress condition and no shear 

stresses. Linear kinematic hardening with constant yield stress is assumed. The employment 

of unit lengths and consistency in the units used for material parameters and loading allows 

the discussion of results without using units. 

A short explanation of the method and the equations used here is given before the examples 

are discussed, but study of the corresponding sections in [1] is strongly recommended. All 

assumptions made in [1] are adopted without further reference. For easier comparison, the 

numbering of equations in the book is given additionally on the right. 

The reader is asked to use this manual as follows: After internalising the basic method behind 

the STPZ, different examples with an increasing level of difficulty are offered to be tested. 

For each example, the required ANSYS Parametric Design Language (APDL) code to analyse 

this problem with either the STPZ or an incremental analysis is given in the annex, allowing 

the reader to follow the input step by step.  

Although knowledge of using ANSYS and especially APDL is required, a basic knowledge 

may be sufficient, as the reader is not asked to write any code unless modifications need to be 

made. However, at some point the reader might want to enter APDL commands to study the 

results, as they are not always included. The examples using the STPZ usually save all 

significant values as parameters, which can be listed. 

The first chapter addresses examples underlying monotonic loading, which is in fact not the 

purpose of the STPZ but might facilitate the understanding. The second chapter is concerned 

with cyclic loading. 

This work was developed as coursework for part of the author’s studies in Civil Engineering 

at the BTU Cottbus-Senftenberg. 



 

 

List of Symbols 

Name Symbol in document Labelling in APDL code 

Yield stress �� fy 

Young’s modulus � E 

El.-pl. hardening modulus �� Et 

Plastic hardening modulus � = � ∙ ��� − �� C 

Poisson’s ratio 	 nu 

Strain 
  

Stress � s, s_elpl 

Residual stress � rho 

Residual strain 
∗  

Equivalent stress (von Mises) �� seqv 

Backstress �  

Deviatoric stress �� sdev 

Fictitious elastic stress  ���� s_fel 

Transformed internal variable � Y 

Modified parameter � �∗ Emod 

Modified parameter 	 	∗ numod 

Initial stress �� sig0 

Initial strain 
�  

Displacement � u 

Range values ∆ … D… 

Stress at extreme load ����/��� s_max, s_min 

TIV at mean load �� Y_m 

Angles in deviatoric space ����/��� 

	!���/��� 

alpha 

beta_min, beta_max 

Parameters ", $ a, b 
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 Monotonic Loading 1

1.1 STPZ at monotonic loading 

To visualise the elastic-plastic behaviour of material usually the deviatoric stress space is 

used. The basic concept of the STPZ is to transfer the content to the space of the transformed 

internal variable (TIV) �, where � is the difference between backstress � and deviatoric 

residual stress ��. (Fig. 1) 

(1 - 1) �� = �� − ��� Eq. 3.1 

The advantage for estimating resulting stress and strain values lies in the fact that the centre of 

the Mises circle is initially known from only one fictitiously elastic calculated analysis. With 

the additional knowledge of the diameter of the Mises circle, the TIV can be estimated by 

projecting the negative deviatoric residual stress on the yield surface. For radial loading this 

projection will lead to the correct answer for the resulting elastic-plastic stresses if no 

directional stress redistribution occurs and the plastic zone, i.e. the elements in which plastic 

straining occurs, is correctly identified.  

 
Fig. 1 Mises yield surface […] left in the space of the deviatoric stresses; right in the space of the TIV (Fig. 3.1 in [1]) 

For non-radial loading, the direction of � is not known at the beginning. Therefore, an 

iteration loop is necessary to improve the result from step to step. � can be estimated in step % 

by taking the deviatoric fictitious elastic stress and subtracting a vector of the size of the yield 

stress �� with the direction of the deviatoric elastic-plastic stress of the previous step (% − 1).  

(1 - 2) ��'�( = ������ − ���'�)*( + ��
��'�)*(, Eq. 3.108 
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As the elastic-plastic stress has not been calculated before the first iteration, it is initialised 

with the fictitious elastic stress. 

(1 - 3) ���'�( = ������
 Eq. 3.109 

By reformulating the yield condition and the development of the plastic strain increment using 

only the fictitious elastic stress and the TIV, a new material law for the residual state can be 

established. 

(1 - 4) 
�∗ = -��.∗ /)*	�. + 
�,� Eq. 3.12 

In this 
�,� is the initial strain, which is applied to the structure after eliminating all other loads 

like forces, displacements and temperature loads. The initial strain is known from the TIV. 

(1 - 5) 
�,� = 32� �� Eq. 3.14 

The modified elasticity matrix ��.∗  is obtained by replacing the Young’s modulus � and the 

Poisson’s ratio 	 in Eq. 1.4 or rather Eq. 1.5 in [1] with modified material parameters �∗ and 

	∗	. 
(1 - 6) �∗ = �� 	 Eq. 3.15 

(1 - 7) 	∗ = 12 − ��� 312 − 	4 Eq. 3.16 

Alternatively, the inverted form of Eq. (1 - 4) can be given using initial stresses ��,�. 

(1 - 8) �� = ��.∗ 	
.∗ + ��,� Eq. 3.21 

(1 - 9) ��,� = − 32� �∗
1 + 	∗ �� Eq. 3.23 

A modified elastic analysis (MEA) can then be performed to calculate the residual state of the 

structure using the modified material law and initial stresses or strains as given above for 

zones in which plastic straining occurs. Therefore prior to each MEA the structure is divided 

into the plastic zone 56 '�� ≥ ��) and the elastic zone 5� (�� < ��). In the elastic zone no 

initial stresses nor strains are applied. The material parameters remain � and 	. 

(1 - 10) 5�'�( = 9:	|	��'�)*( < ��< Eq. 3.65 

(1 - 11) 56'�( = 9:	|	��'�)*( ≥ ��< Eq. 3.64 

The result of the MEA is the residual stress state. Superposition of the fictitious elastic state 

and the residual state produces the elastic-plastic state (see Fig. 1). This is not only valid for 

stresses and strains but also for displacements, section forces and bearing forces. 

(1 - 12) �� = ����� + ��=>? Eq. 3.24 

(1 - 13) 
���)6� = 
���� + 
�=>? Eq. 3.25 
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Because the TIV is only estimated in Eq. (1 - 2) the exact result might only be approximated. 

An iterative improvement can be possible by repeating the procedure using the results of the 

previous step. In addition, the assignment to either elastic or plastic zone may be changed 

when comparing ��'�)*(
 to the yield stress. 

1.2 Example M.1 Element with uniaxial stress state 

The intention of this first, very simple example is the understanding of the STPZ algorithm. In 

fact, no decrease in computational effort is achieved here because an elastic-plastic analysis 

using linear kinematic hardening produces the correct result in one loadstep
 
without substeps. 

The structure consists of a single LINK element with one fixed end 

(node 1) and a displacement-controlled parallel load at the other end 

(node 2). The strain caused by � (Eq. (1 - 14)) is 1.5-times the 

elastic limit load because unit length is used. 

(1 - 14) � = ��� ∙ 1.5  

In preparation for the modified elastic analysis, the modified material parameters �∗ (Emod) 

has to be calculated and is then defined as property of the modified material 2. The parameter 

	∗ (numod) is irrelevant for LINK elements. 

The first step is to calculate the fictitious elastic stress state as it is needed in every modified 

elastic analysis and in the subsequent superposition. The equivalent stress �����
 and the axial 

component of the deviatoric stress �����
 are saved as parameters seqv_fel and sdev_fel. 

Prior to the modified elastic analyses, the fictitious elastic state is saved as loadcase 1 for later 

use. The displacement-controlled force at node 2 has to be set to zero. 

As the magnitude of the fictitious elastic stress (����� = 1.5	 ∙ ��) is already known, plastic 

straining must occur in this element and the element can be assigned to the plastic zone.  

According to chapter 3.1.4 in [1] modifications in calculating the TIV and the initial stress for 

uniaxial stress state must be made. 

(1 - 15) � = 32 �� Eq. 3.37 

(1 - 16) �� = − 1� 	�∗	� Eq. 3.41 

The initial stress is applied by using the inistate-command and the material data of this 

element is changed to the modified material 2 using mpchg. The analysis produces the 

residual state (now stored in loadstep 1). Adding the fictitious elastic state results in the 
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elastic-plastic state. The correct solution is obtained after the first iteration because the 

loading is radial and the plastic zone is known from the beginning. 

1.3 Example M.2 Element with plane stress state 

In this example, the algorithm is extended to a second stress component as the model 

underlies a plane stress condition (�B = 0). The structure of a single PLANE element is 

subjected to a displacement-controlled load in the x-direction. In  

the y-direction strains are prohibited (
� = 0), but a Poisson’s ratio 

of 	 D 0 will lead to stress component �� D 0. This is inevitable 

when plastic behaviour occurs (see Sect. 3.6.1 in [1]).  

The procedure remains the same as in example M.1 except for the 

calculation of the initial stresses for the plane stress condition (see 

Sect. 3.1.5 in [1]). 

(1 - 17) ��,�EF = ��,�GF + 	∗��,�GF
1 − 	∗  Eq. 3.50 

(1 - 18) ��,�EF = 	∗	��,�GF + ��,�GF
1 − 	∗  Eq. 3.51 

Using the same material parameters as before (�/�� = 0.05, 	 = 0) one will see that the 

results after the first iteration differ up to 90 % from the exact solution. Therefore, an 

automatic loop for an arbitrary number of iterations is introduced to improve the results of the 

STPZ. Fig. 2 shows the development of elastic-plastic stress in x and y direction after each of 

the first 25 modified elastic analysis. 

 
Fig. 2 Elastic-plastic stress results of the STPZ at each MEA from 1 to 25 for example M.2 
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In an incremental analysis the result depends on the number of substeps. The results of the 

STPZ even after the 25
th

 iteration still differ slightly from the values obtained by an 

incremental analysis using 100 substeps. This is due to directional stress redistribution. When 

plastic straining occurs, the loading is no longer radial as the Poisson’s ratio shifts towards 

	6� = 0.5 because of plastic incompressibility. This weakness of the STPZ has to be 

considered, especially when small Poisson’s ratios are used. 

Comparing the results of the STPZ for this structure using 	�� = 0.499 instead of 0, the 

differences from the exact values are less than 0.1 % after the first MEA.  

1.4 Example M.3 Tension bar 

In this last example for monotonic loading, the algorithm is extended to work for a multiple 

number of elements and for all three normal stress and strain components. 

The structure consists of two neighbouring three-dimensional SOLID elements where the 

height of the right element is only half the 

height of the left one. All other dimensions 

(length and width) are the same. The degrees of 

freedom in the z-direction are coupled so the 

strain in this direction must be the same in both 

elements (generalised plane strain condition). A 

displacement-controlled load � is applied at the 

right end of the structure (see Sect. 3.6.2 in [1]). 

After the fictitious elastic analysis is performed, the stresses are saved using a loop through all 

elements. The individual stress components are named using indices 1 to 3. This enables us to 

use a loop through all components for the estimation of the TIV and for the calculation of the 

initial stress components. 

In both elements the fictitious elastic equivalent stress is greater than the yield stress. After 

the application of the initial stresses and changing to material 2 for both elements, the analysis 

is solved to get the residual state. This is then superimposed on the fictitious elastic state. 

From the second MEA only element 2 remains plastic. For element 1 the initial stresses are 

deleted and the material parameters are reversed. The result is further improved in the 

following MEAs. Fig. 3 shows the results for the elastic-plastic stress in the right element 

after each of the first ten MEAs. 

 



  6 

 

 
Fig. 3 Elastic-plastic stress results of the STPZ at each MEA from 1 to 25 for example M.3 
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 Cyclic Loading 2

2.1 STPZ at cyclic loading 

Unlike for monotonic loading, the resulting stresses and strains in structures undergoing 

cyclic loading often require high computational effort, because the result can often only be 

obtained after analysing a high number of cycles with many substeps using nonlinear material 

law. The advantage of the STPZ is that it enables calculation of the stress and strain range and 

the accumulated values using only elastic material law in a significantly reduced number of 

analyses. 

Cyclic loading can be considered as an alternation of the load level between two loading 

conditions, called minimum and maximum load, regardless of magnitude and sign. The 

difference between two fictitious elastic stress states is the fictitious elastic stress range. 

(2 - 1) ∆	����� = ��,������ − ��,������
 Eq. 4.2 

The nature of the state of shakedown can be determined by comparing the equivalent stress of 

the fictitious elastic stress range to the yield stress (see Sect. 4.1 in [1]). If twice the yield 

stress is not exceeded in any location of the structure (∆����� J 2��) elastic shakedown (ES) 

will occur. For plastic shakedown (PS) the resulting strain range will have a plastic portion. 

a) Plastic Shakedown 

If at any point of the structure the fictitious elastic equivalent stress range exceeds twice the 

yield stress then plastic shakedown occurs. 

(2 - 2) ∆����� K 2	��					∃: ∈ 5 Eq. 4.151 

The elastic-plastic stress and strain ranges can be calculated analogous to monotonic loading 

using the corresponding range values (see Sect. 4.2 in [1]). The TIV is similarly estimated and 

improved in each iteration by projecting the negative deviatoric residual stress range at the 

Mises circle with a radius of 2�� (see Fig. 4).  

(2 - 3) ∆��'�( = ∆������ − ∆���'�)*( + 2��
∆��'�)*(, Eq. 4.17 

The initial stress or strain ranges can be deduced from the previous chapter. 

(2 - 4) ∆
�,� = 32� ∆�� Eq. 4.7 

(2 - 5) ∆��,� = − 32� �∗
1 + 	∗ ∆�� Eq. 4.8 
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Fig. 4 Estimation of the TIV-range at cyclic loading in the space of the TIV (Fig. 4.2 in [1]) 

The residual stress and strain ranges are determined in an analysis using modified elastic 

material law and modified material parameters �∗ and 	∗ and by applying the initial load. 

(2 - 6) ∆
�∗ = -��.∗ /)*∆	�. + ∆
�,� Eq. 4.5 

(2 - 7) ∆�� = ��.∗ ∆	
.∗ + ∆��,� Eq. 4.6 

The elastic-plastic range state is then received by superposition of the fictitious elastic and 

residual range states. 

(2 - 8) ∆�� = ∆����� + ∆�� Eq. 4.14 

To determine the accumulated strains in cyclically loaded structures, the estimation of the 

TIV depends on the nature of the state of shakedown and on the subvolume that the location 

(element) has been assigned to in the current iteration step (see Sect. 4.6 in [1]). The 

classification is made prior to each modified elastic analysis '%( so the values are taken from 

the previous step '% − 1(. Before the first MEA, the results of the fictitious elastic analysis 

are regarded as the elastic-plastic results for step % − 1 = 0. 

For PS the elements of the structure can be assigned to one of the three following zones: 

In the elastic zone 5� the equivalent stresses at both minimum and maximum load do not 

exceed the yield strength. Initial strains are not applied and the material parameters remain � 

and 	. The equivalent elastic-plastic stress range must be less than twice the yield stress and 

therefore purely elastic. Nevertheless, the fictitiously elastic calculated results do not 

necessarily coincide with the elastic-plastic results. 

(2 - 9) 5�'�( = 9:	|	��,���'�)*( < �� 		 ∧ 		 ��,���'�)*( < ��< Eq. 4.154 

Secondly, all parts of the structure in which the equivalent stress range exceeds twice the 

yield stress are assigned to the plastic zone 56∆.  

(2 - 10) 56∆'�( = 9:	|∆��'�)*( ≥ 2	��< Eq. 4.152 
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To obtain results for the accumulated stresses and strains for both load conditions, the residual 

state for the mean load condition (midway between minimum and maximum load) is 

calculated. The TIV for the mean load condition can be estimated to be in the middle between 

fictitious elastic deviatoric stress for minimum and maximum load in the TIV space (Fig. 5, 

Eq. (2 - 11)). Material parameters �∗ and 	∗ are used in the modified elastic analysis. 

(2 - 11) ��,� = ��,������� + 12 ∆������
 Eq. 4.156 

This equation uses merely fictitious elastic quantities. An iterative improvement is therefore 

not possible. 

 
 

Fig. 5 Estimation of the TIV for the mean load condition at PS for a location in Vp∆ (Fig. 4.32 in [1]) 
 

The third zone for PS is 5�∆ in which the stress range is purely elastic, but the equivalent 

stress of either minimum, maximum or both loads exceeds the yield stress. 

(2 - 12) 5�∆'�( = 9:	|∆��'�)*( < 2	�� 	 ∧ O��,���'�)*( K �� 		 ∨ 		 ��,���'�)*( K ��Q< Eq. 4.153 

If ��,��� K ��,��� the TIV for mean load is estimated by projecting the negative deviatoric 

residual stress at maximum load (−��,���� = ��,���∗ ) onto the yield surface of the maximum 

load and subtracting half of the TIV range, which is known from the previous range analysis 

(∆�� = ∆������ − ∆���, because ∆�� = 0) (Fig. 6, top). 

(2 - 13) ��,� = ��,������� − ��,���� ∙ ����,��� + 12 -∆��� − ∆������/ Eq. 4.160 
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Fig. 6 Estimation of the TIV for the mean load condition at PS for a location in Ve∆ by projection to the 

maximum (top) and minimum (bottom) load condition (Fig. 4.33 and 4.34 in [1]) 

Otherwise (if ��,��� < ��,���) −��,���� = ��,��� is projected onto the yield surface of the 

minimum load and half of the TIV range is added (Fig. 6, bottom):
 

(2 - 14) ��,� = ��,������� − ��,���� ∙ ����,��� − 12 -∆��� − ∆������/ Eq. 4.162 

After the TIV has been estimated, initial strains or stresses can be calculated and applied to 

each element of the structure in the same manner as described in the previous chapter for 

monotonic loading (see Eqs. (1 - 5) or (1 - 9)). The modified elastic analysis results in the 

residual stress state for mean load. The elastic-plastic state for mean load is obtained by 

superimposing on the fictitious elastic state for mean load. 

(2 - 15) ��,� = ��,� + 12 -��,������ + ��,������ / Eq. 4.163 

(2 - 16) ��,���/��� = ��,� ∓ 12 ∆�� = ��,� ∓ 12 -∆����� + ∆��/ Eq. 4.165 
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When working with loadcase operations in ANSYS, a reformulation of Eq. (2 - 16) using the 

expression in Eq. (2 - 15) appears to be convenient. 

(2 - 17) 

��,��� = ��,� + 12 -��,������ + ��,������ / + 12 ∆�� 

= ��,� + 12 -��,������ + ��,������ / + 12 -��,������ − ��,������ / + 12 ∆��

= ��,� + ��,������ + 12 ∆�� 

 

(2 - 18) 

��,��� = ��,� + 12 -��,������ + ��,������ / − 12 ∆�� 

= ��,� + 12 -��,������ + ��,������ / − 12 -��,������ − ��,������ / − 12 ∆��

= ��,� + ��,������ − 12 ∆�� 

 

b) Elastic Shakedown 

As mentioned before, elastic shakedown occurs when the fictitious elastic equivalent stress 

range does not exceed twice the yield stress in any location of the structure (see Sect. 4.4 in 

[1]). 

(2 - 19) ∆����� J 2��						∀: ∈ 5 Eq. 4.56 

Those parts of the structure where the equivalent stress of neither the minimum nor maximum 

load condition exceeds the yield stress are assigned to the elastic zone 5�'�(
. The other parts 

are assigned to the plastic zone 56'�(
.   

 (2 - 20) 5�'�( = 9:	|	��,���'�)*( < �� 		 ∧ 		 ��,���'�)*( < ��< Eq. 4.59 

(2 - 21) 56'�( = 9:	|	��,���'�)*( ≥ �� 		 ∨ 		 ��,���'�)*( ≥ ��< Eq. 4.60 

Modified elastic analyses with iterative improvement can be executed to determine the 

accumulated state.  

For elastic shakedown, in 56 the two Mises circles for minimum and maximum load form an 

intersection area Ω. When projecting the negative deviatoric residual stress (−���'�)*( =
��∗'�(

) onto one of the yield surfaces, it has to be done so that the projection also lies on the 

edge of Ω. According to the position of the negative deviatoric residual stress, the projection 

then differs. The angles ���� and ���� divide the space into four regions U*)V 'Fig. 7(. The 

position of ��∗ is described by the angles !��� and !���. 
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Fig. 7 Elastic shakedown; left intersection area Ω of the yield surfaces and position of Y* in the TIV-space; right 

isolated sketch of the triangle to determine the angles βmin and βmax (Fig. 4.12 in [1]) 

(2 - 22) cos ���� = cos ���� = ∆�����
2��  Eq. 4.63 

(2 - 23) cos !��� = ∆��E + ��,���E − ��,���E
2 ∙ ∆�� ∙ ��,���  Eq. 4.64 

(2 - 24) cos !��� = ∆��E + ��,���E − ��,���E
2 ∙ ∆�� ∙ ��,���  Eq. 4.65 

If !��� < ���� and ��,��� K �� then ��∗ is in U* and it is projected onto the yield surface of 

the maximum load. 

(2 - 25) �� = ��,������� − ��,���� + ����,���, Eq. 4.69 

If !��� < ���� and ��,��� K �� then ��∗ is in UE and it is projected onto the yield surface of 

the minimum load. 

(2 - 26) �� = ��,������� − ��,���� + ����,���, Eq. 4.67 

If !��� ≥ ���� and !��� ≥ ���� then ��∗ is in UV and it is projected onto the closest 

intersection point of the yield surfaces. ��∗ cannot be in UG.  

(2 - 27) �� = ��,������� − " ∙ ��,���� + $ ∙ ∆������
 Eq. 4.71 

The factors " and $ in (2 - 27) can be determined geometrically: 

(2 - 28) " = ����,��� ∙ ^1 − cosE ����^1 − cosE !���
 Eq. 4.73 

(2 - 29) $ = ��∆�� ∙ _cos ���� − cos !��� ^1 − cosE ����^1 − cosE !���
` Eq. 4.74 
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Although initial loads and modified material parameters are only applied in 56, residual 

stresses can also appear in 5�. Superposition works in the same way as described for plastic 

shakedown. 

2.2 Example C.1 Two-bar model 

As a first example for cyclic loading, the two-bar model (first described 

in Sect. 2.2 in [1]) is used. The structure consists of two parallel bars 

with the top ends fixed and the bottom ends connected by a rigid plate 

(coupled degree of freedom) so the change in length must always be 

equal. The structure is modelled in ANSYS using two square PLANE-

elements of equal size using the appropriate degree-of-freedom 

constraints. A constant tension (force a) is applied. The left bar is 

cyclically loaded and unloaded with a temperature b. The right bar prevents the left bar from 

free thermal expansion causing a compressive stress in the left bar and a tensile stress in the 

right bar, which have the same absolute value due to the equilibrium condition. Sects. 2.2 and 

2.3 in [1] explain the ratcheting mechanism leading to progressive deformation.  

For cyclic loading, the application of the STPZ is separated into two parts. First, it is used to 

obtain the elastic-plastic range values. The second part determines the accumulated values. 

In [1] see also Sects. 4.3.1 for the elastic-plastic range, 4.5.1 for ES and 4.7.1 for PS. 

a) Plastic shakedown C.1.a 

The MEA for the elastic-plastic range values works in the same way as for monotonic loading 

using range values instead. In this example, the equivalent stress ranges exceed twice the 

yield stress in both elements. Initial stresses are applied and the modified material parameters 

are used. The residual range state is stored as loadcase 3 for later use. Superposition gives the 

elastic-plastic range state. The correct strain range is found after the first iteration.  

The second part is to obtain the accumulated values for minimum and maximum load. The 

necessary stress values are saved as parameters. The fictitious elastic stress at mean load is 

calculated and saved. In this example, the TIV and the initial stress are calculated for the 

uniaxial stress state, as explained in Sect. 1.2. After the modified elastic analysis, the 

superposition is performed using Eqs. (2 - 17) and (2 - 18). The STPZ provides the exact 

results at both load conditions after only one MEA (see Table 1). In this case, no iterative 

improvement is necessary. 
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Table 1 Selected stress values for example C.1.a 

minimum load maximum load 

element 1 element 2 element 1 element 2 

  cd,efg cd,efg cd,ehi cd,ehi 

1. MEA 145.00 -45.00 -75.00 175.00 

b) Elastic shakedown C.1.b 

The temperature b is lowered so that the equivalent stress range is less than twice the yield 

stress. Therefore, the elastic-plastic stress range is known from the fictitious elastic analysis.  

For elastic shakedown the angles �, !��� and !��� are needed to tell in which region U� the 

negative deviatoric residual stress is positioned. Accordingly, the TIV is estimated. In the first 

MEA −�� is in U* for both elements. In the second MEA −�� changes to UE. The results 

after the second MEA are exact. An incremental analysis calculating 30 cycles with 20 

substeps per half cycle produces almost the exact result (see Table 2 and Fig. 8). 

Table 2 Selected stress values for example C.1.b 

minimum load maximum load 

element 1 element 2 element 1 element 2 

  cd,efg cd,efg cd,ehi cd,ehi 

1. MEA 135.50 -35.50 -54.50 154.50 

2. MEA 140.25 -40.25 -49.75 149.75 

Incr. analysis 140.15 -40.15 -49.61 149.61 

 

 
Fig. 8 Development of strains in incremental analysis for elastic shakedown for example C.1.b 
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2.3 Example C.2 Multiaxial ratcheting 

For this example, the ratcheting mechanism is explained in Sect. 

2.5.2 in [1]. The structure is similar to example M.2 with the 

following adjustment: the degrees of freedom in the y-direction for 

the top two nodes are not inhibited. Instead, a force a/2 in the y-

direction is applied at both nodes, causing the so-called primary 

stress �6. The displacement-controlled load is applied cyclically, 

alternating between ���� and ���� causing the secondary stress 

range ∆��. 

In [1] see also Sects. 4.3.2 for the elastic-plastic range, 4.5.2 for ES and 4.7.2 for PS. 

a) Plastic shakedown C.2.a 

The elastic limit for the strain range and therefore the condition for plastic shakedown (see 

Eq. (2 - 2)) are calculated merely from the material parameters, because unit lengths are used. 

(2 - 30) 
�� < 2��� = 2 ∙ 100100	000 = 0.002 Eq. 4.153 

The elastic limit is exceeded when choosing load parameters ���� = 0 and ���� = 0.0025. 

The algorithm of the STPZ is the same as in example C.1 extended for a second component in 

the x-direction. The correct solution is obtained after one iteration each (range and mean 

load), adding up to the computational effort of four linear analyses. 

Fig. 9 shows the development of the strain components in an incremental analysis. More than 

one hundred cycles were calculated to reach the state of shakedown. The computational effort 

in terms of the numbers of analyses is significantly greater than for using the STPZ. 

Table 3 Selected stress and strain values for example C.2.a 

  ci,efg ci,ehi jd,efg jd,ehi 

1. MEA -71.25 131.25 7.27E-03 7.03E-03 
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Fig. 9 Development of strain components in incremental analysis for plastic shakedown in example C.2.c 

 

b) Elastic shakedown C.2.b and C.2.c 

The first set of loading parameters ���� = 0.0010 and ���� = 0.0025 is chosen. This leaves 

the strain range to be purely elastic (∆�� < 2��) but the equivalent stress at maximum load 

exceeds the yield strength. The element is therefore assigned to zone 56. The stress and strain 

ranges can be taken directly from the fictitious elastic analysis. The STPZ is used to obtain the 

minimum and maximum load state. The values for the angles �, !��� and !��� (Eqs. (2 - 22), 

(2 - 23) and (2 - 24)) are calculated in order to locate the negative deviatoric residual stress in 

one of the regions U*, UE or UV. Accordingly the TIV is estimated following one of the Eqs. 

(2 - 25), (2 - 26) or (2 - 27). In this case −�� is in U*. The application of the initial stress and 

the superposition work as before. Table 4 lists the development of relevant stress and strain 

values after each of the first six MEAs. After the third MEA, the values obtained from an 

incremental analysis are almost met. After the sixth MEA, the results are the same. 

Table 4 Selected stress and strain values for example C.2.b 

  ci,efg ci,ehi jd,efg jd,ehi 

1. MEA -20.46 129.54 3.91E-03 3.91E-03 

2. MEA -25.98 124.02 6.98E-04 6.98E-04 

3. MEA -26.71 123.29 3.99E-04 3.99E-04 

4. MEA -26.81 123.19 3.57E-04 3.57E-04 

5. MEA -26.83 123.17 3.51E-04 3.51E-04 

6. MEA -26.83 123.17 3.50E-04 3.50E-04 

Incr. analysis -26.83 123.17 3.50E-04 3.50E-04 
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In addition, a second set of loading parameters is examined in C.2.c: ���� = 0.0002 and 

���� = 0.0021. Again, elastic shakedown occurs and the Mises equivalent stress of one of 

the extreme loads exceeds the yield strength. In the first MEA −�� is located in U* but in the 

second MEA it is located in UV, meaning it is projected onto the vertex of Ω. A further 

improvement is not possible because the position of the vertex does not change.  

Table 5 Selected stress and strain values for example C.2.c 

  ci,efg ci,ehi jd,efg jd,ehi 

1. MEA -63.25 126.75 3.46E-03 3.46E-03 

2. MEA -65.50 124.50 2.06E-03 2.06E-03 

Incr. analysis -65.49 124.49 2.05E-03 2.05E-03 
 

The incremental analysis of this problem shows that more than 250 cycles have to be 

calculated to reach the state of shakedown (Fig. 10). 

  

Fig. 10 Development of strain components in incremental analysis for elastic shakedown in example C.2.c 
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2.4 Example C.3 Tension bar 

In this last example, the model already 

introduced in example M.3 is used. 

Although no ratcheting mechanism appears 

for cyclic loading as no additional primary 

stress is applied, the model is chosen 

because again the algorithm is extended to 

the three normal stress components and, in 

addition, it can be observed how the TIV is estimated for elements assigned to zone 5�∆ and 

how the initial stresses and modified material law are reversed for elements in 5�. 

a)  Plastic shakedown C.3.a 

For plastic shakedown the load parameters ���� = 0.001 and ���� = 0.0065 are chosen. 

The elastic-plastic range state is correctly obtained after one MEA. Although the equivalent 

stress range does not exceed twice the yield stress for element 1, it does for element 2. The 

maximum equivalent stress is saved for later comparison. 

Table 6 Mises-equivalent stress at extreme loads before the first four MEAs for example C.3.a 

element 1 element 2 

  cl,efg cl,ehi cl,efg cl,ehi 

f. el. 37.46 243.49 63.63 413.61 

1. MEA 27.19 117.58 39.20 180.04 

2. MEA 46.58 98.24 74.95 144.51 

3. MEA 47.66 97.17 77.01 142.50 
 

In both elements, the fictitiously elastic calculated equivalent stresses at maximum load 

exceed the yield stress �� = 100 (see Table 6). Therefore element 1 is assigned to 5�∆ and 

element 2 to 56∆ in the first MEA. The TIV is estimated accordingly, initial stresses are 

applied and the material parameters are changed. For the second MEA the assignment 

remains the same, but after the second iteration, the equivalent stress at maximum load in 

element 1 is less than the yield stress. For the third MEA, element 1 is in 5�. The initial 

stresses have to be deleted and the material parameters are reversed to � and 	. The result of 

the third MEA cannot be improved any further (see Table 7). The quality of the results for 

stress values compared to an incremental analysis differ according to the direction and the 

load state. For the incremental analysis 50 substeps per half cycle were calculated, but the 

state of shakedown is obtained after one cycle.  
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Table 7 Selected stress values for example C.3.a 

minimum load maximum load 

element 1 element 2 element 1 element 2 

  ci,efg cm,efg ci,efg cm,efg ci,ehi cm,ehi ci,ehi cm,ehi 

1. MEA -22.01 7.04 -44.03 -14.08 100.84 -27.97 201.69 55.94 

2. MEA -40.92 8.42 -81.84 -16.84 81.94 -26.59 163.87 53.18 

3. MEA -42.18 8.66 -84.36 -17.32 80.68 -26.35 161.35 52.70 

4. MEA -42.18 8.66 -84.36 -17.32 80.68 -26.35 161.35 52.70 

Incr. analysis -48.08 13.44 -96.17 -26.87 80.66 -28.06 161.32 56.13 

b) Elastic shakedown C.3.b 

For elastic shakedown the load parameters examined are ���� = 0.001 and ���� = 0.004. 

The equivalent stress range is less than twice the yield stress in both elements. 

The fictitious elastic equivalent stress at maximum load exceeds the yield stress in both 

elements. They are assigned to zone 56 in the first MEA. The negative deviatoric residual 

stress is in U*. In the second MEA, the equivalent stress is less than the yield stress at both 

extreme loads in element 1. It is now assigned to 5�. The initial stresses from the previous 

MEA are deleted and material parameters are reversed. The result can be improved further in 

later MEAs but element 2 remains in 5�. An incremental analysis produces the exact result 

after one cycle. 

Table 8 Selected stress values for example C.3.b 

    minimum load maximum load 

element 1 element 2 element 1 element 2 

  ci,efg cm,efg ci,efg cm,efg ci,ehi cm,ehi ci,ehi cm,ehi 

1. MEA -16.26 -4.96 -32.52 9.92 86.59 -22.07 173.18 44.13 

2. MEA -35.30 -1.96 -70.60 3.93 67.54 -19.07 135.09 38.14 

3. MEA -35.00 -3.36 -70.00 6.72 67.85 -20.47 135.70 40.93 

8. MEA -34.51 -6.17 -69.02 12.34 68.34 -23.27 136.68 46.55 

Incr. analysis -34.42 -6.82 -68.84 13.65 68.43 -23.93 136.86 47.86 
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 Advantages and disadvantages of the STPZ 3

The advantage of the simplified theory of plastic zones has clearly been shown. The analysis 

of cyclically loaded structures often demands high computational effort. Numerous cycles 

with many substeps and equilibrium iterations have to be calculated to obtain stress and strain 

values at the state of shakedown. The STPZ delivers a good approximation after only a few 

linear analyses.  

Usually one does not know the amount of iterations needed to approximate the exact result. 

Therefore the analyst has to examine changes in the results after each step and stop when the 

differences become insignificant. The quality of the result can further be affected by 

directional stress redistribution. The quality of results for individual stress components can 

vary within one analysis. These disadvantages have to be considered. 

It is recommended to additionally study [1], where more complex structures are analysed with 

the STPZ and the results are discussed. The examples also include temperature-dependent 

material and multilinear hardening. 
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List of Annexes 

Examples for monotonic loading 

• M.1 Element with uniaxial stress state, STPZ 

• M.1 Element with uniaxial stress state, incremental analysis 

• M.2 Element with plane stress state, STPZ 

• M.2 Element with plane stress state, incremental analysis 

• M.3 Tension bar, STPZ 

• M.3 Tension bar, incremental analysis 

Examples for cyclic loading 

• C.1.a Two-bar model, PS, STPZ 

• C.1.a Two-bar model, incremental 

• C.1.b Two-bar model, ES, STPZ 

• C.1.b Two-bar model, incremental 

• C.2.a Multiaxial ratcheting, PS, STPZ 

• C.2.a Multiaxial ratcheting, incremental 

• C.2.b Multiaxial ratcheting, ES-U*, STPZ 

• C.2.b Multiaxial ratcheting, incremental 

• C.2.c Multiaxial ratcheting, ES-UV, STPZ 

• C.3.a Tension bar, PS, STPZ 

• C.3.a Tension bar, incremental 

• C.3.b Tension bar, ES, STPZ 

• C.3.b Tension bar, incremental 

All annexes are given as individual .txt-files. 


