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Abstract
The relaxation complexity rc(X) of the set of integer points X contained in a polyhe-
dron is the minimal number of inequalities needed to formulate a linear optimization
problem over X without using auxiliary variables. Besides its relevance in integer
programming, this concept has interpretations in aspects of social choice, symmetric
cryptanalysis, andmachine learning.We employ efficient mixed-integer programming
techniques to compute a robust and numerically more practical variant of the relax-
ation complexity. Our proposed models require row or column generation techniques
and can be enhanced by symmetry handling and suitable propagation algorithms. The-
oretically, we compare the quality of our models in terms of their LP relaxation values.
The performance of those models is investigated on a broad test set and is underlined
by their ability to solve challenging instances that could not be solved previously.
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1 Introduction

Let X ⊆ Zd be such that X = conv(X)∩Zd and let Y ⊆ Zd . A fundamental problem
in various fields is to find a polyhedron P with the minimum number of facets such
that X ⊆ P and (Y\X) ∩ P = ∅. We call this quantity the relaxation complexity of X
w.r.t. Y , in formulae, rc(X ,Y ), and we write rc(X) instead of rc(X ,Zd) in the case
Y = Zd . Any polyhedron Q ⊆ Rd with the property that X ⊆ Q and (Y\X)∩Q = ∅,
is called a relaxation of X w.r.t. Y . In the theory of social choice, X ⊆ {0, 1}d can
be interpreted as the winning strategies of a simple game, see [29, Chap. 8.3]. One is
then interested in computing rc(X , {0, 1}d), i.e., the smallest number of inequalities
needed to distinguish winning and loosing strategies. In symmetric cryptanalysis,
a subfield of cryptography, rc(X , {0, 1}d) corresponds to the minimum number of
substitutions in symmetric key algorithms [28]. In machine learning, relaxations P
correspond to polyhedral classifiers that distinguish two types of data points [2]. The
relaxation complexity is then the minimum size of a polyhedral classifier. Finally, of
course, rc(X) is the minimum number of inequalities needed to formulate a linear
optimization problem over X ⊆ Zd without using auxiliary variables.

Depending on the application, different strategies have been pursued to compute
and bound the relaxation complexity. For example, Kaibel andWeltge [22] introduced
the notion of hiding sets to derive lower bounds on rc(X). Using this technique, they
could show that several sets X arising from combinatorial optimization problems
have superpolynomial relaxation complexity. Moreover, rc(X ,Y ) can be found by
computing the chromatic number of a suitably defined hypergraph; deriving lower
bounds on the chromatic number allowed Kurz and Napel [23] to find a lower bound
on rc(X , {0, 1}d) in the context of social choice. In machine learning, algorithms
have been devised to construct polyhedral classifiers and thus providing upper bounds
on rc(X ,Y ), see [2, 9, 24, 25]. To find the exact value of rc(X , {0, 1}d) in the context of
symmetric cryptanalysis, mixed-integer programming models have been investigated.
For higher dimensions, however, many of these models cannot compute rc(X , {0, 1}d)
efficiently in practice.

In this article, we follow the latter line of research. Given the relevance of knowing
the exact value of rc(X ,Y ), our aim is to develop efficient mixed-integer program-
ming (MIP) techniques that allow to compute rc(X ,Y ), if both X and Y are finite.
More precisely, we investigate methods to compute rcε(X ,Y ), a more robust variant
of rc(X ,Y ) that is numericallymore practical as we discuss below. To this end, we pro-
pose in Sect. 2 three different MIP models that allow to compute rcε(X ,Y ): a compact
model as well as twomore sophisticated models that require row or column generation
techniques. Section3 compares the quality of the three models in terms of their LP
relaxation value, and we discuss several enhancements of the basic models in Sect. 4.
These enhancements include tailored symmetry handling and propagation techniques
as well as cutting planes. Finally, we compare the performance of the three different
models on a broad test set comprised of instances with different geometric properties
and instances arising in symmetric cryptanalysis (Sect. 5). Our novel methods allow to
solve many challenging instances efficiently, which was not possible using the basic
models.
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We remark that the basic versions of two models have already been used by us
in [3] to find rcε(X , Y ) for X being the integer points in low-dimensional cubes and
crosspolytopes. These experiments helped us to prove general formulae for rc(X)

in these cases. For this reason, we believe that the more sophisticated algorithms
described in this article are not only of relevance for practical applications, but also
to develop hypotheses for theoretical results. Our code is publicly available at github1

and zenodo [14].
Regarding the computation of rc(X ,Y ) and rcε(X ,Y ) for Y = Zd and other infinite

sets Y the following issues have to be taken into account: In [3, Sect. 3] examples X are
given, for which rc(X ,Y ) does not approach rc(X ,Zd), when Y runs over a sequence
of finite sets coveringZd . Consequently, for general choices of X , there is no algorithm
to compute rc(X ,Zd) by iterative computations of rc(X ,Y ) for growing sets Y . The
situation is somewhat better regarding the computation of rcε(X ,Zd), for ε > 0. In [3,
Lem. 3] it was shown that rcε(X ,Zd) = rcε(X ,Yε), for some finite set Yε that can be
algorithmically determined for any given ε > 0 and X . Still, if ε > 0 is small and the
underlying MIP model is solved in floating-point numbers, there is no guarantee for
the correctness of the value computed due to inexactness of the arithmetic operations
in floating-point numbers.

Related Literature One of the earliest references on the relaxation complexity goes
back to Jeroslow [18] who showed the tight bound rc(X , {0, 1}d) ≤ 2d−1, for any
X ⊆ {0, 1}d . This result has been complemented by Weltge [32] who showed that

most X ⊆ {0, 1}d have rc(X , {0, 1}d) ≥ 2d

c·d3 , for some absolute constant c > 0.
Moreover, hiding sets proposed by Kaibel and Weltge [22] provide a lower bound
on rc(X). The bound given by hiding sets can be improved by computing the chromatic
number of a graph derived from hiding sets, see [3]. Regarding the computability
of rc(X), it has been shown in [4] that there exists a proper subset Obs(X) of Zd\X
such that rc(X) = rc(X ,Obs(X)). If Obs(X) is finite, they show that rc(X ,Obs(X)),
and thus rc(X), can be computed by solving a mixed-integer program. They also
provide sufficient conditions on X that guarantee Obs(X) to be finite. Moreover, they
establish that rc(X) is computable if d ≤ 3; for d = 2, a polynomial time algorithm
to compute rc(X) is discussed in [3]. In general, however, it is an open question
whether rc(X) is computable.

One drawback of relaxations of X as defined above is that they might be sensi-
tive to numerical errors. If aᵀx ≤ β is a facet defining inequality of a relaxation
of X that separates y ∈ Zd\X , then we only know aᵀy > β. Thus, slightly per-
turbing a might not separate y anymore. To take care of this, we suggested in [3]
to add a safety margin ε > 0 to the separation condition. That is, if aᵀx ≤ β is a
facet defining inequality of a relaxation of X with ‖a‖∞ = 1 that separates y, then
we require aᵀy ≥ β + ε. In this case, we say that y is ε-separated from X . Then,
rcε(X) denotes the smallest number of facets of any relaxation of X that satisfies
the safety margin condition.2 We call such a relaxation an ε-relaxation of X . Anal-
ogously to rc(X ,Y ), we define rcε(X ,Y ) to be the smallest number of inequalities

1 https://github.com/christopherhojny/relaxation_complexity.
2 Note that the definition in [3] is different, but both concepts coincide if the value of ε is defined appro-
priately. We follow the definition provided here, because it simplifies the discussion in this article.
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needed to ε-separate X andY\X . As ε-relaxations aremore restrictive than relaxations,
rcε(X) ≥ rc(X) for each ε > 0. In contrast to rc(X), however, we show in [3] that
for every finite and full-dimensional X ⊆ Zd there is a finite set Y ⊆ Zd\X such
that rcε(X) = rcε(X ,Y ). Thus, rcε(X) is computable and the aim of this article is
to develop MIP techniques that allow to find rcε(X ,Y ) efficiently. In particular, if ε

approaches 0, then rcε(X) converges towards rcQ(X), a variant of the relaxation com-
plexity which requires the relaxations to be rational. Another reason to passing from
rc(X) to rcε(X) was given recently in [1]: For dimensions d ≥ 5, there are choices
of X such that there is no rational relaxation attaining rc(X), that is, any relaxation
with the minimal number of facets needs irrational data to be represented. Further
variations of rc(X) in which the size of coefficients in facet defining inequalities are
bounded are discussed in [12, 13].

Besides finding relaxations of X , another field of research aims to find outer descrip-
tions of P = conv(X) to be able to use linear programming techniques to solve
optimization problems over X . Since P might have exponentially many facets, the
concept of extended formulations has been introduced. Extended formulations are
polyhedra Q ⊆ Rd+k whose projection onto Rd yields P . The smallest number of
facets of an extended formulation of P is its extension complexity xc(P). We refer
the reader to the surveys of Conforti et al. [8] and Kaibel [21] as well as the references
therein. Extended formulations that allow to use integer variables have been discussed,
e.g., by Bader et al. [5], Cevallos et al. [7], andWeltge [32, Chap. 7.1]. A combination
of rc(X , {0, 1}d) and xc(conv(X)) has been studied by Hrubeš and Talebanfard [17].

Basic Definitions and Notation Throughout this article, we assume that d is a positive
integer. The set {1, . . . , d} is denoted by [d], and we write e1, . . . , ed to denote the d
canonical unit vectors in Rd . Moreover, �d = {0, e1, . . . , ed} ⊆ Rd is the vertex set
of the standard simplex inRd , and♦d = {0,±e1, . . . ,±ed} ⊆ Rd denotes the integer
points in the d-dimensional standard crosspolytope. The affine hull of a set X ⊆ Rd

is denoted by aff(X).
A set X ⊆ Zd is called lattice-convex if X = conv(X) ∩ Zd . For a lattice-convex

set X ⊆ Zd , we say that H ⊆ (aff(X) ∩ Zd)\X is a hiding set if, for any dis-
tinct y1, y2 ∈ H , we have conv({y1, y2}) ∩ conv(X) 
= ∅. Kaibel and Weltge [22]
proved that the cardinality of any hiding set is a lower bound on rc(X). The maximum
size of a hiding set is denoted by H(X). Moreover, if Y ⊆ Zd , we say that H is a
Y -hiding set if H is a hiding set that is contained in Y . Analogously to H(X), H(X ,Y )

denotes the maximum size of a Y -hiding set.

2 Mixed-integer programmingmodels to compute rc"(X,Y)

In this section, we discuss three different mixed-integer programming models to com-
pute rcε(X ,Y ). The three different MIP formulations that we discuss differ in the way
how they model rcε(X ,Y ). The first model uses only polynomially many variables
and inequalities, the second model needs exponentially many inequalities while the
number of variables is still polynomial, and the third model requires exponentially
many variables but only polynomially many inequalities. For this reason, we refer
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to these three models as the compact, the cutting plane, and the column generation
model, respectively. In preliminary experiments with our code, we have already used
the compact and columngenerationmodel [3].Nevertheless,we provide the full details
of these models to make the article self-contained and to be able to explain the model
enhancements. For the sake of convenience, we assume for the remainder of this article
that X and Y are disjoint. This is without loss of generality, because we can replace Y
by Y\X , which does not change the value of rcε(X ,Y ). We also refer to X as the set
of feasible points, whereas the points in Y are called infeasible.

2.1 Compact model

Observe that lattice-convex sets are exactly those subsets ofZd that admit a relaxation.
In [4], a mixed-integer programming formulation has been proposed to check whether
a finite lattice-convex set X admits a relaxation with k inequalities, and we have
explained in [3] how to adapt the model to be able to compute rcε(X ,Y ).

Given an upper bound k on the number of inequalities needed to separate X and Y ,
the model’s idea is to introduce variables ai j and bi , (i, j) ∈ [k] × [d], to model the k
potential inequalities needed in a relaxation. Moreover, for each y ∈ Y and i ∈ [k], a
binary variable syi is introduced that indicates whether the i th inequality is violated
by y; additional binary variables ui , i ∈ [k], indicate whether the i th inequality is
needed in a relaxation. Using a big-M term with M ≥ d(ρX + ρY ) + ε, with ρX =
max{‖x‖∞ : x ∈ X} and ρY = max{‖y‖∞ : y ∈ Y }, the mixed-integer programming
formulation for rcε(X ,Y ) is as follows:

min
k∑

i=1

ui (1a)

d∑

j=1

ai j x j ≤ bi , x ∈ X , i ∈ [k], (1b)

k∑

i=1

syi ≥ 1, y ∈ Y , (1c)

d∑

j=1

ai j y j ≥ bi + ε − M(1 − syi ), y ∈ Y , i ∈ [k], (1d)

syi ≤ ui , y ∈ Y , i ∈ [k], (1e)

−1 ≤ ai j ≤ 1, (i, j) ∈ [k] × [d], (1f)

−dρX ≤ bi ≤ dρX , i ∈ [k], (1g)

syi , ui ∈ {0, 1}, y ∈ Y , i ∈ [k]. (1h)

Inequalities (1b) ensure that the k inequalities are valid for X and Inequalities (1c)
guarantee that each y ∈ Y is cut off by at least one inequality. If an inequality is
selected to separate y ∈ Y and X , Inequalities (1d) ensure that this is consistent with
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the k inequalities defined by the model. Finally, Inequalities (1e) ensure that ui is 1
if inequality i ∈ [k] separates an infeasible point, whereas Inequalities (1f) and (1g)
scale the k inequalities without loss of generality. For details on correctness, we refer
the reader to [4, Sect. 4.2].

2.2 Cutting planemodel

To be able to find rcε(X ,Y ), Model (1) introduces two classes of variables: variables u
and s model which inequalities are used and subsets of Y that are separated by the
selected inequalities, respectively, whereas variables a and b guarantee that the subsets
definedby s can be cut by valid inequalities for X . The problemof computing rcε(X ,Y )

can thus be interpreted as a two stage problem, where the first stage selects a set of
subsets of Y and the second stage checks whether the selected subsets correspond to
feasible cut patterns. Since the first stage variables are binary and the second stage
problem is a feasibility problem, logic-based Benders decomposition can be used
to compute rcε(X ,Y ), see [16]. While classical Benders decomposition requires the
subproblem to be a linear programming problem, logic-based Benders decomposition
allows the subproblem to be an arbitrary optimization problem.

Let C = {C ⊆ Y : C and X are not linearly ε -separable}. We refer to C as the
conflict set. For all (C, i) ∈ C × [k], the conflict inequality

∑
y∈C syi ≤ |C | − 1

models that not all points in C can be cut by an inequality valid for X . Consequently,

min
k∑

i=1

ui (2a)

k∑

i=1

syi ≥ 1, y ∈ Y , (2b)

∑

y∈C
syi ≤ |C | − 1, C ∈ C, i ∈ [k], (2c)

syi ≤ ui , y ∈ Y , i ∈ [k], (2d)

syi , ui ∈ {0, 1}, y ∈ Y , i ∈ [k]. (2e)

is an alternative model for computing rcε(X ,Y ).

2.3 Column generationmodel

Let I = {I ⊆ Y : I and X are linearlyε-separable}. Then, rcε(X ,Y ) is the smallest
number � of sets I1, . . . , I� ∈ I such that Y = ⋃�

i=1 Ii . Thus, instead of using the
matrix s ∈ {0, 1}Y×[k] to encode which inequality cuts which points from Y , we can
introduce for every I ∈ I a binary variable zI ∈ {0, 1} that encodes whether an
inequality separates I or not:
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min
∑

I∈I
zI (3a)

∑

I∈Iy
z I ≥ 1, y ∈ Y , (3b)

z ∈ ZI+, (3c)

where Iy = {I ∈ I : y ∈ I }.
Remark 1 In contrast to Model (1), Models (2) and (3) do not directly provide an ε-
relaxation of X w.r.t. Y . To find such a relaxation, rcε(X ,Y ) many linear programs
need to be solved in a post-processing step.

3 Comparison of basic models

While the compact model (1) can be immediately handed to an MIP solver due to the
relatively small number of variables and constraints, the cutting plane model (2) and
column generation model (3) require to implement separation and pricing routines,
respectively. At least for the column generation model, this additional computational
effort comes with the benefit of a stronger LP relaxation in comparison with the
compact model. To make this precise, we denote by v�

com, v
�
cut, and v�

CG the optimal
LP relaxation value of the compact, cutting plane, and column generation model,
respectively.

Proposition 2 Let X ⊆ Zd be finite and lattice-convex, let Y ⊆ Zd\X be finite,
let ε > 0 such that rcε(X ,Y ) exists, and suppose both Models (1) and (2) are feasible.

1. Then, v�
com ≥ v�

cut = 1.
2. Moreover, if ε ≤ (d − 1)(ρX + ρY ), then v�

com = 1.

Note that 2 is a technical assumption that is almost always satisfied in practice, e.g.,
to approximate rc(X ,Y ) by rcε(X ,Y ), one selects ε < 1 ≤ (d − 1)(ρX + ρY ). Thus,
v�
cut = v�

com = 1 in all relevant cases.

Proof First we show v�
cut ≥ 1 and v�

com ≥ 1. Observe that we get for every (partial)
feasible solution (s, u) and every ȳ ∈ Y the estimation

k∑

i=1

ui ≥
k∑

i=1

max{syi : y ∈ Y } ≥
k∑

i=1

sȳi ≥ 1,

where k is the upper bound used in Model (1) of (2). Hence, v�
cut ≥ 1 and v�

com ≥ 1.
If the upper bound k = 1, we thus have necessarily v�

cut = 1. If k ≥ 2, we construct a
feasible solution for (2) with objective value 1 by assigning all variables value 0 except
for syi , (y, i) ∈ Y × [2], u1, and u2, which get value 1

2 . Indeed, the left-hand side of

each conflict inequality evaluates to |C|
2 , while the right-hand side is |C | − 1. Thus,

because |C | ≥ 2 for any conflict as X is lattice-convex, we find |C|
2 ≤ |C | − 1, i.e.,
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all conflict inequalities are satisfied. Since the remaining inequalities hold trivially,
1 ≥ v�

cut follows. Consequently, v
�
com ≥ 1 ≥ v�

cut ≥ 1.
For the second statement, we assume k ≥ 2, because otherwise v�

com = 1 follows as
above. We define a feasible solution with objective value 1 of Model (1) by assigning
all variables value 0 except for

– u1 = sy1 = ε
M for all y ∈ Y ;

– u2 = sy2 = 1 − ε
M for all y ∈ Y ;

– a11 = 1 and b1 = ρX .

The inequalities ai ·ᵀx ≤ bi defined this way are either 0 ≤ 0 or x1 ≤ ρX , which
are valid for X . Moreover, the Inequalities (1d) are satisfied, because for i = 1 and
every y ∈ Y , we have

d∑

j=1

a1 j y j − b1 = y1 − ρX ≥ −ρY − ρX ≥ −d(ρX + ρY ) + ε ≥ ε − M(1 − sy1),

and for the remaining i ≥ 2, we get ε − M(1 − sy2) = 0. Since one can easily check
that the remaining inequalities of (1) are also satisfied, v�

com ≤ 1 follows, concluding
the proof using the first part of the assertion. ��
The value of the LP relaxations thus does not indicate whether the compact or cutting
plane model performs better in practice. An advantage of the latter is that the conflict
inequalities encode a hypergraph coloring problem, which is a structure appearing
frequently in practice. Hence, there might be a chance that a solver can exploit this
structure if sufficiently many inequalities have been separated. The compact model,
however, might have the advantage that the a- and b-variables guide the solver in
the right direction when branching on s- or u-variables, because feasibility is already
encoded in the model and does not need to be added to the model by separating cutting
planes.

Proposition 3 Let X ⊆ Zd be finite and lattice-convex, let Y ⊆ Zd\X be finite,
let ε > 0 be such that rcε(X ,Y ) exists, and suppose both Models (1) and (2) are
feasible. Let k be the number of inequalities encoded in Model (1).

1. If there exists an optimal solution of the LP relaxation of (3) that assigns at most k
variables a positive value, then v�

CG ≥ v�
com ≥ v�

cut = 1.
2. We have v�

CG ≥ H(X ,Y ), and this can be strict.

Proof To show v�
CG ≥ v�

com, recall that for each I ∈ I there exists an inequal-
ity a(I )ᵀx ≤ b(I ) + ε separating I and X . Due to rescaling, we may assume
that a(I ) ∈ [−1, 1]d and b(I ) ∈ [−dρX , dρX ].

If we are given a solution z ∈ RI+ of (3b) with at most k non-zero entries, we
define a solution of the LP relaxation of (1) with the same objective value as follows.
Let I1, . . . , I� ∈ I be the indices of non-zero entries in z. For each i ∈ [�] and y ∈ Y ,
define

syi =
{
zIi , if y ∈ Ii ,

0, otherwise,
and ui = zIi .
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For i ∈ {� + 1, . . . , k} and y ∈ Y , we define syi = 0 and ui = 0. Finally, let ai j =
a(Ii ) j and bi = b(Ii ) for (i, j) ∈ [�] × [d]. For i ∈ {� + 1, . . . , k}, define ai j = 0
and bi = 1. Indeed, this solution adheres to (1b) since (a, b) defines valid inequalities,
and also (1e)–(1g) hold trivially. By definition, s and u also satisfy the box constraints
corresponding to (1h). To see that (1c) holds, note that for each y ∈ Y ,

k∑

i=1

syi =
∑

i∈[�] : y∈Ii
z Ii

(3b)≥ 1,

since z is feasible for the LP relaxation of (3). For the last constraint (1d), note that the
constraint is trivially satisfied if syi = 0. If syi > 0, then ai ·ᵀx ≤ bi corresponds to
an inequality separating X and y, which finally shows that the newly defined solution
is feasible for the LP relaxation of (1). To conclude, note that

∑k
i=1 ui = ∑�

i=1 zIi .
Hence, v�

CG ≥ v�
com and the remaining estimations hold by Proposition 2.

For the second part, let H ⊆ Y be a hiding set for X and let z ∈ RI+ be an optimal
solutionof theLP relaxationof (3). Then, for distinct y1, y2 ∈ H ,wehave Iy1∩Iy2 = ∅.
Consequently, we can estimate

v�
CG =

∑

I∈I
zI ≥

∑

y∈H

∑

I∈Iy

z I
(3b)≥ |H |,

which shows v�
CG ≥ H(X ,Y ).

To see that the inequality can be strict, consider X = {0, 1}2 and let Y be the set
of infeasible points in Z2 with �∞-distance 1 from X . One can readily verify that a
maximum hiding set for X has size 2, while the LP relaxation of (3) has value 8

3 . ��
If Y contains a hiding set of size at least 2, the column generation model is thus strictly
stronger than the compact and cutting plane model. In particular, the gap between v�

CG
and v�

cut (and v�
com) can be arbitrarily large: if d = 2 and Y = Obs(X), there is

always a hiding set of size rc(X ,Y ) − 1, see [3, Thm. 23]. On the contrary, at least
in dimension d = 2, for a suitably small ε > 0 the gap between v�

CG and rcε(X ,Y )

is at most 1. This follows once more from [3, Thm. 23] together with the identities
limε→0 rcε(X ,Y ) = rcQ(X ,Y ) (see [3, Thm. 4]) and rcQ(X ,Y ) = rc(X ,Y ), for
X ,Y ⊆ Z2 (see [32, Sect. 7.5] or the discussion in [3, Sect. 4]). The situation in
dimensions d ≥ 3 is less clear, because a lower bound on the maximal size hiding set
in terms of rc(X ,Y ), analogous to [3, Thm. 23], is not known.

4 Enhancements of basic models and algorithmic aspects

In their basic versions, the compact and cutting planemodel are rather difficult to solve
for a standard MIP solver, e.g., because not enough structural properties of rcε(X ,Y )

are encoded in the models that are helpful for a solver. Moreover, the cutting plane and
column generation model require to solve a separation and pricing problem, respec-
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tively, to be used in practice. In this section, we discuss these aspects and suggest
model improvements.

4.1 Incorporation of structural properties

In the following,wedescribe cutting planes, propagation algorithms, andhow tohandle
symmetries and redundancies in the compact and cutting plane model. Moreover, we
discuss heuristic approaches to the problem of computing rcε(X ,Y ).

Cutting Planes In both the compact and cutting plane model, variable syi encodes
whether a point y ∈ Y is separated by inequality i ∈ [k]. To strengthen the com-
pact model and the initial LP relaxation of (2) without inequalities (2c), we can add
inequalities that rule out combinations of points from Y that cannot be separated
simultaneously.

For any hiding set H ⊆ Y , the hiding set cut

∑

y∈H
syi ≤ 1, i ∈ [k]

encodes that each inequality i ∈ [k] can separate at most one element from a hiding
set. Although these cuts are the stronger the bigger the underlying hiding set, we add
these inequalities just for hiding sets of size 2. The reason for this is that such hiding
sets can be found easily by iterating over all pairs (y1, y2) of distinct points in Y and
checking whether the line segment conv({y1, y2}) intersects conv(X) non-trivially. In
our implementation, we insert the expression λy1 + (1 − λ)y2 in each facet defining
inequality of conv(X) to derive bounds on the parameter λ. Then, the final bounds
on λ are within [0, 1] if and only if {y1, y2} is a hiding set.

For hiding sets of arbitrary cardinality, the task ismore difficult, because theremight
exist exponentially many hiding sets. Thus, we are relying on a separation routine for
hiding set cuts. The separation problem for hiding set cuts, however, is at least as
difficult as finding a maximum hiding set for X , and the complexity of the latter is
open.

Propagation Suppose we are solving the compact and cutting plane model using
branch-and-bound. At each node of the branch-and-bound tree, there might exist some
binary variables that are fixed to 0 or 1, e.g., by branching decisions. The aim of
propagation is to find further variable fixings based on the already existing ones.

Our first propagation algorithm is based on the following observation.

Observation 4 Suppose some s-variables have been fixed and let i ∈ [k]. Then,
Fi :={y ∈ Y : syi = 1} can be separated from X if and only if F ′

i :=Y ∩ conv(Fi ) can
be separated from X.

The convexity propagation algorithm computes the sets F ′
i , i ∈ [k], and fixes syi

to 1 for all y ∈ F ′
i . If there is y′ ∈ F ′

i such that sy′i is already fixed to 0, then
the algorithm prunes the node of the branch-and-bound tree. This is indeed a valid
operation, because Inequalities (1c) and (2b) allow each point y ∈ Y to be separated
by several inequalities.
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The second propagation algorithm exploits that Fi ∩ conv(X) needs to be empty
in each feasible solution. The intersection propagation algorithm thus iterates over
all y ∈ Y\Fi and checks whether conv(Fi ∪{y})∩conv(X) 
= ∅. If the check evaluates
positively, syi is fixed to 0.

Comparing both propagation algorithms, the convexity propagator requires to com-
pute only a single convex hull per set Fi , whereas the intersection propagator needs
to compute O(|Y |) convex hulls per set Fi , which can be rather expensive. In our
experiments, we will investigate whether the additional effort pays off in reducing the
running time drastically. To avoid computing unnecessary convex hulls, we call both
propagation algorithms in our implementation only if the branching decision at the
parent node is based on a variable syi , and in this case only for this particular inequality
index i and no further i ′ ∈ [k]\{i}.
Symmetry Handling It is well-known that the presence of symmetries slows downMIP
solvers, because symmetric solutions are found repeatedly during the solving process
leading to an exploration of unnecessary parts of the search space. In a solution of the
compact and cutting plane model, e.g., we can permute the inequality labels i ∈ [k]
without changing the structure of the solution. For this reason, one can enforce that
only one representative solution per set of equivalent solutions is computed without
losing optimal solutions.

One way of handling symmetric relabelings of inequalities is to require that the
columns of the matrix s ∈ {0, 1}Y×[k] are sorted lexicographically non-increasingly.
To enforce sorted columns, we use a separation routine for orbisack minimal cover
inequalities as suggested in [15] and the propagation algorithm orbitopal fixing by
Bendotti et al. [6]. Both algorithms’ running time is in O(|Y | · k). Moreover, sorting
the columns of s implies that we can also require the u-variables to be sorted, i.e., the
first rcε(X ,Y ) inequalities are the inequalities defining an ε-relaxation, which can be
enforced by adding

ui ≥ ui+1, i ∈ [k − 1], (4)

to the problem.
Besides the symmetries of relabeling inequalities, we might also be able to relabel

points in Y without changing the structure of the problem. This is the case if we find a
permutation π of [d] such that π(X) = X and π(Y ) = Y , where for a set T ⊆ Rd we
define π(T ) = {π(t) : t ∈ T } and π(t) = (tπ−1(1), . . . , tπ−1(d)). The permutation π

gives rise to a permutation φ of Y and ψ of X , where φ(y):=π(y) and ψ(x):=π(x).

Lemma 5 Let (s, u) be a (partial) solution of Model (1) or (2) for rcε(X ,Y ). If there
exists a permutation π of [d] such that π(X) = X and π(Y ) = Y , then also (s′, u) is
a (partial) solution, where s′ arises from s by reordering the rows of s according to φ.

Proof Suppose (s, u) is a solution of Model (2). Then, (s, u) can be extended to a
solution of Model (1), i.e., there exist k inequalities

∑d
j=1 ai j x j ≤ bi , i ∈ [k], such

that the i th inequality separates the points in Fi = {y ∈ Y : syi = 1} from X . If we
apply permutation π to X and Y , we do not change the structure of the problem, that
is,

∑d
j=1 ai jπ(x) j ≤ bi , i ∈ [k], defines also a relaxation of X w.r.t. Y . Thus, if the

123



G. Averkov et al.

original i th inequality separated point y ∈ Y , the permuted inequality separates φ(y).
Consequently, if we define s′ by relabeling the rows of s according toφ, (π(a), b, s′, u)

is a solution of Model (1) and thus (s′, u) is a solution of Model (2). ��

If � = {π ∈ Sd : π(X) = X , π(Y ) = Y } and  is the group containing all φ

associated with the permutations π ∈ �, Lemma 5 tells us that we can also force
the rows of s ∈ {0, 1}Y×[k] to be sorted lexicographically non-increasingly w.r.t.
permutations from . In our implementation, we compute a set � of generators of the
group  and enforce for each γ ∈ � that the matrix s is lexicographically not smaller
than the reordering of s w.r.t. γ . We enforce this property by separating minimal cover
inequalities for symresacks and a propagation algorithm, see [15]. Both run in O(k)
time per γ ∈ �.

To detect the symmetries , we construct a colored bipartite graph G = (V , E).
The left side of the bipartition is given by X ∪ Y and the right side is defined as
R = {(v, j) ∈ Z × [d] : there is z ∈ X ∪ Y with z j = v}. There is an edge between
z ∈ X ∪ Y and (v, j) ∈ R if and only if z j = v. Moreover, each node gets a color
uniquely determining its type: all nodes in X are colored equally with color “X”,
all nodes in Y are colored equally by color “Y ”, and node (v, j) ∈ R is colored by
color “v”. Then, the restriction of every automorphism σ of G to R corresponds to a
permutation in �, and thus, restricting σ to Y is a permutation in .

Note that the graph G defined above might not allow to detect symmetries if a
symmetric arrangement of X and Y is translated asymmetrically. For example, if
X = t + �2, Y = t + ((�2 + ♦2)\�2), and t = (1

2

)
, then there is no permutation

keeping X invariant. For this reason, we use in the construction of G relative coor-
dinates. That is, for each coordinate j ∈ [d], we compute μ j = minz∈X∪Y z j and
translate X ∪ Y by −μ before building G.

Another way of handling symmetries for the compact model (1) is to handle sym-
metries of the inequalities

∑d
j=1 ai j x j ≤ bi defined in the model. We can reorder the

inequalities
∑d

j=1 ai j x j ≤ bi , i ∈ [k] that are (not) used in the relaxation, to obtain
another solution with the same objective value. To handle these symmetries, we can
add the inequalities

ai1 ≥ a(i+1)1 − 2(ui − ui+1), i ∈ [k − 1]. (5)

Inequalities (5) sort the inequalities (not) present in a relaxation by their first coeffi-
cient. The inequalities are compatible with Inequalities (4), but not necessarily with
the lexicographic ordering constraints. The latter is the case because cutting the
point y ∈ Y associated with the first row of matrix s might require a very small
first coefficient in any separating inequality, whereas other points might require a
very large first coefficient. In our experiments, we will investigate which symmetry
handling method works best for the compact and cutting plane model.

Finally, additional redundancies in Model (1) can be handled by enforcing
that

∑d
j=1 ai j x j ≤ bi becomes the trivial inequality 0ᵀx ≤ dρX if it is not used

in a relaxation of X (i.e., ui = 0). This removes infinitely many equivalent solutions
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from the search space, and can be modeled by replacing (1f) by

−ui ≤ ai j ≤ ui , (i, j) ∈ [k] × [d],

and the lower bound constraint in (1g) by

dρX ≤ bi + 2dρXui , i ∈ [k].

This method is compatible with both the lexicographic symmetry handling approach
and Inequalities (5).

Heuristics Recall that both the compact and the cutting plane model require to know
an upper bound k on rcε(X ,Y ). To find such an upper bound, we use two heuristics
in our experiments, which we describe next.

The first heuristic is based on the fact that conv(X) is an ε-relaxation of X w.r.t.Zd .
For this reason, for any Y ⊆ Zd , an upper bound on rcε(X ,Y ) is given by the number
of facet defining inequalities of conv(X).

The second heuristic is a greedy algorithm that iteratively constructs an ε-relaxation
as follows. The algorithmmaintains a setY ⊆ Y\X of points that are not yet separated
from X ; initially, Y is thus Y\X . In each iteration of the algorithm, a mixed-integer
program is solved that finds an inequality separating as many points in Y from X as
possible. Then, the newly separated points are removed from Y and the algorithm
repeats the previous steps until Y becomes empty. The mixed-integer program that we
used to find a separating inequality is a variant of Model (1) with k = 1, where the
objective is to maximize

∑
y∈Y sy1.

4.2 Algorithmic aspects of the cutting planemodel

To be able to deal with the exponentially many conflict inequalities (2c) in the cutting
plane Model (2), we are relying on a separation routine. We start by discussing the
case that the point s� to be separated is contained in {0, 1}Y×[k], i.e., for each of the k
inequalities we already know which points it is supposed to separate.

To checkwhether s� ∈ {0, 1}Y×[k] satisfies all conflict inequalities, we can compute
for each i ∈ [k] the set Fi = {y ∈ Y : s�

yi = 1}, and build a linear program similar
to Model (1) that decides whether X and Fi are ε-separable. If the answer is yes, we
know s� is feasible. Otherwise, we have found a violated conflict inequality, namely∑

y∈Fi syi ≤ |Fi | − 1. Of course, this inequality will be rather weak in practice,
because it excludes only the single assignment Fi .

One way to strengthen the inequality is to search for a minimum cardinality
subset Fmin of Fi , which cannot be separated from X . The corresponding inequal-
ity

∑
y∈Fmin

syi ≤ |Fmin| − 1 then does not only cut off s�, but every solution that
assigns inequality i all points from Fmin. However, we do not expect that Fmin can
be computed efficiently, because detecting a minimum cardinality set of inequalities
whose removal leads to a feasible LP is NP-hard, see Sankaran [27]. Instead, we com-
pute a minimal cardinality subset F ⊆ Fi by initializing F = ∅, adding points y ∈ Fi
to F until F and X are no longer separable, and then iterating over all points y′ in F
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and checking whether their removal leads to a separable set. In the latter case, we
keep y′ in F ; otherwise, we remove it. Although this procedure is costly as it requires
to solve �(|Fi |) LPs to find F , preliminary experiments revealed that the running
time of the cutting plane model can be reduced drastically when using the sparsified
inequalities.

To summarize, we use the previously mentioned scheme to separate integral points.
As this scheme is already rather involved, we expect the generation of (2c) to be even
more difficult for non-integral points. Thus, we only heuristically separate non-integral
points s� ∈ [0, 1]Y×[k] in our implementation. To this end, for each i ∈ [k], we again
initialize an empty set F and iteratively add y ∈ Y in non-increasing order w.r.t. s�

yi
until F ∈ C and s� violates the inequality (or we know that such an inequality cannot
be violated).

4.2.1 Algorithmic aspects of the column generation model

In contrast to the compactmodel (1), the number of variables in (3) grows exponentially
in |Y |, which makes it already challenging to solve the LP relaxation of (3). In our
implementation, we thus use a branch-and-price procedure for solving (3), i.e., we
use a branch-and-bound procedure in which each LP relaxation is solved by column
generation. In the following, we discuss the different components of the branch-and-
price procedure.

Solving the Root Relaxation At the root node of the branch-and-bound tree, we are
given a subset I ′ of all possible variables in I and solve the LP relaxation of (3)
restricted to the variables inI ′. To checkwhether the solution obtained for the variables
in I ′ is indeed an optimal solution of the LP relaxation, we need to solve the pricing
problem, i.e., to check whether all variables in I have non-negative reduced costs.
Since the pricing problem is equivalent to the separation problem for the dual, we
determine the dual of the root node LP relaxation of (3), which is given by

max
∑

y∈Y
αy (6a)

∑

y∈I
αy ≤ 1, I ∈ I, (6b)

αy ≥ 0, y ∈ Y . (6c)

The pricing problem at the root node is thus to decide, for given dual weights αy ,
y ∈ Y , whether there exists a set I ∈ I with

∑
y∈I αy > 1. Unfortunately, we cannot

expect to solve this problem efficiently in general.

Proposition 6 Let X ⊆ Zd be finite and lattice-convex, let Y ⊆ Zd\X be finite,
and let αy ≥ 0 be a rational weight for y ∈ Y . Then, the pricing problem with
input X, Y , and α ∈ QY , for the LP relaxation of (3), i.e., deciding whether there
exists I ∈ I(X ,Y ) with

∑
y∈Y αy > 1, is NP-hard.

123



Efficient MIP techniques for computing the relaxation…

Proof Note that the pricing problem is equivalent to finding a set I ∈ I(X ,Y ) that
maximizes the value

∑
y∈I αy . If all weights αy , y ∈ Y , have the same value α > 0,

the problem reduces to find a set I ∈ I of maximum cardinality. The latter problem
is NP-hard even if X consists of a single point, in which case it reduces to the open
hemisphere problem, see Johnson and Preparata [19]. ��
To solve the pricing problem, we use a mixed-integer program that is a variant of (1)
with k = 1. The only difference is that instead of minimizing the number of needed
inequalities, we maximize the expression

∑
y∈Y αysy1. If this value is at most 1, we

have found an optimal solution of the LP relaxation. Otherwise, we have found a
variable zI with negative reduced cost, add I to I ′, and iterate this procedure until all
reduced costs are non-negative. In our implementation, we initialize the set I ′ by

I ′ = {{y ∈ Y : aᵀy > b} : aᵀx ≤ b is facet defining for conv(X)
} ∪ {{y} : y ∈ Y

}
.

Branching Strategy Let u be a node of the branch-and-bound tree and denote by zu

an optimal solution of the LP relaxation at node u. A classical branching strategy
is to select a variable zI with zuI /∈ Z and to create two child nodes u0 and u1 by
enforcing zI = 0 in u0 and zI = 1 in u1. While the branching decision zI = 1 has
strong implications for computing rcε(X ,Y ) (we basically fix an inequality used in
the relaxation), branching zI = 0 only rules out one of the exponentially many choices
in I for a separated set.

To obtain a more balanced branching rule, we use the branching rule suggested by
Ryan and Foster [26]. We are looking for two distinct variables zI and z J with zuI ,
zuJ /∈ Z such that both the intersection I ∩ J and symmetric difference I�J of I and J
are non-empty. Let y1 ∈ I ∩ J and y2 ∈ I�J . Then, two child nodes u0 and u1 of u
are created as follows. In u0, variables zI ′ are fixed to 0 if I ′ contains both y1 and y2.
In u1, we fix zI ′ to 0 if I ′ contains either y1 or y2. That is, u0 enforces y1 and y2 to
be contained in different sets, and u1 forces them to be contained in the same set I ′.
This branching rule obviously partitions the integer solutions feasible at node u. To
show its validity it is thus sufficient to show that for every non-integral solution zu the
sets I and J exist.

Lemma 7 Let zu be a non-integral optimal solution of the LP relaxation of (3) at
node u of the branch-and-bound tree. Then, there exist two distinct sets I , J ∈ I ′
with zuI , z

u
J /∈ Z such that I ∩ J 
= ∅ and I�J 
= ∅.

Proof Let I ∈ I ′ be such that zuI /∈ Z. Then, zuI ∈ (0, 1), since zu is an optimal
solution of the LP relaxation. Due to (3b), for every y ∈ I , there exists J y ∈ I ′\{I }
with y ∈ J y such that zuJ y > 0. For at least one J y we have zuJ y ∈ (0, 1), because
otherwise, we could improve the objective value of zu by setting zuI to 0 and still
satisfying all constraints. Such a set J y together with I satisfy the properties in the
statement of the lemma: Since y is contained in both I and J y , we have I ∩ J y 
= ∅.
Moreover, as I 
= J y , I�J y 
= ∅. ��
In our implementation, we compute for each variable zuI its fractionality
θ(I ) = 1

2 − min{zuI , 1 − zuI }. Then, we select I and J such that θ(I ) + θ(J ) is
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maximized; the branching candidates y1 ∈ I ∩ J and y2 ∈ I�J are selected arbi-
trarily. Note that other scores than the fractionality can be used to define branching
rules and that this might have a big impact on the performance of branch-and-price
codes [31]. In our experiments, however, we observed that the main computational
bottleneck seems to be solving the pricing problem. We have therefore not conducted
experiments with other branching rules.

Solving LP Relaxations in the Tree To not re-generate variables that have been fixed
to 0 by the branching rule, we need to incorporate the branching decisions active
at a node of the branch-and-bound tree into the pricing problem. This can easily be
done by adding linear constraints to the root node formulation of the pricing problem.
If a branching decision was that y1 and y2 shall be contained in different sets, we
add sy11 + sy21 ≤ 1 to the pricing problem. The branching decision that y1 and y2
have to be contained in the same set can be enforced by the constraint sy11 = sy21.

5 Numerical experiments

The aim of this section is to compare the practical performance of the three models for
computing rcε(X ,Y ) as well as their enhancements. To this end, we have implemented
all three models in C/C++ using SCIP 7.0.3 [11] as modeling and branch-and-
bound framework and SoPlex 5.0.2 to solve all LP relaxations. All branching,
propagation, separation, and pricing methods are implemented using the correspond-
ing plug-in types of SCIP. Since we are not aware of an alternative separation routine
for hiding set cuts, we compute all hiding sets of size two in a straightforward fash-
ion before starting the branch-and-bound process. During the solving process, we
separate these inequalities if the corresponding cuts are violated. To handle symme-
tries via lexicographic orderings, we useSCIP’s internal plug-inscons_orbitope,
cons_orbisack, and cons_symresack that implement the methods discussed
in Sect. 4; the branching and pricing plug-ins for the column generationmodel strongly
build up on the corresponding plug-ins of the binpacking example provided in the
SCIP Optimization Suite. All convex hull computations have been carried out using
cdd 0.94 m [10] and graph symmetries are detected using bliss 0.73 [20].

Our implementation is available online at github3 and zenodo [14].

Implementation Details All models admit some degrees of freedom that we detail in
the following. Both the compact model and the cut model require an upper bound on
the relaxation complexity. In both models, we run the heuristics discussed in Sect. 4 to
find an upper bound k on rcε(X ,Y ). We also use the heuristic solution with the least
number of inequalities as an initial solution. A comparison of the quality of solutions
found by the facet and greedy heuristics is provided by Table 1 of this article’s online
supplement. In the column generation model, we need to select a subset of I to define
initial variables. In our experiments, we used two different variants to initialize I. On
the one hand, we use the sets I ∈ I that are defined by the facet defining inequalities

3 https://github.com/christopherhojny/relaxation_complexity (githash c2edaaae was used for our experi-
ments).

123

https://github.com/christopherhojny/relaxation_complexity


Efficient MIP techniques for computing the relaxation…

of conv(X), i.e., the sets of points in Y that are separated from X by the facet defining
inequalities. On the other hand, if the greedy heuristic provides a solution with fewer
inequalities, we use the corresponding separated sets instead.Moreover, we include the
singleton sets {y}, for y ∈ Y , to make sure that the LP relaxation remains feasible after
branching. The reason why we experimented with two different initializations is that
the initial variables have a strong impact on the performance of the branch-and-price
algorithm, as we will discuss below.

Since we observed that the mixed-integer programs solved as a subroutine of our
greedy heuristic require a lot of time, we do not solve the subproblems to global
optimality. Instead, we impose a limit of 1000 nodes in the branch-and-bound trees
used to solve each subproblem. We imposed a node limit rather than a time limit to
obtain a deterministic algorithm, which is not impacted by performance variability
when solving the subproblems. Moreover, we have also tried higher node limits to
find better solutions to the subproblems, see “Appendix A”. Interestingly, the quality
of heuristic solutions degraded with a higher node limit, which seems counterintuitive
at first glance. However, by not separating the maximum number of points in the first
iterations, there are more degrees of freedom in later iterations of the heuristic that
allow to save some inequalities.
Settings To encode the different settings that we have tested, we make use of the
following abbreviations:

hiding Whether hiding set cuts are added (1) or not (0).
sym. Which symmetry method is used: none (0), simple (s), or advanced (a), where

simple is (4) and (5), and advanced uses (4) and additionally enforcing lexi-
cographically maximal solutions based on symmetries of X and Y .

prop. Whether the convexity propagator is used (1) or not (0).

Note that we do not report on results for the intersection propagation algorithm. This
is because, in preliminary experiments, we have seen that its running time is very high,
in particular, because it needs to compute in each iteration O(|Y |) convex hulls. As a
result, we could hardly solve any instance, not even small ones.
Test Sets In our experiments, we have used three different test sets:

basic The sets X are the integer points in the 0/1 cube, the crosspolytope, or
the standard simplex in dimensions d ∈ {3, 4, 5}. Thus, the sizes of these
test sets are 2d , 2d + 1, and d + 1, respectively. For any such X ⊆ Zd ,
the sets Y consist of all points in Zd\X whose �1-distance to X is at
most �, where 1 ≤ � ≤ 10− d. The reason for smaller distance in higher
dimension is that the problems get considerably more difficult to solve
with increasing �.

downcld This test set consists of 99 full-dimensional subsets X of {0, 1}5 that cor-
respond to down-closed subsets (or abstract simplicial complexes) of the
Boolean lattice on 5 elements. This means that, whenever a point x ∈ X ,
then every vector x ′ ∈ {0, 1}5 that differs from x only in the coordinates i
with xi = 1, also belongs to X . The corresponding sets Y are the points
in Z5\X whose �1-distance to X is at most � ∈ {1, 2, 3}. The sets X
have been generated by the natural one-to-one correspondence between
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inclusion-wise maximal sets in a down-closed family and antichains in
the Boolean lattice.

sboxes The test set comprises 18 instances modeling 4-bit (12 instances) and 5-
bit (6 instances) S-boxes, which are certain non-sparse Boolean functions
arising in symmetric-key cryptography. The derived sets X are contained
in {0, 1}8 and {0, 1}10, respectively, and Y are the complementary binary
points. These instances have also been used byUdovenko [30] who solved
the full model (3), i.e., without column generation.

The basic instances feature various aspects that might be relevant for computing rc(X)

via computing a series of values rcε(X ,Y ) for different Y and ε according to [4]: The
cube is parity complete, thus there exists a small set Y such that rc(X) = rcε(X ,Y )

(in fact, this set is {−1, 0, 1, 2}d\X ); the crosspolytope has an interior integer point
and thus there exists a (potentially large) finite set Y with rc(X) = rcε(X ,Y ); for the
simplex �4 in R4, no finite set Y exists with rc(�4) = rc(�4,Y ); see [3]. That is,
rc(�4,Y ) < rc(�4) ≤ rcQ(X ,Y ) for all finite sets Y ⊆ Z4.

Since the standard simplex �d is a down-closed subset of {0, 1}d , the small-
sized downcld instances might be good candidates for further examples X such
that rcε(X ,Y ) < rcQ(X), for every finite set Y ⊆ Zd and for ε > 0 small enough.
Our aim for selecting these instances is thus to identify whether there are potentially
further candidates for sets X whose relaxation complexity cannot be computed via
finite sets Y .

Finally, the sboxes instances are used to investigate whether our techniques are
suited to compute rcε(X ,Y ) also in higher dimensions. This is relevant, among oth-
ers, in the field of social choice or symmetric cryptanalysis, where the aim is to
find rc(X , {0, 1}d) for sets X ⊆ {0, 1}d . As described in more detail in [30], the
dimensions of the sets X ⊆ {0, 1}d in our sboxes test set are twice the input length
of the used S-boxes in the analyzed cryptographic scheme. This input length is typ-
ically in the range of 4–6 bits, so that our instances of dimensions d ∈ {8, 10} are
representative for the application.

We provide an overview of the exact sizes of X and Y for the different instances
as well as the best bounds we could obtain using the different settings in Table 1 of
this article’s online supplement. This supplement also contains detailed information
about the bounds on rcε(X ,Y ) found by the different methods.

Computational Setup All experiments have been run on a Linux cluster with Intel
Xeon E5 3.5 GHz quad core processors and 32 GB memory. The code was executed
using a single thread and the time limit for all computations was 4 h per instance.

All mean numbers are reported in shifted geometric mean
∏n

i=1(ti + s)
1
n − s to

reduce the impact of outliers. For mean running times, a shift of s = 10 is used;
for nodes of the branch-and-bound tree, we use s = 100. The value of ε in comput-
ing rcε(·, ·) is set to 0.001. The upper bound on the number of inequalities needed in
the compact and cutting plane model is given by the number of facets of conv(X). We
also provide an initial primal solution corresponding to a facet description of conv(X)

or a solution found by the greedy heuristic.
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5.1 Results for test set basic

Due to our choice of the sets X and Y , the basic test set comprises 18 cube, crosspoly-
tope, and simplex instances, respectively. Table 1 shows the results for the compact
model. For the plain compact model, we observe that SCIP can already solve quite
some instances, but, in comparison to the enhanced variants, the running times are
rather high. Checking each of the enhancements separately, handling symmetries is
most important to reduce running time and to increase the number of instances solvable
within the time limit (except for the simplex test set). Interestingly, handling symme-
tries on the a-variables modeling the inequalities in a relaxation performs better than
handling the symmetries of the points to separate. Adding hiding set cuts to the prob-
lem formulation is also beneficial, whereas the convexity propagator only slightly
improves the running time for crosspolytope and simplex instances, and harms the
solution process for cube instances. For the latter, the worse performance for enabled
propagation cannot be explained by the running time of the propagator: For cube
instances, e.g., the shifted geometric mean running time per instance of the propaga-
tor was 3.1 s, which is much smaller than the increase of mean running time. Thus,
it seems that the found reductions guide the branch-and-bound search into the wrong
direction or make it more difficult for SCIP to find other reductions.

Regarding symmetry handling, the simple symmetry handling method performs
better than the advanced method if not other enhancements are enabled. Additionally
enabling hiding set cuts, however, neither the simple nor the advanced method domi-
nates the other method. For cube and simplex instances, the advanced method requires
roughly two thirds of the running time of the simple method; for crosspolytopes, the
advanced method is, however, slower by roughly 33%. Comparing simple symmetry
handling and hiding set cuts with the basic model, we achieve significant performance
improvements of 86% for cubes, 85% for crosspolytopes, and 72% for simplices, and
similar trends can be found for the advanced symmetry handling method with hid-
ing set cuts. We conclude that hiding set cuts and symmetry handling are important
enhancements for solving the compact model efficiently.

Next, we discuss two variants of the column generation model for which we only
compare two variants each: we either disable or enable hiding set cuts in the pricing
problem. Since the convexity propagator does not seem to be helpful for the compact
model, we do not enable it when solving the pricing problem. Moreover, symmetry
handling is not important, because there is only one inequality to be identified by the
pricing model. The results are summarized in Tables 2 and 3, where we consider the
column generation model with and without the iterative greedy heuristic, respectively.
Our motivation for these two variants is that the initial variables I have a big impact
on the performance of the column generation procedure. It is not clear whether the
potentially larger set I provided by facet defining inequalities performs better than I
defined via the iterative greedy solution.

Indeed, comparing the two variants of the column generation model, we see that,
in general, disabling the iterative greedy heuristic performs much better. When hiding
set cuts are enabled, the version without the heuristic is 39%, 10%, and 26% faster
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for cube, crosspolytope, and simplex instances, respectively, than the version with the
heuristic.

Comparing the column generation model without the iterative greedy heuristic
and enabled hiding set cuts with the plain compact model, we see that the column
generation model performs much better for cube instances, performs comparably for
crosspolytope instances, and is much worse for simplex instances. For cubes, all solv-
able instances are solved within the root node which is, on the one hand, because of
the strong dual bound as described in Proposition 3. On the other hand, the generated
sets I ∈ I allow heuristics to find high quality solutions yielding a matching primal
bound. Looking onto results on a per-instance basis reveals that the pricing problems
become considerably harder if d and � increases. For example, the solvable cube
instances (greedy heuristic and hiding set cuts enabled) require a shifted geometric
mean running time of 9.4 s. For d = 5 and � ≥ 2, however, only 4–10 nodes of the
branch-and-bound tree can be processed. For the simplex instances, the column gen-
eration model needs approximately twice as much time as the plain compact model,
which is again explained by the very high running time of the pricing problem.

Finally, we consider the cutting plane model. In preliminary experiments we
observed that the plain version without iterative greedy heuristic can hardly solve any
instance efficiently. Enabling the heuristic, however, leads to a much smaller model
as the strength of the model highly depends on the quality of the best known upper
bound. Comparing the different enhancements with each other, we can see, analo-
gously to the compact model, that adding hiding set cuts and handling symmetries
is beneficial as it reduces the running time by 92–99% (Table 4). Interestingly, the
advanced symmetry handling methods work consistently better than the simple sym-
metry handling methods, whereas we observed no clear trend for the compact model.
A possible explanation is that the simple methods just sort the used inequalities in the
cut model, whereas, in the compact model, they also impact the a-variables. Since the
latter is not possible in the cut model, only a small portion of symmetries is handled.
The advanced methods compensate the weaker effect of the simple methods by also
sorting the patterns of separated points.

In summary, the column generation model provides very good primal and dual
bounds. If these bounds match, rcε(X ,Y ) can be computed rather efficiently if not
too many pricing problems need to be solved. However, if the bounds do not match,
the NP-hardness of the pricing problem strikes back and solving many further pricing
problems is too expensive. In this case, the compact and cut models are rather effective
alternatives that also allow to compute rcε(X ,Y ) for d = 5 in many cases. Comparing
the latter two models, the compact model is the more competitive alternative as, for
crosspolytope and simplex instances, it performs 67% and 82%, respectively, better
than the cut model in the respective best settings. For cube instances, the compact
model performs 50% better.

5.2 Results for test set downcld

In this section, we turn the focus on 5-dimensional 0/1 down-closed sets. On the one
hand, our aim is to investigate whether the findings of the previous section carry over
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to a much broader test set in dimension 5. On the other hand, we are interested in
identifying further sets X ⊆ {0, 1}5 with rcε(X ,Y ) < rcQ(X) for every choice of
a finite set Y ⊆ Zd and ε > 0 small enough. Because of our results on the basic
test set, we did not run any experiments using the cutting plane model as we expect
that it performs worse than the compact model. Instead, we consider a hybrid version
of the compact model and the column generation model: We only solve the column
generation model’s LP relaxation to derive a strong lower bound on rcε(X ,Y ) and to
find good primal solutions. Both are transferred to the compact model with the hope
to drastically reduce solving time. The running times and number of nodes reported
for the hybrid model are means of the total running time and total number of nodes for
solving the LP relaxation in the column generation model and the resulting compact
model.

Table 5 shows aggregated results for the 99 instances of the downcld test set for
different �1-neighborhoods Y of X (radius 1–3). While the plain compact model is
able to solve almost all instances for radius 1, computing rcε(X ,Y ) for larger radii
becomes much harder. As the plain model can only solve roughly a quarter of all
instances with radius 2 and hardly any instance for radius 3, there is definitively a
need for model enhancements. In general, the same observations as in the previous
section can be made: symmetry handling and adding hiding set cuts improve the
solution process a lot. The biggest impact is achieved by hiding set cuts. Interestingly,
without hiding set cuts, the simple symmetry handlingmethods dominate the advanced
techniques.When hiding set cuts are enabled, however, the advancedmethods perform
significantly better than the simple symmetry handling methods. The consistently best
setting is thus to enable hiding set cuts and advanced symmetry handling methods. It
allows us to solve all instances with radius at most 2; for radius 3, we can solve 68 out
of the 99 instances. Regarding the number of solved instances, however, we observe
that simple symmetry handling allows to solve 6 more instances for radius 3, while
the mean running time increases by 37%.

A possible explanation is based on the nature of the advanced setting: Each inequal-
ity defining a relaxation of X w.r.t. Y defines a pattern on the points from Y that are cut
by this inequality. The advanced method enforces that the cut patterns of the inequal-
ities are sorted lexicographically based on a sorting of the elements of Y . Since the
results of the lexicographic comparison is determined by the first position in which
two vectors differ, it is unlikely that points having a late position in the ordering of Y
are very relevant for the lexicographic constraint. Thus, the symmetries are in a certain
sense mostly handled for the early points in this ordering. In contrast to this, the simple
method takes the geometry of the inequalities in a relaxation into account by sorting
inequalities based on their first coefficients. If also other components are enabled, how-
ever, the geometric information of the simple symmetry handling methods can also
be exploited by the advanced symmetry handling techniques, which yields a better
running time in particular for instances with large radius.

For the column generation model, we again have conducted experiments with
enabled and disabled iterative greedy heuristic. As the results do not differ quali-
tatively, we only elaborate on the version without the heuristic in the following. In
comparison to the enhanced compact model, the column generation model is again
inferior. For radius at least 2, it can hardly solve any instance and, as already discussed
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in the previous section, the reason for this is the long running time of the pricing mod-
els that need to be solved often at each node of the tree. This is reflected by the number
of processed nodes during the branch-and-price procedure that drops drastically (as
the number of solved instances) if the radius is getting larger. However, we can again
observe that the root node can be solved relatively efficiently and that the obtained
primal and dual bounds are rather strong. This is reflected in the hybrid model, which
solves most instances with radius 3 and reduces the running time (in comparison to
the best compact model) by 34% for radius 2 and 67% for radius 3. For radius 1, the
running time of the hybrid model is roughly 50% larger, but the absolute difference is
rather small.

In summary, based on our experiments, the hybrid model is the best choice for
computing rcε(X ,Y ) as it combines the strong bounds from the column generation
model with the ability of the compact model to quickly solve LP relaxations within
the branch-and-bound tree. In particular, it benefits from hiding set cuts since their
implications are very difficult to be found by SCIP.

Finally, concerning our goal to identify candidates for sets X ⊆ {0, 1}5 such
that rcε(X ,Y ) < rcQ(X) for all finite Y ⊆ Z5 and ε > 0 small enough, our
experiments for radius 3 revealed the following: If Y (X) are the integer points
in the �1-neighborhood of X with radius 3, then there are three sets X such that
rcε(X ,Y (X)) = 4. These sets are�5,�5∪{e1+e2} and�4×{0, 1}. Moreover, there
are 16 sets X with rcε(X ,Y (X)) = 5. It is left open for future research to identifywhich
other sets than �5 satisfy rcε(X ,Y (X)) < rcQ(X). Note that rcQ(X) ≥ 6, whenever
X ⊆ {0, 1}5 is full-dimensional, because rational relaxations must be bounded.

5.3 Results for test set sboxes

The results for the sboxes test set are summarized in Table 6. In preliminary experi-
ments, we observed that the iterative greedy heuristic is very important for solving the
compact model. If we do not use this heuristic, none of the 10-dimensional instances
could be solved with enabled hiding set cuts, because all these experiments hit a mem-
ory limit of 20 GB. The reason is that these models grow very large even without any
enhancements as we use the number of facets of conv(X) to upper bound rcε(X ,Y );
the number of facets for these instances ranges between 888 and 2395. For this reason,
we only report on the numbers with enabled heuristic in Table 6.

But even when the heuristic is enabled, the compact model turns out to be very
challenging to solve. In dimension 8, both symmetry handling methods and hiding set
cuts are needed to solve instances within the time limit: the advanced method allows
to solve three instances, whereas the simple symmetry handling method only allows
to solve a single instance. In dimension 10, no instance can be solved.

In contrast to this, we see that the column generation model performs extremely
well for the problems in dimension 8. It can solve all twelve 8-dimensional instances
within the time limit, on average in 69.9 s if hiding set cuts and the greedy heuristic
are enabled. When hiding set cuts are disabled, the running time roughly doubles
and only 8 instances can be solved. Disabling the greedy heuristic has an interesting
effect. On the one hand, it drastically reduces the running timewhen hiding set cuts are
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Table 6 Comparison of running times for different settings for sboxes instances

Setting Dimension 8 (12 instances) Dimension 10 (6 instances)

Hiding Sym Prop #solved #nodes Time #solved #nodes Time

Compact model

0 0 0 0 367,460.1 14,400.0 0 7877.6 14,400.0

0 0 1 0 369,738.1 14,400.0 0 7705.2 14,400.0

0 a 0 0 361,190.9 14,400.0 0 5318.0 14,400.0

0 s 0 0 739,363.8 14,400.0 0 3727.3 14,400.0

1 0 0 0 108,496.5 14,400.0 0 460.6 14,400.0

1 a 0 3 207,232.0 11,220.9 0 243.4 14,400.0

1 s 0 1 31,090.4 13,792.2 0 67.4 14,400.0

Column generation model

0 8 35.4 981.8 1 1.2 9320.9

1 12 69.9 443.4 0 1.7 14,400.0

Column generation model without greedy heuristic

0 9 21.4 245.0 2 8.6 6845.6

1 10 64.9 461.3 1 3.2 14,273.9

Hybrid model

0 s 0 4 7193.8 2023.4 1 5093.9 9476.6

1 s 0 6 31,439.0 1937.1 0 7.8 14,400.0

0 a 0 4 7888.8 2040.4 1 8365.8 9479.1

1 a 0 6 52,965.3 2191.1 0 20.1 14,400.0

Hybrid model without greedy heuristic

0 s 0 6 5992.6 635.8 2 622.1 4627.5

1 s 0 6 21,585.5 1390.0 1 36.0 14,090.7

0 a 0 6 7752.4 635.7 2 983.4 4619.2

1 a 0 4 59,210.9 2770.9 1 87.2 14,088.8

disabled; with enabled hiding set cuts, however, it cannot solve all instances anymore.
For dimension 10, the columngenerationmodel is also able to solve 2 out of 6 instances
within the time limit when both the greedy heuristic and hiding set cuts are disabled.

Finally, the hybrid model performs worse than the column generation model in
dimension8.Although the derivedbounds fromsolving the columngenerationmodel’s
LP relaxation yield again very good bounds on the relaxation complexity, the value
of rc(X , {0, 1}d) can still be large if d ∈ {8, 10}. Thus, also the compact model embed-
ded in the hybrid model is struggling with the number of variables and constraints. In
dimension 10, the hybrid model with disabled heuristic and hiding set cuts performs
much better than the corresponding column generation model. However, as only two
instances can be solved to optimality, it is difficult to draw reliable conclusions. For
this reason, computing rc(X , {0, 1}d) via the column generation model is most com-
petitive.
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5.4 Conclusions

Being able to compute the exact value of the quantity rcε(X ,Y ) is highly relevant in
many areas, such as, social choice, symmetric cryptanalysis, or machine learning. For
this reason, we have proposed three different models that allow to compute rcε(X ,Y )

usingmixed-integer programming techniques.As our experiments reveal, each of these
models comes with advantages and disadvantages. The compact model, for example,
workswell in small dimensions as the number of variables and inequalities is small and
it encapsulates all essential information about rcε(X ,Y ). In higher dimensions, how-
ever, the dual bounds of the compact model become weaker. In this case, the column
generation model provides very good bounds that can be transferred to the compact
model to still compute rcε(X ,Y ) rather efficiently if d = 5. But if the dimension d
grows even larger, only the column generation model seems to be competitive as it
does not scale as badly as the compact model when rcε(X ,Y ) increases. The main
reason is that the compact model is relying on a good upper bound on rcε(X ,Y ) to be
indeed compact. A possible drawback of the column generation model is, however,
that it is very sensitive to the initial set of variables I.

These findings thus open the following directions for future research. Since the
compact model requires a good upper bound on rcε(X ,Y ), it is natural to investigate
heuristic approaches for finding ε-relaxations of X or to develop approximation algo-
rithms. Moreover, since the column generation model becomes more relevant if d is
large, it is essential that the pricing problem can be solved efficiently. Since the pricing
problem is NP-hard, also here a possible future direction could be to develop heuristics
or approximation algorithms for solving it. For both the compact and column genera-
tion model, hiding set cuts turned out to be useful. However, we are not aware of an
efficient routine for generating these cutting planes. Thus, it is natural to devise an
efficient scheme for generating hiding set cuts on the fly. As additional inequalities
such as hiding set cuts and symmetry handling inequalities drastically improved the
performance of the compact model, the development of further inequalities modeling
structural properties of relaxation complexity might allow to solve the compact model
even more efficiently.

Finally, a natural approach to compute rcε(X ,Y ) for finite sets Y is to consider a
sequence of sets (Yi )i≥0 such that Yi ⊆ Yi+1 ⊆ Y and to compute rcε(X ,Yi ) until the
found relaxation w.r.t. Yi is already a relaxation w.r.t. Y . Preliminary experiments with
this approach using our code reveal that itmight even take longer to compute rcε(X ,Yi )
than rcε(X ,Y ) and that the sets Yi need to be selected carefully to yield a bound close
to rcε(X ,Y ). We thus believe that an analysis of the geometry of X and Y is needed
to find meaningful sets Yi for which rcε(X ,Yi ) can be found efficiently. This is out of
scope of this article though.
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A Comparison of different node limits for the greedy heuristic

In this section, we provide some statistics on the impact of the node limit per sub-
problem of the greedy heuristic on the quality of the solution provided by the greedy
heuristic. Table 7 compares three parameterizations of the greedy heuristic by impos-
ing a node limit of 1000, 10,000, and 100,000, respectively. The left part of the table
compares the average running times of the three parameterizations. One can clearly
see that the running time increases drastically when increasing the node limit. To see
whether the increased running time is compensated by finding relaxations with less
inequalities, we computed for each instance the number of inequalities used by the
three greedy solutions and checked how often a parameterization found a solution
with the least number of inequalities. These numbers are reported in the right part of
the table. For many test sets, the parameterization using 1000 performs best, i.e., finds
in most cases a relaxation with the least number of inequalities. Thus, the increase
in running time when using a higher node limit is not compensated by finding better
solutions than parameterizations with a lower node limit in general. For this reason,
the default node limit imposed in our experiments is 1000.
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Table 7 Comparison of different parameterizations of the greedy heuristic

Test set Node limit/running times Node limit/best solution

1000 10,000 100,000 1000 10,000 100,000

cube 11.54 61.06 297.82 17 15 13

cross 16.23 82.72 421.07 16 16 14

simplex 16.42 102.99 541.39 15 14 17

downcld radius 1 3.34 17.95 58.74 74 68 74

downcld radius 2 10.84 59.06 382.92 69 78 76

downcld radius 3 23.19 137.96 773.11 61 67 63

sboxes dimension 8 11.78 56.98 114.16 7 3 4

sboxes dimension 10 242.97 680.57 2838.90 1 3 4
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