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ABSTRACT 
Acoustic radiation from an airfoil subjected to a real flow is 
one such effect induced by turbulence and demands high-
performance computing for its prediction numerically. The 
methods which are available now range back from 
analytical ones, which are fast but not precise enough to 
capture nonlinear effects, to the numerical one, which 
heavily depends on the computing resources. This study 
focuses on the development, validation, and demonstration 
of a transient, two-dimensional stochastic method for the 
prediction of leading edge noise. A new approach to model 
the noise from turbulent flows is presented to bridge the low 
fidelity and high-fidelity methods. The method relies on the 
classical view of turbulence as a superposition of random 
vortices convected with the mean flow. The fluctuating 
velocity is formulated using the scalar potential given by a 
convolution product which furnishes a solenoidal velocity 
field. The system is then optimised stochastically to create 
a realistic turbulence field based on a target energy spectra 
using an evolutionary optimisation algorithm. The pressure 
signals are then used to calculate the sound radiation using 
Ffowcs-Williams and Hawkings analogy. The approach has 
been validated against analytical solutions of the linearized 
wave equations and experimental data available. 

INTRODUCTION 
The noise due to the interaction of turbulent flow with 

the leading edge of an airfoil is a primary source of 
aerodynamic noise. The problem is illustrated in Fig. 1. 
Turbulence is, by its very nature, stochastic and therefore 
has a broad frequency spectrum which makes it more 
difficult to calculate the effect induced by it. Acoustic 
radiation from an airfoil subjected to a real flow is one such 
effect induced by turbulence and demands high-
performance computing for its prediction numerically. The 
methods which are available now range back from 
analytical ones, which are fast but not precise enough to 
capture nonlinear effects, to the numerical one, which 
heavily depends on the computing resources [1].  

 
 

Figure 1: Incidence turbulence interacting with the 
leading edge of an airfoil 

 
The early studies by [2], [3], and [4] show the use of 

frequency domain analysis which have accounted for the 
effects of thickness, camber, and angle of attack, but were 
mainly used for relatively low frequencies. As the frequency 
increases, the spatial and temporal resolution requirements 
make these numerical methods more difficult to apply [5]. 
Another prevalent method in use is the time domain analysis 
[6-8] which uses a set of discrete vortices to realise the 
turbulent inflow. This method has an advantage over the 
frequency domain, primarily the ability to realise the 
turbulent inflow with the desired statistical properties. On 
another hand, it is way more challenging to model the 
inflow conditions using a set of discrete vortices, since the 
parameters which control the size and the strength of these 
vortices are unknown. 

Among the different available methods to synthesise 
synthetic turbulent flow signal, a method proposed by [9], 
of superimposing a white noise signal over the mean flow. 
[10], [11], and [12] used a similar method to realise a two-
dimensional synthetic turbulent inflow using the point 
vortices. [13] studied the behaviour of a finite number of 
point vortices and examined the possibility of replacing a 
turbulent flow with a collection of point vortices. However, 
there is a problem with approximating the vorticity with 
point vortices (delta functions), i.e. infinite spikes, which is 
an associated singularity in the streamfunction and velocity 
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fields. This singularity appears when the distance to the 
point vortex becomes very small. 

The main objectives of this paper are to overcome this 
difficulty by replacing the point-vortices with the shape 
function vortices with the details of their implementation, 
and to optimise these shape function vortices in order to 
obtain a realistic 2D von Kármán energy spectra. Section 
Numerical method presents the kinematics of the vortex 
particles and the governing equations involved in the 
Lagrangian frame of reference. The singularity associated 
with the point vortices as well as its elimination is discussed 
in Point vortex singularity and Gaussian wave shape 
function followed by the synthesis of the turbulent inflow in 
Synthesis of 2D turbulence. 

NUMERICAL METHOD 

Vortex particle kinematics 
Consider two-dimensional flows, where the 

incompressibility constraint ∇ ⋅ u = 0 is satisfied by taking 
𝑢' = −∂𝜓/ ∂𝑦, 𝑢- = ∂𝜓/ ∂𝑥. The stream function 𝜓(x, 𝑡) 
(which is a conserved quantity [14]) plays the role of the 
Hamiltonian for the coordinates (x, y) of the vortex particle 
whose dynamics is given by 

 
456
47
= 48

496
,																								496

47
= − 48

456
, (1) 

 
and can be written as 

 
𝜓(r', … , r=) = −∑?@A' ∑?BA@C' Γ@ΓB𝒢Fr@, rBG −

'
-
∑?@A' Γ@-𝑔(r@, r@), (2) 

 
where Γ represents the circulation. The first term on the right 
hand side is the Green’s function of the first kind for the 
domain, defined by 
   
                                    ℒ𝒢(r, rJ) = 𝛿(r, rJ). (3) 
 
 ℒ, the linear elliptic operator is taken to be the Laplacian 
(ℒ ≡ Δ, for most of the formulations), and the result is the 
point vortex dynamical system of the 2D Euler equations. 
The second term, 𝑔(r, r′), is the residual Green’s function 
defined by 

 
									𝑔(r, r′) = 𝒢(r, rJ) − 𝒢P(r, rJ), (4) 

 
where 𝒢P corresponds to the free space Green’s function. 
Numerical solution of the system Eq. (1) has understandably 
focused on the 2D Euler system, for which 

 
ℒ ≡ Δ,								𝒢P(r, rJ) =

'
-Q
log(|r − rJ|). (5) 

 
The Green’s function forulation for ℒ, the linear elliptic 
operator, Eq.(5) is an important result which is used in next 
section. 
 

Governing equation 
Two-dimensional ideal flows are ruled by Euler 

equation that, in terms of the vorticity 𝜔𝑧̂ = ∇ × u (which 
is perpendicular to the plane of the flow), expressing the 
conservation of vorticity along fluid-element paths. The 
velocity and the vorticity field is described with the aid of a 
single scalar streamfunction 𝜓. Writing the velocity in terms 
of the streamfunction, u = ∇Z𝜓 = (𝑢' = ∂𝜓/ ∂𝑦, 𝑢- =
−∂𝜓/ ∂𝑥)[, the vorticity is given by 

 
                          𝜔 = −Δ𝜓, (6) 

 
where Δ is the Laplacian operator. The single 
streamfunction 𝜓  unifies the streamfunctions for each 
constituent of the flow field, 𝜓\  the vorticity of the flow 
field and the solid body rotation, 𝜓]  the vortex sheet 
distribution on the boundary (body), and 𝜓^  corresponding 
to the velocity field at infinity. Applying the Poincaré 
identity to each component of the streamfunction 𝜓 yields 
[15] 
 
𝜓(𝐫, 𝑡) = ∫ 𝜔(𝐫′, 𝑡)𝒢(𝐫, 𝐫′)𝑑𝑟′cdddddedddddf

8g

+∫ ijk(8lm86)
kn

(𝐫′)𝒢(𝐫, 𝐫′)o − p(𝜓q − 𝜓@)(𝐫′)
k𝒢
k𝐧
(𝐫, 𝐫′)st 𝑑𝐫′cdddddddddddddddddedddddddddddddddddf

8u

+𝜓^,

 (7) 

 
where 𝒢(𝐫, 𝐫J) = '

(-Q)vwx(|𝐫m𝐫y|)
 is the Green’s function of the 

Laplacian operator Δ, 𝐫 = (𝑥, 𝑦) is a point in the flow field, 
and 𝐫J is the location of the vortex. The above equation (Eq. 
(7)) can be expressed in terms of singularity distributions on 
the boundary of the domain for which the source 
distribution and the vortex sheet are defined as 𝜎 = 𝜓q −
𝜓@ and 𝛾 = k8l

kn
− k86

kn
, respectively. The subscript 𝑜 and 𝑖 

represent the area outside the body and the area inside the 
body, respectively in the domain. Therefore, the velocity 
can be expressed in terms of 𝜔 as [9, 16], 

 
u\(𝐫, 𝑡) = ∇Z ∫ 𝒢(𝐫, 𝐫′)𝜔(𝐫′, 𝑡)𝑑𝐫′, (8) 

 
 

u](𝐫, 𝑡) = ∇Z ∫ i𝛾(𝐫′)𝒢(𝐫, 𝐫′) − 𝜎(𝐫′) k𝒢k~ (𝐫, 𝐫′)t 𝑑𝐫′, (9) 
 
The discretized vorticity field is expressed as the sum of the 
vorticities of the N vortex particles, in which the initial 
circulation Γ is concentrated, in the following way: 

 
𝜔(𝐫, 𝑡) = ∑?nA' Γn𝛿F𝐫 − 𝐫n(𝑡)G, (10) 

 
where 𝑛 𝜀 {1,⋯ , 𝑁} is an index to denote each individual 
vortex. Vorticity is created continuously at the fluid-solid 
interface as a consequence of continuously satisfying the 
surface velocity boundary conditions. These conditions are 
enforced at the boundary elements (panels), which are the 
discretized surface into 𝑁 panels of a certain length and 
enforces the no-slip and no-penetration boundary conditions 
at the centre point of each panel. The domain is discretized 
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into computational nodes, interpreted as either of sources, 
doublets, vortex particles or the combination of two or all 
[17]. The surface (sheet) circulation computed by the BEM 
is then released into the flow at each time step as new 
circulation-carrying particles (vortices). 

 

Point vortex singularity and Gaussian wave 
shape function 
 

The resulting velocity field (Eq. (8)) induced by the 
point-vortices raises no problem when used as the 
singularity distribution on the domain boundaries or/and as 
the circulation carrier at each time-step, however, [13, 18] 
showed, in their work on point vortices to realise a white 
noise signal, that there exists a problem when 
approximating the vorticity with delta functions (point 
vortices), i.e. infinite spikes, which is an associated 
singularity in the streamfunction and velocity field. This 
singularity appears when the distance to the point vortex 
becomes very small. This is quite problematic in the 
evaluation of the sums. It is, therefore, becomes necessary 
to eliminate the ``spiky" representation of the vorticity. In 
this paper, a method based on the shape function vortices is 
adopted to handle these infinite spikes which was first 
proposed by [19] which was later on developed by [20] who 
showed that this shape function signal satisfies the 
convecting equations based on the mean flow which means 
that scalar potential is convected by the mean flow. The 
shape function vortices have a finite core which eliminates 
the associated singularity. The shape function can either be 
a Gaussian wave or a Mexican hat wavelet or a Morlet 
wavelet, or a combination of two or all. To build these 
representations, it is thus assumed that each of the finite-
core vortices is associated with a localised shape function, 
𝜓 = 𝑓(r) that is radially symmetric about the centre of the 
vortex, that decays as we move away from the centre, and 
whose integral over the entire plane is unity. For the current 
study, the shape function considered for the vortices is the 
Gaussian wave which is given by  

 
																				𝜓(𝐫, 𝑡) = 𝛾m

�
�𝑒m(�𝐫))�, (11) 

  
where the right-hand side is a transcendental function, 
called the shape function (a spatiotemporal polynomial), 
with 𝛾 as the directional strength of the vortex,  controls the 
size of the vortex (radius of the vortex core, 𝑅 = 1/�(), 𝐫 is 
the position of the vortex in the computational domain. 

Since the method is based on an unbounded domain 
contrary to the synthetic eddy modelling which requires the 
definition of a precise volume (area for 2D) containing all 
the turbulent structures, a finite domain of interest is defined 
and named as 𝑣𝑜𝑟𝑡𝑖𝑐𝑒𝑠 𝑤𝑖𝑛𝑑𝑜𝑤. The vortices are randomly 
distributed in this two-dimensional finite space, as shown in 
Fig. 2, and are convected along with the mean flow. A 
general form of the scalar potential, 𝜓7��� , for such a space 
can be written as: 

 

        𝜓7���(𝑟, 𝑡) = ��6���l�
?

∑?nA' 𝜀n𝜓n p
|�m�J|
��

, 7m7J
��
s, (12) 

 
where 𝐴@n ¡q¢  is the area of the vortices window, N is the 
total number of vortices. �(𝐴@n ¡q¢/𝑁) indicates the 
average distance between two adjacent vortices inside the 
vortices window. 𝜀n is a random sign switch taking the value 
of -1 or 1, 𝜓n represents a dimensionless shape function for 
each individual vortex. 𝑟′ is the spatial and 𝑡′ is the temporal 
location of the vortex. 𝐿� and 𝜏� denotes the turbulent length 
and time scales, respectively.  
 

 
 

Figure 2: Distribution of the vortices are indicated by 
discs with area proportional to the vortex intensity, gray 
symbols indicate the negative (clockwise flow), and the 
black symbols indicate positive (counter-clockwise flow) 
circulation, respectively 

 

SYNTHESIS OF 2D TURBULENCE 

Controlling parameters 
           The next objective of the present study is to realise a 
realistic turbulent velocity field from the shape function 
vortices which then can be used to calculate the leading-
edge noise. As turbulence is, by its very nature, stochastic 
and therefore modelling it using a set of discrete vortices 
require few constraints to regulate them to employ the 
stochasticity. A total of 6 constraint parameters, listed in 
table 1, are introduced to control and optimise the overall 
distribution of random vortices to replicate a target energy 
spectra, von Kármán energy spectra, for a homogeneous 
isotropic two-dimensional turbulence. Using Eqs. (11) and 
(12), a Gaussian profile scalar potential can be written as 

 

𝜓7���(𝑟, 𝑡) = ��6���l�
?

∑?nA' 𝜀n¥F𝛾n𝜌n
m'/-𝑒m(�§�𝐫�)�G¨. (13) 
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Table. 1 Parameters controlling the turbulence statistics 
 
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠   𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛   𝑉𝑎𝑙𝑢𝑒𝑠  

𝑁     Number of the 
vortices in the 
vortex window  

 100(𝑓𝑖𝑥𝑒𝑑) 

𝐴@n ¡q¢    Area of the 
vortex window  

 
(2(𝑐ℎ𝑜𝑟𝑑𝑙𝑒𝑛𝑔𝑡ℎ))-𝑢𝑛𝑖𝑡- 

(𝑓𝑖𝑥𝑒𝑑) 
𝑅±²5   Upper limits for 

the vortex size 
(radius)  

 0.5 

𝑅±@n    Lower limits for 
the vortex size 

(radius)  

 0.1 

𝛾±²5   Upper limits in 
eddy strength in 
the x-direction  

 0.01 

𝛾±@n   Lower limits in 
eddy strength in 
the x-direction  

 −0.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
The resulting fluctuating velocity field for a new vortex 
profile is obtained by introducing Eq. (13) into u = ∇Z𝜓 at 
(𝑥P, 𝑦P) 

 
𝑢'(𝐫, 𝑡) =

k8´µ¶�(𝐫,7)		
k9

=

−18�
�6���l�

?
∑?nA' 𝜀n¥F𝛾		n𝜌n

�/-𝑒m¸§��¹��G(y − yP)¨, (14) 

 
 

𝑢-(𝐫, 𝑡) = −k8´µ¶�(𝐫,7)		
k5

=

18�
�6���l�

?
∑?nA' 𝜀n¥F𝛾		n𝜌n

�/-𝑒m¸§��¹��G(x − xP)¨. (15) 

 
The velocity contours with streamlines and the normalised 
velocity magnitude of a two-dimensional Gaussian vortex, 
according to Eqs. (14) and (15) with 𝑁 = 1, are shown in 
Fig. 3. 
 
 

(a) (b)

(c) (d)

Figure 3: (a) u1 contours and streamlines, (b) u2 contours and streamlines, (c) velocity vector quiver plot, (d) velocity profile 
of the Gaussian wavelet 
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Homogeneous and Isotropic Two-
Dimensional Turbulence 

 The constrained parameters (listed in table 1) define 
the scalar potential (Eq. 13) which is used to calculate the 
numerical spectra. The study of homogeneous and isotropic 
turbulence is supported by the use of correlation functions. 
For a two-dimensional incompressible flow, the two-point 
two-time correlation tensor of the turbulent velocity u is 
defined as ℛ@B(𝐫, 𝜏) = ¼𝑢@(𝐫', 𝑡')𝑢B(𝐫-, 𝑡-)½, where ⟨⋅⟩ 
denotes the ensemble average, 𝐫 = |𝐫' − 𝐫-| and  𝜏 =
|𝑡' − 𝑡-|. The velocity field is defined in terms of a scalar 
field 𝜓7���(𝐫, 𝑡), which is modelled as a homogenous, 
isotropic, and stationary Gaussian stochastic process. The 
correlation of the streamfunction can be written as 

 
 
∁@B(𝐫, 𝜏) = Á𝜓7���@(𝐫', 𝑡')𝜓7���B(𝐫-, 𝑡-)Â. (16) 

 
[21] showed that ∁ is related to the radial correlation 
function ℛ using u = ∇Z𝜓 and using the properties of the 
Bessel functions as 

 
ℛ(𝑟) = '

-
ℛ@B(𝑟, 0) =

'
ÃQ ∫

^
P 𝑘�∁Å(𝑘)JP(𝑘𝑟)d𝑘,(17) 

 
where ∁Å is the Fourier transform of the correlation function 
∁, 𝑟 = |r| and 𝑘 = |𝐤|. JP is the Bessel function of the zeroth 
order. Correspondingly, ∁Å to the energy spectrum 𝐸(𝑘) of 
the turbulence is related as [21] 

 
                    𝐸(𝑘) = '

ÃQ
𝑘�∁Å(𝑘). (18) 

 
Kraichnan [9] proposed the fluctuating velocity field, u can 
be expressed as 

 
u(𝐫, 𝑡) = ∇Z ∫ 𝒢(𝐫, 𝐫′)𝒰(r′, 𝑡)𝑑𝐫′cdddddedddddf

8´µ¶�

, (19) 

 
where 𝒢 is a spatial Green’s function filter, 𝒰 =
(𝒰',𝒰-, 𝒰�) is the white noise field which is reduced to a 
single term, 𝒰 = (0,0,𝒰�), for a two-dimensional turbulent 
flow. Following [22], it is possible to express the 
streamfunction correlation in terms of the filter as the 
convolution of the temporal correlation of 𝒰 which leads to 
relate the Fourier transform 𝐺Å of the filter to the energy 
spectrum: 

 
																				𝐸(𝑘) = '

ÃQ
𝑘�𝐺Å(𝑘)-. (20) 

 
The resulting numerical spectra for fluctuating velocity is 
obtained by introducing Eq. (13) into Eq. (20) as 

 
 

𝐸(𝑘) =
'
ÃQ
𝑘�

�6���l�
?

∑?@A' ∑?BA'
]6]Ì

'Í�§6Î§ÌÎ
exp Ñ− Ò�

'ÍF§6�C§Ì�G
Ó		. (21) 

Target spectra: Homogeneous and Isotropic 
Two-Dimensional Turbulence 
 

  The target spectra 𝐸7²�(𝑘) for the numerical spectra 
𝐸(𝑘) is von Kármán energy spectra for two-dimensional 
homogenous isotropic turbulence which is given by [23], 

 

𝐸7²�(𝑘) = 𝐸ÔÕ(𝑘) = ''P�¶Ö×
� Ø

-ÙQ

p ÚÚÛ
s
Ü

Ñ'Cp ÚÚÛ
s
�
Ó
�Ý/Þ, (22) 

  

𝑘ß =
Γ p12sΓ p

5
6s

ΛΓ p13s
. 

 
where Λ is the integral length scale, Γ is the gamma function.  

In the present study, the vortices window is injected 
close to the leading edge of the airfoil. 𝑢�±ã/𝑢^ = 0.04 
which is equivalent to 4.0% turbulence intensity and Λ =
0.058, corresponds to the length scale are set as the 
parameters for the target energy spectra. 

 

STOCHASTIC OPTIMISATION: GENETIC 
ALGORITHM 

 
 The ability of the numerical turbulence to realise the 

desired statistical properties relies on the optimisation of 6 
constrained parameters  

 
𝒫 = (𝑁,𝐴@n ¡q¢, 𝑅±²5, 𝑅±@n, 𝛾±²5, 𝛾±@n).      (23) 

 
The optimisation of these parameters is carried out by 
defining an error function as 

 
													𝜀(𝒫) = ælog'P

⟨ç(Ò)⟩
çèé(Ò)

		æ (24) 
 
The 𝐸(𝑘) spectra, given by Eq. (21), are optimised to 
𝐸ÔÕ(𝑘) for 𝑘 values from 1 to 150 by minimising the error 
function 𝜀(𝒫). The value of 𝑁 is fixed at 100. An evolution-
based optimisation technique, Genetic algorithm, is used to 
minimise the error function. The algorithm takes random 
values within the identified range for the constrained 
parameters, and the process is repeated until the best fitting 
spectra are obtained. For the current parameters, the 
algorithm converges to the optimal value after 100 iterations 
with an initial population of 200. 

The target spectra for the turbulent inflow is shown 
in the Fig. 4. The numerical and experimental [24] spectra 
are in good agreement with the corresponding target one.  
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Figure 4: Energy spectra comparison with black line 
representing analytical spectra, red line representing 
experimental spectra, and blue line representing optimised 
numerical spectra 

 

RESULTS AND DISCUSSION 
 
The objectives of the present paper, to overcome the 

singularity associated with the point vortices and the 
realisation of a statistically matched spectra, are 
successfully met. In contrast, this also shows that it is 
relatively easy as well as computationally economic to 
model the turbulent inflow conditions for a time-domain 
analysis over a vast range of wavenumbers. 

In this paper, a scalar potential using a Gaussian wave 
shape function is derived to construct a stochastic function 
for the calculation of energy spectra. The Gaussian profile 
for the vortices eliminates the problem of infinite spikes 
when the distance to the vortex becomes very small. The 
derived spectral equations for the energy has the same 
structure as the spectral equations of [25]. The optimisation 
of the constrained parameters is performed using the genetic 
algorithm which enhances the randomness in the system. 
The vortices are distributed in the model with the average 
separation between two adjacent vortices less than a fixed 
critical distance. Using the optimised constraint parameters 
for Tu=4% and length scale = 5.8 mm, the contour plot of 
the vorticity field in two-dimensions is shown in Fig. 5.   

This low-cost methodology aims at providing a 
realistic and statistically optimised turbulent inflow 
conditions for the broadband noise calculation using a 
vortex method. It uses a Gaussian shape waveform to 
construct the spatial filter, however, an advanced scalar 
potential (vector potential for three-dimensional analysis) 
can be constructed using different available shape functions. 

 
 

 
Figure 5: snapshot of vorticity at an instant  
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