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Due to the physical complexity of the problem and the large number of parameters that
have an influence empirical or semi-empirical models for airfoil noise generation are used in
many applications. These models are constructed from sets of observed data. In contrast
to classical regression, where the data is used to find the coefficients of the regression
function, the method of symbolic regression does symbolically identify the function itself.
The present study applies this method to establish models for the noise generation at an
airfoil. The process is exemplified for the noise generation at porous airfoils, where data
sets from previous experimental studies are available. For both the self noise from the
interaction of a turbulent boundary layer with the trailing edge of an porous airfoil and the
noise generated at the leading edge due to turbulent inflow models of different accuracy
and complexity are proposed. It is shown that symbolic regression can be used as a tool
to provide insight into the noise generation process and the influencing parameters.

I. Introduction

The noise generated at an airfoil in flow is of great importance in many technical applications. In order
to identify possible noise problems and to find mitigation measures, methods for the assessment of this
noise are needed. Some efforts have lead to successful analytical and numerical prediction of airfoil noise.
However, the physical complexity of the problem, the large number of parameters that have an influence in
practical cases and the computational cost that is connected with numerical computations have lead to a
certain popularity of empirical or semi-empirical models.

These models are based on data sets of observations of the noise generated and a tuple of the respective
controlling parameters. The data is either generated through experimental tests or by a series of numer-
ical computations. Then, a plausible regression model that is based on analytical models is used to find
the coefficients of the regression function. This function then produces a relationship between controlling
parameters and the sound generation that gives a minimal error when compared to the observed data set.
Examples for such models are discussed and used in the literature.1,2 While these models apply to a wide
range of conventional technical airfoils they can not be used for airfoils with modifications such a serrations
and porosity. In such cases the prediction of sound generation either relies on analytical and numerical
methods or new empirical models need to be found.

Semi-empirical models require to assume a model for the regression function, which may be not straight-
forward to find. This is especially true when there are parameters involved that are not considered in
analytical models and when the underlying physics are not fully understood. In such cases, an analysis
may help that does not need to assume a model for the regression function, but instead finds this from the
data. A special form of such approach is the symbolic regression, where the goal is not to find coefficients
for a certain model, but to create a functional relation which produces the observed data when given the
respective parameter data sets as input.

The present study applies the method of symbolic regression to establish models for the noise generation
at an airfoil. The process is exemplified for the noise generation at porous airfoils. The paper is organized as
follows: First, basic analytical models for conventional airfoils are shortly reviewed and the data on porous
airfoils is summarized. Second, genetic programming as a tool for symbolic regression is briefly explained
and the setup and techniques for the noise measurements as well as the choice of non-dimensional quantities
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for the characterization are discussed. After the data from two different experimental surveys is presented,
the results for models of two different noise generation mechanisms are presented and discussed.

II. Airfoil noise models

A number of different mechanisms may result in sound generation at airfoils in flow. In most cases the
interaction of the flow with the surface of the airfoil leads to fluctuating forces acting on the airfoil. These
forces then cause sound radiation from the airfoil. In general, two possible reasons for the fluctuating forces
were identified. First, effects in the flow boundary layer can produce such forces that in turn generate airfoil
’self noise’. In this case, the noise is controlled by the properties of the fluid, the flow velocity and a possibly
complex set of airfoil properties. Secondly, turbulent flow disturbances that are convected in the oncoming
flow may generate unsteady load on the airfoil. This is termed ’turbulence interaction’ noise, and, in addition
to the fluid and airfoil properties, is controlled by the characteristics of the turbulent inflow.

Here, only two special cases shall be considered: the self noise from the interaction of a turbulent boundary
layer with the trailing edge of the airfoil and the noise generated at the leading edge due to turbulent inflow.
A classical analytical model for the first mechanism was derived by Ffowcs Williams and Hall.3 It considers
the noise from a flow past the trailing edge of a semi-infinite plate. One conclusion from the model is the
dependency of the farfield intensity (and thus the rms sound pressure p̃) on certain parameters. For a fixed
observation point in the farfield,

p̃2 ∼ ũ2UM2L2 (1)

with the root mean square turbulent velocity fluctuation ũ, the flow velocity U , the Mach number M = U/c0,
the speed of sound c0 and a characteristic dimension L of the eddies in the turbulent boundary layer. As
both ũ and M are proportional to U , an overall dependence of the farfield intensity on U5 can be concluded.
This important result is the basis for a number of refined models on trailing noise. It is also a basis for
the semi-empirical model by Brooks et al.1 that was derived from data measured on different NACA0012
airfoils and uses the boundary layer displacement thickness δ∗ as a characteristic dimension. Other, more
simplified airfoil noise models that include the noise generated at the trailing edge based on the work by
Ffowcs Williams and Hall were for example presented by Schlinker and Amiet,4 by Grosveld5 and Lowson.6

All of those models contain the dependency of the far field sound pressure level on the fifth power of the
flow velocity.

For turbulent inflow noise, in his analytical model for the interaction of turbulence with the leading edge
of a flat plate, Sharland7 finds an U6 dependency for the total sound power. Later, Amiet8 presented an
analytical model for the interaction of isotropic turbulence with the leading edge of a thin airfoil, which was
verified using experimental results by Fink.9 This analysis leads to a dependency on U5 and (ũ/U)

2
for the

far field intensity for a fixed Strouhal number St = fΛ/U , where f is the frequency and Λ is a characteristic
dimension of the turbulent eddies in the inflow. Later, this theory was extended10 to include the thickness
of the airfoil edge. Several experimental studies confirmed the general validity of these models and find that
a velocity dependency of U5...6 fits the results best.11–18

However, in both the trailing and leading edge cases analytical models and derived empirical formulations
account only for standard airfoils or plates. They do not take into account any modifications that are made
to the material of the airfoil or the shape of the edges that aim at reducing the noise generation. The case
of porous airfoils may serve as an example. Such airfoils – or airfoils with porous patches – may have a
considerably reduced noise generation. A preliminary attempt19 to establish a semi-empirical model for the
trailing edge noise based on turbulent velocity spectra from the boundary layer had only limited success.
There is no model at all for the leading edge noise generation at porous airfoils. On the other hand side,
data from a large number of measurements on porous airfoils is available to build models directly from the
data and test them on it.

III. Methods and Data

A. Symbolic regression using genetic programming

Symbolic regression handles the problem to identify a function symbolically that fits a given set of data in
some way. The function then gives a relationship between a dependent variable (e.g. sound pressure) and
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one or more independent variables (e.g. flow velocity, frequency). The data set used to identify the function
consists of values for the dependent variable and assigned tuples with values of the independent variables.
Different strategies exist for solving the problem of symbolic regression. One possible approach, that is
quite versatile, is genetic programming. This means that the function to find is represented as a computer
program. The problem is thus converted into the problem of finding a program instead of a function in
symbolic form. The program is part of a set (the population) of such programs that is bred using algorithms
that resemble the course of evolution including the principle of survival of the fittest and recombination of
individual programs from the population.

In order to be able to apply genetic programming for symbolic regression, the model or functional relation
sought must be represented by a composition of primitive functions and terminals. Such model may be quite
effectively represented as a rooted tree the branches of which being the functions and the leaves being the
terminals. The tree may be interpreted as a program to compute the function. Another important feature
is that it can be manipulated by adding, changing or deleting subtrees. Thus, the function can be altered
using such manipulations.

The course of genetic programming for symbolic regression can be summarized by the following steps.
First, create a population of programs (trees) from the primitive functions and the terminals using some
random process. Second, estimate the fitness of each program by executing it. The fitness is simply some
defined measure that estimates how good the function coded by the program fits the sought relation. Third,
select one or two individual programs from the population. The higher the fitness of an individual, the more
probable its selection should be. The fourth step is to create new programs by applying genetic operations on
the selected individuals (the parents). The possible genetic operations include: simple reproduction (copy),
crossover (recombination of randomly chosen parts of the parents), mutation (randomly altering a part of a
parent). The third and fourth step are repeated until a new population (the next generation) is built. Now,
if no individual in the population has a required minimal fitness nor any other stopping criterion is fulfilled,
everything is repeated beginning with the second step and using the new generation as the population. The
effect of this approach is that the fitness of the population is ever increasing.

The application of genetic programming usually requires some preparatory steps. These steps are20 (i)
selecting the set of terminals as well as (ii) the set of primitive functions that should be used, (iii) defining
a fitness measure, (iv) setting the parameters that control the run and finally (v) to decide what should be
the result and possibly what termination criterion is to be used.

For symbolic regression the terminal variables are the independent variables. In data-generating experi-
ments on airfoil noise these variables originally represent quantities that have dimensions. A problem with
this is that in order to get a physically meaningful model, only some functions may be allowed on certain
quantities. For instance, it is not allowed to add a length to a frequency. Thus, it is a good idea to use the
independent quantities not directly, but to derive dimensionless quantities from the input data and to use
them as terminals instead. Consequently, also the dependent quantity needs to be dimensionless. Addition-
ally, the use of constants as terminals is possible. As no numerical operations are performed to estimate
the value of these constants in genetic programming, use is made of ephemeral random constants that are
initially introduced by random choice and are not changed afterwards. In the course of genetic programming,
these constants can be combined using the primitive functions available, thus making the selection of those
constants possible that lead to higher fitness.

The set of primitive functions governs the possible types of functional relationships that may be derived
by symbolic regression. For a certain physical process it is often clear that only a limited number of functional
building blocks can be expected in the relation. In the case of airfoil noise it seems sensible to include basic
operations such as addition, subtraction, multiplication, division and possibly power. In contrast, it seems
not sensible to have functions such as sine and cosine in the relation unless the independent variables do also
encompass any angles or quantities that may be combined into angles.

The fitness measure must consider how good the individual function reproduces the data used for the
regression. This can be achieved by observing the error the function f makes in predicting the observed
values of the dependent variable y for the set of independent variables x. A number of possible choices exist
for the error metric. The error metric that was used in the present analysis is the mean squared error:

e2 =
1

N

N∑
i=1

(y(xi)− f(xi))
2
. (2)

All errors are weighted equally in the sum, regardless of the value of y(xi). If y is the root mean square
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sound pressure, both larger and smaller values can be expected. Then, it is preferable to consider the error
in normalized form. This can be done by replacing y and f by their logarithms or by applying a logarithmic
model for the fit.

The parameters to choose for the run of genetic programming are the size of the population, the method
of choosing the parent individuals and the probabilities of the genetic operations that govern the breeding
of a new generation. Two strategies were used in the present research. First, a fully configurable simple evo-
lutionary algorithm21 was implemented using the open source DEAP framework22 implemented in Python.
Following the literature,20,23 the parameters that were used are: population size 500, size 3 tournament
selection, mating probability 0.9, mutation probability 0.01. The second strategy was the use of algorithms
and the parameter sets internal to the Formulize software.24 Due to faster performance, the latter was chosen
for all results reported here.

Finally, the result are the best individual functions from all generations together. Besides accuracy,
parsimony is also important to select an individual function. A good heuristic is to prefer simple and clear
structured functions as a model. Functions of a more complicated structure, however, have a greater potential
to fit the data. Thus, a good solution to the symbolic regression problem is both parsimonious and accurate.
Both measures have to be considered in the selection process. Thus, the best individual functions are those
on a Pareto front in accuracy-parsimony-space. The prediction accuracy of a function is measured by the
error also used for the fitness, but on another subset of the data as was used for the estimation of fitness
during the genetic programming run. A complexity measure is used for parsimony. It is based on the number
of terms in the function. Specifically, each primitive function branch and each terminal is given a specific
weight and the total weight

wt =
∑
i

wi (3)

of the function is small for a parsimonious function and large for a function that has a complex structure.
The sum is taken over all branches and terminals.

B. Experimental setup

Two experiments on airfoil noise were performed in the aeroacoustic wind tunnel at Cottbus university.25

The first experiment concerned turbulent boundary layer - trailing edge noise, while the second experiment
focuses on the noise generation at the leading edge due to turbulent inflow. Both experiments were described
elsewhere19,26,27 in detail. Thus, only a brief summary will be given here.

Both experiments used a very similar setup (Figure 1). An airfoil is placed in the measurement section
of the tunnel in front of the nozzle. The nozzle and thus the jet have a diameter of 0.2 m. The airfoils used
in the experiments have a span that is approximately 0.4 m and are thus wider than the jet. For the leading
edge noise measurements, different grids were attached to the nozzle outlet to generate a turbulent flow.
Hot-wire measurements were used for the estimation of the turbulent flow characteristics. A microphone
array was applied to separately measure the individual contribution of the leading and the trailing edge to
the noise.

The same set of porous airfoils was applied in both experiments. All airfoils had the same, slightly
modified semi-symmetrical SD7003 shape28 with a chord length of 0.235 m, but were made of different
materials. These materials are characterized by the flow resistivity29,30 r and the porosity σ, see Table 1.

All acoustic measurements were done using a planar microphone array with 56 1/4 inch microphone
capsules flush mounted into an aluminum plate. The array has an aperture of 1.3 m and was mounted out of
the flow in the measurement section at a distance of either 0.68 m (for the trailing edge noise measurement)
or 0.72 m (for the leading edge noise measurements) above the airfoils. The duration of the individual
measurements was 40 s and the microphone signals were sampled at 51.2 kHz. The data was partitioned
into 999 blocks of 4096 samples each with 50% overlap, transformed using FFT and a von Hann window
and assembled into a cross spectral matrix. This was then used as a basis for processing using beamforming
and deconvolution algorithms. Based on a detailed comparison19 of different deconvolution algorithms,
orthogonal beamforming31 was chosen in case of trailing edge measurements while CLEAN-SC32 was chosen
for the processing of the da ta from the leading edge noise measurements. In both cases, a three-dimensional
source map was computed and the contributions from the leading and trailing edges were integrated over
appropriate volumes located well within the core jet. Thus, the noise from the wind tunnel shear layers, and
in case of the leading edge noise experiment also the noise from the turbulence generating grid, was filtered
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(porous) airfoil

nozzle

U

core jet

mixing zone

grid (optional)

x

Figure 1. Schematic display of the measurement setup (top view)

Table 1. Materials used for the manufacturing of the airfoils (given are the air flow resistivity r and the open
volume porosity σv)

No Name Material r [Pa s/m2] σv

Reference non–porous ∞ 0

M&K felt, 0.36 g/cm3 woolen felt 506,400 0.73

M&K felt, 0.22 g/cm3 woolen felt 164,800 0.82

Needlona felt, SO 2002 synthetic felt 130,200 ≈ 0.86

ArmaFoam Sound elastomer foam 112,100 0.85 - 0.9

Needlona felt, WO–PE 1958 woolen / synthetic felt 40,100 ≈ 0.89

Basotect melamine resin–foam 9,800 >0.99

Recemat metal foam 8,200 >0.95

Balzer RG 3550 polyurethane foam 4,400 >0.99

Panacell 90 ppi polyurethane foam 4,000 >0.99

Panacell 60 ppi polyurethane foam 3,600 >0.99

M–Pore PU 45 ppi polyurethane foam 1,500 0.86

M–Pore Al 45 ppi metal foam 1,000 0.90

Panacell 45 ppi polyurethane foam 700 >0.99
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out. The span of the leading edge that contributed to the results was 0.1 m, while for the trailing edge it
was 0.12 m. Finally, the data was converted into third octave band sound pressure levels.

A total of seven different grids were used to generate turbulence at the outlet of the wind tunnel nozzle.
Six of these grids have a square mesh design and one of the grids is a perforated plate with round holes.
The different dimensions of the grids lead to different properties of the turbulence that is generated. Table 2
gives an overview of the grids used for the experiments and the according grid parameters (see Figure 2(a)
and 2(b)). The parameter t denotes the thickness of the grids. According to Roach,33 turbulence grids with
a porosity greater than 0.5 should be used in order to avoid flow instabilities. With the exception of the
perforated plate with round holes (porosity 0.42), all grids fulfill this criterion.

b
a

M

(a) square mesh

d

s

(b) round holes

Figure 2. Definition of grid parameters for different designs

Table 2. Turbulence grids used in the experiments, grid parameters according to Figure 2(a) for perforated
plates, square holes (PPS) and square mesh grids, round bars (SMR) and Figure 2(a) for perforated plates,
round holes (PPR)

Grid description M (d) [mm] a (s) [mm] t [mm]

PPS 12/2 perforated plate, square holes mesh width 12 bar width 2 1

PPS 14/4 perforated plate, square holes mesh width 14 bar width 4 1

SMR 5/1 square mesh grid, round bars mesh width 5 rod diameter 1 2

SMR 16/1.2 square mesh grid, round bars mesh width 16 rod diameter 1.2 2.4

SMR 12.5/0.8 square mesh grid, round bars mesh width 12.5 rod diameter 0.8 1.6

SMR 10.6/0.9 square mesh grid, round bars mesh width 12.5 rod diameter 0.8 1.8

PPR 8/11 perforated plate, round holes hole diameter 8 hole distance 11 1

The turbulent flow used for the leading edge noise experiments was characterized using measurements
with a single-wire Dantec 55P14 hot-wire probe in a constant temperature anemometry setting. Using the
probe, measurements were performed at four different flow velocities between 12 and 45 m/s and in three
different distances to the grid (0.1 m, 0.2 m, 0.3 m) for each of the seven grids. For each distance, the
velocity was measured at 15 different positions in a plane parallel to the grid.27 The signal from the hot-wire
was sampled at 25.6 kHz and recorded for 10 s at each measurement position. Then, an FFT with a von
Hann window was applied on blocks of 4096 samples each with an overlap of 50%. The resulting autospectra
of the velocity fluctuations were averaged over the 187 blocks per location and over the 15 locations, thus
giving a good assessment of the actual autospectrum.

Isotropic turbulence can be characterized using the root mean square turbulent velocity fluctuation ũ
and the streamwise integral length scale Λx. In this case, the one-sided autospectrum of u can be fitted to34

Guu(f) =
4ũ2Λx

U

(
1 +

(
2πfΛx

U

)2
) =

4ũ2t0

1 + (2πft0)
2 . (4)
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Using Taylors frozen turbulence hypothesis, the second form replaces the length scale by a time scale t0 for
the turbulence. Unlike in previous studies,27 where the autocorrelation function was used to assess t0, the
present study uses (4) to assess both ũ and t0 from a least-squares fit of the measured autospectra for each
combination of grid, flow velocity and distance. From this data, interpolating functions were constructed
using a two-dimensional Clough-Tocher scheme35 that give ũ and t0 as functions of the flow velocity and the
distance to the grid. Example results are shown in Figure 3.

0.10 0.15 0.20 0.25 0.30
d [m]

0

2

4

6

8

10

12

14

Λ
x

=
t 0
U

 [m
m

]

0.10 0.15 0.20 0.25 0.30
d [m]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ũ
/U

PPS 12/2
PPS 14/4
SMR 5/1
SMR 16/1.2
SMR 12.5/0.8
SMR 10.6/0.9
PPR 8/11

Figure 3. Characteristic length scale and turbulence intensity for seven grids, U ≈ 40 m/s

C. Dimensionless quantities

It is of advantage if the functional relation to find does not need to consider units. Thus, it is necessary to
find dimensionless numbers that describe the problem at hand. Using the tool of dimensional analysis, the
first step is to find all parameters that govern the problem. The second step is then to identify the number
of dimensionless quantities using the Buckingham π theorem.36

The sound pressure p̃ of the noise generated by the turbulent boundary layer at the trailing edge of a
porous airfoil is governed by the following parameters: the speed of sound c, the density ρ and kinematic
viscosity ν of the fluid, the chord s, the span b, the angle of attack α and the shape of the airfoil, the
flow velocity U , some boundary layer scale parameter or characteristic dimension of the boundary layer
turbulence δ, the observer distance z (when observed under a constant angle), the frequency f , and for the
porous material the flow resistivity r, porosity σ and tortuosity τ . From this 14 quantities, dimensional
analysis leads to 11 dimensionless quantities, if the airfoil shape is not regarded. These were chosen to be:

� the normalized mean square sound pressure p̃2/(ρc2)2,

� the chord-based Reynolds number Re = Us/ν,

� the chord-based Strouhal number Sr = fs/U ,

� the Mach number Ma = U/c,

� the acoustical Rayleigh number37 Raa = fρ/r,

� the porosity σ,

� the tortuosity τ ,

� the length ratios δ/s, z/s, b/s and
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� the angle of attack α.

In the experiments, the fluid, the airfoil shape, size and angle of attack and the observer position were not
altered. For the porous materials, the tortuosity was considered to be constant (≈ 1). Thus, only the first
six quantities need to be considered and the sought function gTE depends on five quantities:

p̃2

(ρc2)2
= gTE(Re,Sr ,Ma,Raa, σ). (5)

In the leading edge noise case, a very similar analysis can be performed. Instead of δ, parameters for the
incoming turbulence must be included: t0 and ũ. This leads to 12 dimensionless quantities. This time,

� the normalized mean square sound pressure p̃2/(ρc2)2,

� the chord-based Reynolds number Re = Us/ν,

� the chord-based Helmholtz number He =
fs

c
,

� the turbulence-based Strouhal number Sr = ft0,

� turbulence intensity Tu = ũ/U ,

� the Mach number Ma = U/c,

� a length ratio between characteristic lengths for the porous structure and the turbulence L =
√
νρ/r/(Ut0),

� the porosity σ,

� the tortuosity τ ,

� the length ratios z/s, b/s and,

� the angle of attack α

were used. Again, the same parameters as for the trailing edge case remained constant. Consequently, the
sought function gLE depends on seven quantities:

p̃2

(ρc2)2
= gLE(Re,He,Sr ,Tu,Ma, L, σ). (6)

D. Data sets

The measurements for the trailing edge noise experiment were performed for a large number of combinations
of different airfoils, flow velocities and angles of attack.26 A subset from the available data was selected for
14 different airfoils and 0°angle of attack. For each airfoil measurements were taken at 15 to 17 different
flow velocities between 25 m/s and 50 m/s. In order to include only the case of a non-compact aeroacoustic
source at the airfoil, frequencies below 2 kHz were excluded from the analysis and only third octave frequency
bands between 2 kHz and 20 kHz were included. Thus, the data set used for the regression consists of 2420
tuples of numbers. Each tuple includes all quantities that are used in Equation (5).

In order to do a successful regression, the independent variables need to span an adequate range, and
the individual values of a certain variable should be distributed over that range. This is the case for the
Reynolds number (4·105... 7.8·105), the Mach number (0.07... 0.14), the Strouhal number (9.4... 180) and
the acoustical Rayleigh number (0... 32.7). However, for the porosity the range is very limited (0.73... 1, see
Table 1) and many materials have a porosity close to 1. Thus, the porosity was not considered in the data
set for the regression.

Figure 4 shows the data set for the trailing edge noise. The sound pressure level was scaled according
to the U5 hypothesis of Ffowcs Williams and Hall.3 The spectra are plotted using the Strouhal number
as non-dimensional frequency. Different flow resistivities are shown color-coded. The black dots represent
a standard, non-porous airfoil. The figure allows the conclusion that certain flow resistivities result in
noticeable sound reductions compared to others, but no definite relation can be read out of it.
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Figure 4. Scaled sound pressure levels for the trailing edge noise as a function of the chord-based Strouhal
number and the flow resistivity (color-coded)

In case of the leading edge noise experiment, the inflow turbulence was varied by using different grids and
by placing the airfoils in different distances from the grid. Seven grids and five different distances were used
in the experiment. If all possible combinations would have been tried, the total number of measurement
cases would have increased 35-fold compared to the trailing edge noise measurement. Thus, instead of a
full-factorial design of the experiment, a D-optimal design38 with some extra measurement cases was used.
Altogether, this resulted in manageable 386 different parameter combinations or, equivalently, individual
acoustic measurements. The D-optimal design assures an adequate distribution of each parameter over the
realizable range of values.

Noise from turbulence interaction at the leading edge is known to have less energy at high frequencies.39

Thus, only frequency bands up to 10 kHz were included in this case. The final data set for the leading edge
noise experiments consists of 4139 tuples of the numbers used in Equation (6). Figure 5 shows the data set
for the leading edge noise. The sound pressure level was scaled according to an assumed U6 dependency
and plotted over the Strouhal number. Again, it can be concluded that in some cases the noise generation
is lower than for the non-porous reference airfoil. However, no obvious relation appears that can be used to
predict the influence of the flow resistivity or other parameters on the noise generation.

IV. Results and Discussion

For the trailing edge noise, results from two different genetic programming runs are reported here. Both
runs delivered a number of functions that establish a relation between the independent and the dependent
quantities. Because the dependent quantity p̃2/(ρc2)2 span several orders of magnitude, instead of directly
applying the model according to Equation (5) as a basis, its logarithm was used and a function gTE was
sought that fits

10 lg

(
p̃2

(ρc2)2

)
= 10 lg (gTE(Re,Sr ,Ma,Raa)) . (7)

This way, the deviation between model function and measured data is expressed in decibel.
The set of primitive functions for the first run was {+,−, ·, /, ˆ}, the basic algebraic operations and the

power function. The terminals that were allowed are {Re,Sr ,Ma,Raa, C}, were C stands for an ephemeral
constant. The mean squared error metric according to Equation (2) was used and the run was performed
using the algorithms and parameters internal to the Formulize software. The run time spent for the first
run was 50 hours on a personal computer. From all approximately 106 generations, a small set of candidate
solutions were produced on an error-complexity-Pareto front (Figure 6). The weights used for the complexity
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Figure 5. Scaled sound pressure levels for the leading edge noise as a function of the turbulence-based Strouhal
number and the flow resistivity (color-coded)

measure were equal except for the division operator, were a double weight was applied. This means a slight
extra penalty for the use of division.
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Figure 6. Error and complexity Pareto front for the first run (red markers denote solutions according to
Equations (8) through (12))

The five candidate solutions marked in Figure 6 and ordered from parsimonious to complex are:

p̃2 = CT ·Ma5.88, (8)

p̃2 = CT ·
Ma4.32

Sr
, (9)

p̃2 = CT ·
(

0.00062Raa +
Ma

Sr

)2.49

, (10)

p̃2 = CT ·Ma4.81Sr
17.8 + (0.00041 + Raa)

−0.75

Sr + 1.05Raa − 0.2
, (11)

p̃2 = CT ·Ma5.02

(
(0.9 + 0.004Sr + RaaSr)

−9.34
+ 221

(
0.75 + Raa
Sr + 12Raa

)2.41
)
. (12)
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As the data set referred to a constant span b = 0.12 m and observer distance r = 0.68 m, the candidate
solutions were multiplied by a factor

CT =
17b

3r
Pa2. (13)

In the present analysis C = 1 Pa2. However, this factor considers theoretical dependencies p̃2 ∝ b and
p̃2 ∝ 1/r.

The first candidate solution (8) depends on Ma only. It is far to simple to give a small error, but the
exponent for Ma gives a dependency not very different from the theoretical U5. However, Figure 7(a) shows
that this candidate solution is virtually useless to predict the trailing edge noise generation. The second
candidate solution (9) includes an additional dependency on Sr . Again the overall U5.32 dependency is close
to the theoretical value. In addition, the general trend of lower sound pressure for higher Sr agrees with
the data set. The candidate solution (10) is the most parsimonious solution that exhibits a dependency on
Raa. However, the Raa-dependency in the data set is clearly not as simple as in this solution. While the
error is smaller (see Figure 7(c)) than for the other solutions, the dependency on U is more complicated
and a comparison with theory is not easily possible. This is different for the fourth candidate solution (11),
where the term Ma4.81 can be factored out from the rest of the solution. The solution gives a relatively low
error, approximates the theoretical U5-dependency and exhibits a less complex combined dependency on Sr
and Raa. The fifth and final candidate solution (12) has a nearly perfect agreement with the theoretical
U5-dependency, but has a very complex term for the Sr - and Raa-dependencies.
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(a) T1: Equation (8)
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(b) T2: Equation (9)
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(c) T3: Equation (10)
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(d) T4: Equation (11)
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(e) T5: Equation (12)
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Figure 7. Models for trailing edge noise from Equation (8). . . (12) (corresponding to T1. . . T5), color scale for
flow resitivity see Figure 4, the lines mark the mean and the mean ± root mean square error

Despite the use of the model according to Equation (7), that includes also Re, only Sr ,Ma, and Raa
appear in the candidate solutions. One possible explanation is that only one unique chord length was used
in the experiments and the speed of sound varied only slightly due to temperature variations in the order
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of a few Kelvin. Consequently, Re and Ma are basically proportional, because the only quantity that was
varied was the flow velocity U .

Figure 7(f) compares the error distribution for each of the five solutions. The error is small enough to
have a significant amount of the data tuples with errors less than 3 dB for the last two solutions. These
solutions could be used to model the dependency of the sound generation on flow velocity, porous material
flow resistivity and frequency. However, both solutions are not perfectly suited. Solution (11) has a larger
error and solution (12) has an unlikely complicated dependency on Sr and Raa. This could possibly be cured
by extending the run time by a large amount.

Another approach was taken in the second run. The first run showed that fractional exponents are
not necessary to model the Ma- or U -dependency. Moreover, the form of the frequency spectrum can-
not be expected to yield a simple power law that includes Raa or Sr . Thus, the power function was
removed from the set of primitive functions for the second run to prevent any fractional powers to ap-
pear in the solution. To include possible dependencies on integer powers, the terminal set was extended to
{Re,Re2, Re3, Re4, Re5, Re6,Sr ,Sr2,Sr3,Sr4,Ma,Ma2,Ma3,Ma4,Ma5,Ma6,Raa,Ra

2
a,Ra

3
a,Ra

4
a, C}. The

same error metric and parameters were used as in the first run.
After only 3·104 generations (runtime approximately 2 hours), the algorithm proposed a model with the

same low error as solution (12), but with a less complex dependency on Sr and Raa:

p̃2 = CT ·Ma5 500 + 47600Ra2
a

79 + Sr2 + 81000Ra2
a + 425Sr2Raa

. (14)

This convenient model can be used to gain some insight into the reduced sound generation at the trailing
edge of porous airfoils. To this end, the model can be used to predict the sound pressure level difference

∆L = Lporous − Lreference = L(Ma,Sr ,Raa)− L(Ma,Sr , 0). (15)

In Figure 8, this difference is plotted for arbitrary Mach numbers as a function of Strouhal number and
acoustical Rayleigh number. The range of values for the plot is the same as for the experiments. The plot
shows that the maximum reduction appears for Raa ≈ 0.1 and that the reduction is less for larger Raa and
Sr . For Raa > 4 and Sr > 30, the porous airfoil may produce more sound at the trailing edge than the
non-porous reference airfoil.
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S
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-9 dB
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Figure 8. Trailing edge noise generation at a fixed Mach number compared to a non-porous reference airfoil
(Raa = 0) as level difference using the model according to Equation (14)

The analysis run for the leading edge based on a data set with even wider span of the dependent quantity.
Thus, with the same intentions as in the trailing edge case, the symbolic regression was performed using the
logarithmic model:

10 lg

(
p̃2

(ρc2)2

)
= 10 lg (gLE(Re,He,Sr ,Tu,Ma, L)) . (16)
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This time, the same set of primitive functions was used as in the second run for the trailing edge. The set
of possible terminals included the first to the fourth power of He, Sr , Tu and L as well as the first to sixth
power of Ma and Re and an ephemeral constant. The same error metric and parameters were used as in the
trailing edge noise model runs.

Considering the number of independent quantities, the task of finding a relation that models leading edge
noise is somewhat more difficult than it is for trailing edge noise. Consequently a much longer run time of
100 hours was used to allow the algorithm selecting results with small error and low complexity. However,
it was not possible to produce results with same quality as in the trailing edge noise case. The relation

p̃2 = CL ·Ma5Tu2

(
L+

2.5Ma

0.737 + (1 + 144SrL)He2 − 1.66He

)
(17)

CL = 7200
b

r
Pa2 (18)

is one of those with the smallest error found, but is also not to complex. Again, the result was multiplied
by a factor that reflects the theoretical dependency on b and r. Here, this factor also includes an constant
factor that is a result from the regression. The result has a root mean square error of 5.1 dB, much more
than the best trailing edge models (Figure 9).
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(a) Equation (17)
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Figure 9. Model for leading edge noise, color scale for flow resitivity see Figure 5, the lines mark the mean
and the mean ± root mean square error

The result (17) depends on all independent quantities except the Reynolds number. Interestingly, it
exhibits a dependency on Tu2, which is also the case in theoretical models such as that of Amiet.8 The Ma5

factor hints at an U5 dependency that can also be expected from theoretical models. However, the last term
that depends on L, He and Sr has an additional factor Ma. Thus the overall dependency on U depends
itself on the two summands in the parenthesis. If the second is much larger than the first, an overall U6

dependency applies. If (17) is going to be applied to analyze possible sound reductions through the use of
porous material, besides the ratio L, also He, Sr and Ma must be considered.

The decision which dimensionless quantities to use for symbolic regression is based on intuition and prior
knowledge of theoretical models that leads to certain expectations on what quantities will appear in a model.
Equation (17) shows that Sr was not the best possible choice because the turbulence based Strouhal number
appears only in a product with L. This product

LSr =
f
√
νρ/r

U
(19)

is a Strouhal number itself, but based on a characteristic length for the porous structure and shows that the
noise spectrum is less influenced by the turbulence time scale alone but by the ratio L and the characteristic
length for the porous structure.

Both examples for the application of symbolic regression for the analysis of airfoil noise data have shown
that it is indeed possible to establish meaningful models for the noise generation at an airfoil. These models
can be used for prediction as long the range of values for the influencing parameters is in the same order as
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in the dataset used for the regression. They may also be useful to gain insight on the impact of individual
parameters in a scenario where experiments do not allow the independent adjustment of these parameters.

V. Conclusion

The application of the method of symbolic regression to establish models for the noise generation at an
airfoil was exemplified for the noise generation at porous airfoils. Both the self noise from the interaction of a
turbulent boundary layer with the trailing edge of the airfoil and the noise generated at the leading edge due
to turbulent inflow were considered. Based on two extensive sets of data from previous experimental studies,
several models of different accuracy and complexity were found. These models were shown to provide insight
into the physical process of noise generation and can also be used for the prediction of noise generation in
certain situations. Consequently, the tool of symbolic regression can be used to complement other existing
modeling strategies for airfoil noise.
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